Sean Morris
Sean_Morris@aporter.com
213.243.4222
213.243.4199 Fax
44th Floor
777 South Figueroa Street
Los Angeles, CA 90017-5844

June 5, 2006

VIA FEDERAL EXPRESS

Mr. Michael Massey U.S. Environmental Protection Agency, Region IX 75 Hawthorne Street San Francisco, CA 94105

Re: San Fernando Valley / North Hollywood, California

11600 Sherman Way

Dear Mr. Massey:

This is a second letter response to the United States Environmental Protection Agency's ("EPA") March 28, 2006, request for information pursuant to Section 104(e) of CERCLA (the "current Section 104(e) Request"), sent to Honeywell International Inc. ("Honeywell"), concerning the site on Sherman Way in the North Hollywood Operable Unit at which Honeywell's predecessor in interest conducted manufacturing operations (the "Facility"). Honeywell previously provided responses to sixteen of the thirty-three requests in a letter dated May 22, 2006. With this letter, Honeywell provides responses to the seventeen remaining requests.

As with Honeywell's May 22, 2006, response, prior to providing responses to the specific requests, it is important to note a few preliminary matters. Over approximately the past two decades, Honeywell and its predecessors have provided voluminous information regarding the Facility (which ceased operations approximately 15 years ago) to the EPA. This information has included responses to several prior Section 104(e) requests, including letter requests dated August 19, 1987 (with responses dated October 15, 1987, and June 20, 1988), May 17, 1988, April 17, 1991 (with a response dated June 27, 1991), May 22, 1992 (with a response dated July 21, 1992, and a supplemental response dated September 17, 1992), and April 18, 1995 (with a response dated July 20, 1995). The EPA also has been provided information in the form of responses to discovery requests in connection with lawsuits concerning the Facility, including through responses to written interrogatories propounded in the action captioned U.S. v. AlliedSignal, Inc., et al. (Case No. 93-6490; U.S. District Court, Central District of California). Honeywell has provided further information regarding the Facility in other forms as well, such as through regular groundwater monitoring reports, presentations to the EPA, and responses to other letter requests for information from regulatory agencies

Mr. Michael Massey June 5, 2006 Page 2

(e.g., a response to a request for technical information from Mr. Dennis Dickerson at the California Regional Water Quality Control Board dated March 9, 2001).

In light of Honeywell's history of providing substantial information and data regarding the Facility, it is Honeywell's understanding that most of the available information sought by the current Section 104(e) Request has previously been provided to the EPA. Indeed, the EPA has used information provided by Honeywell in recent reports issued on behalf of the EPA regarding the North Hollywood Operable Unit, including the January 2006 Chromium Evaluation report prepared for the EPA by CH2MHill.

Honeywell continues the process of reviewing the various sources of information that have been disclosed in the past, determining what information sought by the current Section 104(e) Request already is available to the EPA, and collecting additional appropriate information. In the short time that the EPA has allowed for compiling responses to the EPA's current requests, Honeywell has made a good faith effort to locate and to provide available information that previously has not been made available or to direct the EPA to previously provided sources of information relevant to a request. Honeywell does not intend to produce information that previously has been made available to the EPA. Honeywell's efforts to collect additional responsive information is ongoing, and Honeywell reserves the right to supplement the responses below as the review process continues.

Moreover, Honeywell makes the following objections to and additional general points with respect to the current Section 104(e) Request:

A. Honeywell generally objects to the current Section 104(e) Request to the extent that it seeks information or documents protected from discovery by the attorney-client privilege, the attorney work product doctrine, the joint defense or common interest privilege, the self-evaluative privilege, or any other applicable privilege or doctrine. Nothing contained in these objections or the responses below is intended as, or shall in anyway be deemed as, a waiver of privilege. Honeywell further objects to the current

¹ In its May 22, 2006, letter, Honeywell identified Mr. Dickerson's letter as issuing from the EPA. The letter actually issued from the RWQCB, and a copy of the response is attached hereto as Exhibit A.

Mr. Michael Massey June 5, 2006 Page 3

Section 104(e) Request to the extent that it seeks confidential or proprietary business information of Honeywell or confidential settlement information.

- B. Honeywell generally objects to the current Section 104(e) Request to the extent that it seeks information and/or documents not in the possession, custody, or control of Honeywell.
- C. Honeywell generally objects to the current Section 104(e) Request to the extent that it is overbroad, unduly burdensome, not reasonably calculated to lead to the discovery of admissible evidence or information necessary or useful to the EPA's investigation, or beyond the authority provided in CERCLA Section 104(e).
- D. Honeywell generally objects to the current Section 104(e) Request to the extent that it seeks information that may be derived or ascertained from documents already within the knowledge, possession or control of the EPA.
- E. As noted above, this response reflects a diligent search of Honeywell's records, but no representation is made that all such records have been located and searched. Honeywell reserves the right to supplement this response in the event that it locates additional responsive non-privileged documents or information, but does not assume the obligation to do so.
- F. In certain instances below, where documents contain the information sought by the current Section 104(e) Request, Honeywell has directed the EPA to attached documents rather than providing answers in a narrative form.
- G. Honeywell requests confidential treatment for all nonpublic documents (designated as "confidential" on the documents) provided in response to the current Section 104(e) Request. The period of time for which confidential treatment is desired is indefinite. To the best of our understanding, Honeywell has not disclosed the information for which confidential treatment is requested, except to agents and employees and others under obligation to keep such information confidential, and has guarded the confidentiality of this information by retaining it within secure storage facilities. The reason for this request is that the information may contain trade secrets or other proprietary information and may be protected under confidentiality agreements with other entities. Honeywell asserts that disclosure of its confidential information may result in substantial harmful effects on its competitive position.

Mr. Michael Massey June 5, 2006 Page 4

H. Unless otherwise indicated, when providing information regarding the Facility, Honeywell is providing information concerning the period that Honeywell's predecessors in interest conducted operations at the location. Except as noted with respect to ongoing environmental analysis that Honeywell is conducting, Honeywell does not have direct knowledge of operations at the "Facility" conducted by subsequent owners, such as Kaiser Permanente, Public Storage, and Home Depot.

Notwithstanding the foregoing background and objections, and preserving and without waiving the objections, Honeywell responds to the current Section 104(e) Request, incorporating each of the above objections, as follows. The number for each request repeated below corresponds to the number of the request as it appears in the current Section 104(e) Request.

- 2. Information obtained by EPA indicates that the Company owned the real property at 11510 Sherman Way, North Hollywood, California ("11510 Sherman"), 11600 Sherman Way, North Hollywood, California ("11600 Sherman"), and possibly 11500 Sherman Way, North Hollywood, California ("11500 Sherman"). 11500 Sherman, 11510 Sherman, 11600 Sherman, and any other real property (along with improvements thereto) that the Company owned that was a part of or comprised the Allied-Signal facility/Avibank Manufacturing facility on Sherman Way is hereinafter referred to as the "Facility." Provide the following information with respect to the Company's ownership of the Facility:
 - a. The dates the Company owned the Facility;
 - b. The parcel number(s) and corresponding street address(es) for the Facility;
 - A copy of each document evidencing the purchase, ownership, and sale of the Facility;
 - d. The current or last known address and phone number of all other current and previous owners of the Facility;
 - e. A copy of each lease, rental agreement, or any other document between the Company and any business that operated at the Facility for all periods of time that the Company owned the Facility;
 - f. The name, address, and phone number contact for each tenant or lessee; and
 - g. Each type of business, commercial, or industrial operation conducted at the Facility, and the name of each operator and the dates that each was operating.

Mr. Michael Massey June 5, 2006 Page 5

The boundaries of the land on which the Facility stood are reflected in documents and on maps contained in the materials that previously have been provided to the EPA. See, e.g., Response to Section 104(e) letter dated May 22, 1992 (Appendix E [describing portion of the Facility to the west of former "Plant 1"], and Appendix F [containing maps of eastern portion of the Facility]); see also Response to Section 104(e) letter dated August 19, 1987 (Attachment 8 [July 24, 1987, Leighton Report, Appendix I (sketch of location of monitoring well based on portion of parcel map L.A. #2128, per map 30, page 86, Records of Los Angeles County)]).

In the 1970's, the western portion of the site was acquired by Kaiser Permanente. The remaining portion of the Facility was subdivided into "Eastern" and "Western" parcels. The Eastern parcel was sold to Home Depot in 1995, and the Western parcel was sold to Public Storage in 1997. A copy of the purchase agreements that Honeywell has been able to locate are attached hereto at Exhibit 2, and Honeywell requests that these documents be treated as confidential (as marked). Also included in Exhibit 2 are some additional diagrams of the area on which the Facility stood.

Contact information for current owners of the land comprising the former Facility is:

Mr. Ron Newquist Kaiser Permanente 11668 Sherman Way North Hollywood, CA 91605

Ms. Nergus Choudry Public Storage 701 Western Avenue Glendale, CA 91411

Mr. Joe Cox, Assistant Manager Home Depot 11600 Sherman Way North Hollywood, CA 91605

Mr. Michael Massey June 5, 2006 Page 6

Currently, the address 11500 Sherman Way appears to correspond to AviBank MFG, Inc.; SPS Technologies, and is located immediately to the east of Home Depot. It is Honeywell's understanding that this location was not part of the Facility and was not owned by Honeywell (or its predecessors in interest).

Additionally, Honeywell hereby references and incorporates the information regarding the Facility (including prior owners) contained prior Section 104(e) responses, including in response to request numbers 1-4 and 12 in the Section 104(e) letter dated May 22, 1992, and request number 7 in the Section 104(e) letter dated August 14, 1987.

3. State whether any portion of 11500 Sherman was ever included as part of the lot at 11510 Sherman. If so, provide complete documentation of the transfer and ownership of 11510 Sherman, including the name and last known address and telephone number of the previous owner from whom the Company purchased the real property.

Please see response to request number 2, above.

4. Identify the individuals who are or were responsible for environmental matters at the Facility. For each individual responsible for environmental matters, provide his/her full name, current or last known address, current or last known telephone number, position titles, and the dates each individual held such position.

Benny Dehghi, identified in Honeywell's May 22, 2006, letter response, is currently responsible for environmental matters relating to the former Facility and has been involved with environmental issues regarding the site since 1993. His contact information is:

Benny Dehghi Honeywell Remediation Manager 2525 West 190th Street Torrance, California 90505 (310) 512-2296

As indicated in prior information provided to the EPA, the history of the Facility dates back to 1940 and includes several different corporate entities over time. Other individuals who, in the past, have been responsible for environmental matters have been

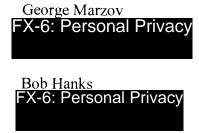
Mr. Michael Massey June 5, 2006 Page 7

identified in prior Section 104(e) responses. Honeywell hereby references and incorporates response number 6 to the Section 104(e) letter dated August 14, 1987, which identified Walter E. Harmon, a former Plant Manager, and Hugh R. Kellenberger, a former Manager of Facilities.

Honeywell remains willing to work with the EPA to identify and locate additional individuals the EPA might want to contact who are identified in the materials that have been provided regarding the environmental issues at the Facility.

- 16. Identify any individual or entity that owned or operated the Facility prior or subsequent to the Company. For each prior or subsequent owner or operator, further identify:
 - a. The dates of ownership/operation;
 - b. The nature of prior or subsequent operations at the Facility;
 - c. All evidence showing that the prior or subsequent owner or operator controlled access to the property; and
 - d. All evidence that a hazardous substance, pollutant, or contaminant was released or threatened to be released at the Facility during the period of prior or subsequent ownership or operation.

Please see response to request number 2, above, as well as responses to request numbers 7 and 11 in Honeywell's May 22, 2006, letter.


- 17. Provide a complete list of employees who had knowledge of the use of hazardous substances and disposal of wastes at the Facility during any or all of the period of time that the Company operated at or was otherwise associated with the Facility. For each employee listed, provide the following information:
 - a. The employee's full name;
 - b. The employee's current or last known address and telephone number, including the last known date on which you believe each address and telephone number was current;
 - c. The dates that the employee worked at the Facility;
 - d. The position(s) the employee held under any of the Company's business structures; and
 - e. The employee's job title(s) and the corresponding dates during which the Company believes that the employee would have had knowledge of the use and disposal of wastes.

Mr. Michael Massey June 5, 2006 Page 8

Operations at the Facility spanned the period 1940 to 1992. There are no current Honeywell employees operating at the site, and Honeywell does not maintain the requested information in a format that would permit it to be located, gathered, synthesized and provided to the EPA in the limited time permitted.

The EPA previously has been provided information (including then accurate contact information) regarding individuals who may have knowledge of past handling of hazardous substances and waste storage and disposal practices. Honeywell hereby references and incorporates the response to request number 6 in the Section 104(e) letter dated August 19, 1987, and the response to request number 8 in the Section 104(e) letter dated May 22, 1992. Those responses identified past employees Walter E. Harmon (Plant Manager prior to 1988), George N. Morzov (Human Resources Manager prior to 1988), Ronald J. Slatterbeck (Plant Engineer prior to 1988), Hugh R. Kellenberger (Manager of Facilities as of 1988), Mary Calvert (Manufacturing Coordinator as of 1988), Walter J. Speck (Supervisor Manufacturing as of 1988), Bob Peters, Dennis Dombrowski, and Bob Hanks. Ralph Vick and Royce Brannum also were identified in the responses to written interrogatories propounded in the action captioned *U.S. v. AlliedSignal, Inc.*, et al. (Case No. 93-6490; U.S. District Court, Central District of California) as persons with knowledge of activities at the Facility from the 1960s to the late 1980s.

These persons are not currently employed by Honeywell, and efforts to date have not located more recent contact information except as follows. We are not certain, however, if this information is current.

Honeywell remains willing to work with the EPA to undertake additional inquiries regarding other sources of information and to provide other identifying information, if necessary.

Mr. Michael Massey June 5, 2006 Page 9

20. Provide copies of hazardous material business plans and chemical inventory forms (originals and updates) submitted to city, county, and state agencies.

Operations at the Facility spanned the period 1940 to 1992. Honeywell does not maintain the requested information in a format that would permit it to be located, gathered, synthesized and provided to the EPA in the limited time permitted.

However, information regarding the hazardous materials used at the Facility and the manner in which it was handled previously has been provided to the EPA. Honeywell hereby references and incorporates, among other information, the response to request number 1 to the Section 104(e) letter dated August 17, 1988, including Attachment 1 (detailing chemical purchases and usage at the Facility and describing the manner in which hazardous waste material was handled); the response to request number 3 to the same Section 104(e) letter, including Attachments 3-5 (addressing onsite releases and including hazardous waste manifests and lists of disposal/treatment facilities and transporters); the response to request number 14 to the Section 104(e) letter dated May 22, 1992, including Appendices F & G (describing chemical uses at the Facility as supported by manifest records from 1981 through 1991, drawings showing areas of hazardous material usage and storage, and Material Safety Data Sheets for TCE, PCE and TCA); and the response to the RWOCB's letter dated March 9, 2001 (summarizing Honeywell's extensive review of historical documents relating to operations and chemical usage at the Facility and providing information in the form of a Chemical Use Questionnaire).

Additionally, Honeywell has included as Exhibit 20 some "Waste Material Management Sheets" (for waste shipped to Chemical Waste Management, Inc.) that it has located as part of its search, although this information may have been provided to the EPA previously.

Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

Mr. Michael Massey June 5, 2006 Page 10

21. Provide a list of all chemicals and hazardous substances used at the Facility, identifying the chemical composition and quantities used. Provide copies of Material Safety Data Sheets for all hazardous substances used.

Please see response to request 20, above.

- 22. Identify and provide the information below for all volatile organic compounds (most notably PCE; TCE; 1,1-DCE; MTBE; 14-DCA, cis-1,2-DCE; and carbon tetrachloride); Title 22 metals including total and hexavalent chromium; 1,4-dioxane; N-nitrosodymethylamine (NDMA); perchlorate; which are or were used at, or transported to, the Facility:
 - a. The trade or brand name, chemical composition, and quantity used for each chemical or hazardous substance and the Material Safety Data Sheet for each product;
 - b. The location(s) where each chemical or hazardous substance is or was used, stored, and disposed of;
 - c. The kinds of wastes (e.g., scrap metal, construction debris, motor oil, solvents, waste water), the quantities of wastes, and the methods of disposal for each chemical, waste, or hazardous substance;
 - d. The quantity purchased (in gallons), the time period during which it was used, and the identity of all persons who used it; and
 - e. The supplier(s), and provide copies of all contracts, service orders, shipping manifests, invoices, receipts, canceled checks, or any other documents pertaining to the supply of chemicals or hazardous substances.

Please see response to request 20, above, which includes references to disclosures previously provided to the EPA containing the information Honeywell has been able to locate after a diligent search regarding the chemicals used at the Facility. In particular, with respect to VOCs, Honeywell hereby references and incorporates the response to request number 14 of the Section 104(e) letter dated May 22, 1992, and, with respect to chromium, Honeywell hereby references and incorporates the "Chemical Storage and Use Questionnaire, Chromium Investigation" that was submitted as part of its response to the RWQCB's letter dated March 9, 2001 (attached hereto as Exhibit A). With respect to 1,4-dioxane, N-nitrosodymethylamine (NDMA), and perchlorate, Honeywell has not located any additional information specific to those chemicals, but will provide such information if it is located.

Mr. Michael Massey June 5, 2006 Page 11

Honeywell additionally responds that it has undertaken extensive efforts to determine the scope and source of VOCs, hexavalent chromium, and other chemicals located within the North Hollywood Operable Unit. These efforts have been detailed in reports provided to the EPA. In summary, Honeywell has installed groundwater monitoring wells at the location of the former Facility to monitor water levels, VOC concentrations, and hexavalent chromium concentrations. These wells define the northern, eastern, and western extent of groundwater contamination by VOCs and hexavalent chromium potentially relating to the Facility. A previously existing deep groundwater monitoring well (W-1) was installed in the late 1980s and sampled for total petroleum hydrocarbons (TPH) and VOCs. No TPH or VOCs were detected and the well was abandoned in 1988, per the RWQCB's approval.

Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

23. Provide copies of all environmental data or technical or analytical information regarding soil, water, and air conditions at or adjacent to the Facility, including, but not limited to, environmental data or technical or analytical information related to soil contamination, soil sampling, soil gas sampling, geology, water (ground and surface), hydrogeology, groundwater sampling, and air quality.

For many years, Honeywell and its predecessors have been engaged in analyzing and reviewing the environmental conditions at and surrounding the former Facility. Honeywell regularly provides documentation, including groundwater monitoring reports, to the EPA, both directly and through the California Regional Water Quality Control Board. We are not aware of any environmental data that has not been provided, but if the EPA believes that it is missing any reports regarding groundwater and other environmental activities that Honeywell has provided over the years, Honeywell will provide additional copies.

Additionally, in response to request number 26, below, Honeywell is providing additional applications and permits that contain, as part of the applications, analytical information that previously may not have been provided directly to the EPA in that format.

Mr. Michael Massey June 5, 2006 Page 12

26. Provide copies of any applications for permits or permits received under any local, state, or federal environmental laws and regulations, including any waste discharge permits, such as national pollutant discharge elimination system permits.

Operations at the Facility spanned the period 1940 to 1992. Honeywell does not maintain the requested information for the period when the Facility was in operation in a format that would permit it easily to be located, gathered, synthesized and provided to the EPA in the limited time permitted.

Honeywell has, as part of its ongoing efforts to investigate the soil and groundwater at and surrounding the former Facility, submitted applications for permits of the type sought by this request. Such responsive documents are attached hereto as Exhibit 26.

Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

27. If the Company discharged any of its waste stream to the sewer at the Facility, provide copies of all permits and all analyses performed on discharged water, and identify all locations where waste streams were discharged.

Honeywell is aware that a national pollutant discharge elimination system permit was issued with respect to the Facility, which expired in 1995. Honeywell believes that the EPA previously has been provided with a copy of this permit, but if the EPA cannot locate it, Honeywell will provide an additional copy. Additionally, Honeywell hereby references and incorporates the response to request number 3 in the Section 104(e) letter dated August 19, 1987, which requested a description of the disposal practices at the Facility.

In connection with the current environmental activities Honeywell is undertaking, certain investigation derived wastes (IDWs) are generated. The manner in which Honeywell and its consultants address such IDWs are described in the work plans submitted in support of each particular environmental project relating to the Facility. The

Mr. Michael Massey June 5, 2006 Page 13

EPA should have access to these work plans, but Honeywell will provide additional copies if needed.

Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

28. For each waste stream generated at the Facility, describe the procedures for (a) collection, (b) storage, (c) treatment, (d) transport, and (e) disposal of the waste stream.

Please see response to request 27, above.

Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

29. Please provide a detailed description of all pre-treatment procedures performed by the Company on its waste streams at the Facility prior to transport to a disposal site.

Please see response to request 27, above.

Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

30. Please describe the method used by the Company to remove waste streams from sumps at the Facility.

Please see response to request 27, above.

Mr. Michael Massey June 5, 2006 Page 14

Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

31. Please identify all wastes that were stored at the Facility prior to shipment for disposal. Describe the storage procedures for each waste that was stored prior to disposal.

Please see response to request number 20, above. In particular, the response to request number 3 in the Section 104(e) letter dated August 19, 1987, including Attachments 3-5, addressed onsite chemicals, hazardous waste manifests, and lists of disposal/treatment facilities and transporters.

Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

- 32. Please identify all leaks, spills, or other releases into the environment of any hazardous substances or pollutants or contaminants that have occurred at or from the Facility. In addition, identify and provide supporting documentation of:
 - a. The date each release occurred;
 - b. The cause of each release:
 - c. The amount of each hazardous substance, waste, or pollutant or contaminant released during each release;
 - d. Where each release occurred and what areas were impacted by the release; and
 - e. Any and all activities undertaken in response to each release, including the notification of any local, state, or federal government agencies about the release.

A substantively identical request regarding leaks and spills was propounded as interrogatory number 3 in the case captioned *U.S. v. AlliedSignal, Inc.*, et al., (Case No. 93-6490; U.S. District Court, Central District of California). Honeywell hereby references and incorporates the response to that interrogatory.

Mr. Michael Massey June 5, 2006 Page 15

Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

33. Provide copies of any correspondence between the Company and local, state, or federal authorities concerning the use, handling, or disposal of hazardous substances at the Facility, including but not limited to any correspondence concerning any of the releases identified in response to the previous question.

Operations at the Facility spanned the period 1940 to 1992. Subsequent to that time, Honeywell and its predecessors have been engaged in substantial efforts regarding environmental issues at the site, many of which concern the subject matter of this request. Honeywell believes that the EPA has been provided with relevant correspondence that would be responsive to this request. If the EPA believes there is any correspondence it is missing, Honeywell will provide an additional copy.

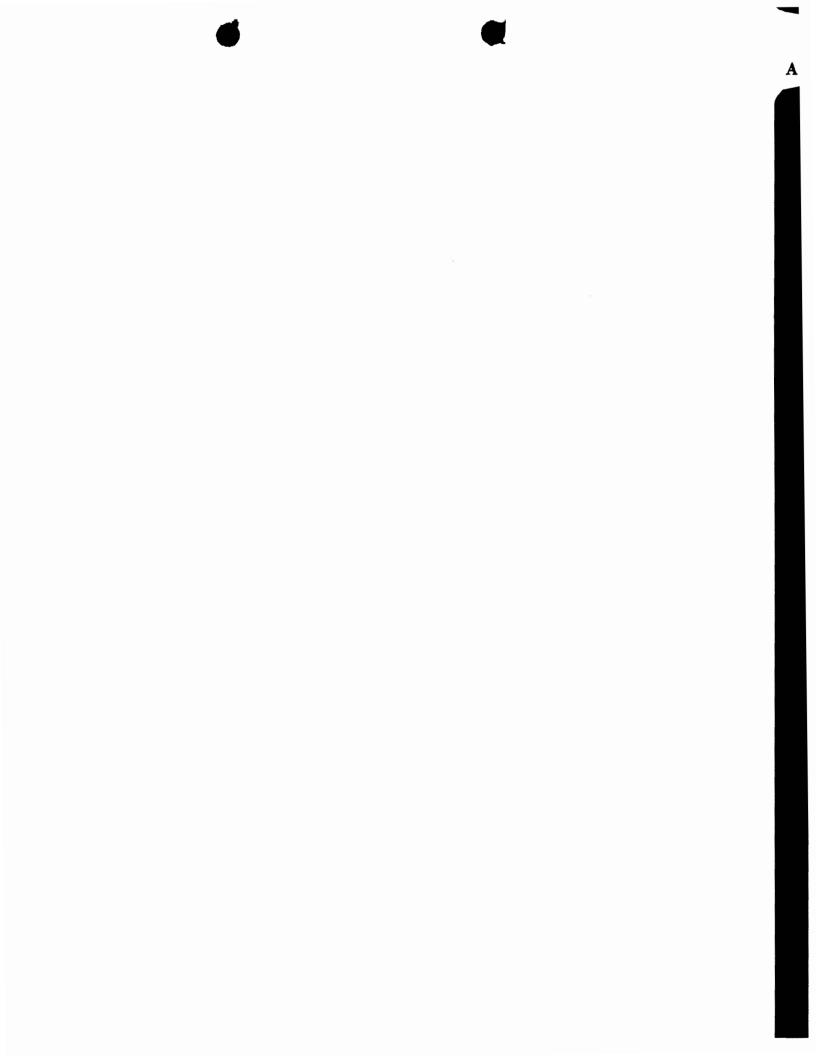
Honeywell continues to review historical documents related to the Facility and information previously provided to the EPA for information responsive to this request and will supplement its response with additional non-privileged responsive information it locates following that investigation that has not previously been provided to the EPA, if any.

25. Identify all insurance policies held by the Company from the time it commenced ownership of or operations at the Facility until the present. Provide the name and address of each insurer, the policy number, the amount of coverage and policy limits, the type of policy, and the expiration date of each policy. Include all comprehensive general liability policies and "first party" property insurance policies and all environmental impairment insurance. Provide a complete copy of each policy.

In its May 22, 2006, response, Honeywell directed the EPA to prior responses relevant to this request. Subsequent to that response, Honeywell discovered that additional relevant information regarding prior insurance policies was provided to the EPA in response to request numbers 10 and 11 in the Section 104(e) letter dated May 22,

Mr. Michael Massey June 5, 2006 Page 16

1992. However, it continues to be the case that, as of the date of this response to the current Section 104(e) Request, Honeywell is unaware of any insurance policy that may provide coverage for environmental issues related to the Facility.


Please contact me at (213) 243-4222 if you have any additional questions regarding these particular responses.

Sincerely,

Sean Morris

Sean Mois

cc: Benny Dehghi

Honeywell 2525 West 190th Street Torrance, CA 90505

April 4, 2001

Mr. Dixon Oriola California Regional Water Quality Control Board Los Angeles Region 320 W. 4th St., Suite 200 Los Angeles, CA 90013

Re: Requirement for a Technical Report Pursuant to
California Water Code Section 13267
Former Honeywell International Inc. (formerly known as AlliedSignal Inc.) Facility
11600 Sherman Way
North Hollywood, California 91605
File No. 111.0180)

Dear Mr. Oriola:

This is in response to Mr. Dennis Dickerson's letter dated March 9, 2001 requesting the technical information regarding Honeywell International Inc.'s (Honeywell) former North Hollywood (NH) facility at 11600 Sherman Way in North Hollywood, California.

In response to the Regional Board's information request, Honeywell has undertaken an extensive review of the available historical documents related to operations and chemical usage at the subject site (Site). Pursuant to your request, the results of our document search are summarized in the attached "Chemical Use Questionnaire."

The Site is located at 11600 Sherman Way in North Hollywood, California between Lankershim Boulevard (west) and Tunjunga Avenue (east). Sherman Way lies to the North of the Site and on the south is Pacific Railroad. Bendix Corporation occupied the Site from 1941 to 1983. Allied Corporation acquired the Bendix Corporation in 1983. In 1985, Allied Corp. combined with the Signal Companies to form AlliedSignal Inc. Principal operations at the Site were manufacturing of hydraulic and pneumatic valves that involved equipment testing, painting, and plating processes. Principal site operations were maintained the same until 1992. AlliedSignal Inc. ceased operations in 1992, and Site improvements were demolished in 1993. In 2000, AlliedSignal Inc. merged with Honeywell Inc. and the new company was identified as Honeywell International, Inc.

A portion of the NH property was sold to Home Federal Saving in 1965 which now is occupied by Kaiser Permanente. The remaining portion of the Site was subdivided into Eastern and Western parcels. The Eastern parcel and the Western parcel were sold to Home Depot and Public Storage in 1995 and 1997, respectively.

In the event we encounter additional new information related to the above mentioned Regional Board's request, Honeywell will notify the Board accordingly. Should there be any questions or comments please call me at (310) 512-2296.

Sincerely

Benny DeHghi

Honeywell International Inc.

Health, Safety, Environmental and Remediation

cc: Kenneth J. Berke, Esq

Erin Murrey, Home Depot

Rene Smith, Public Storage

Los Angeles Region

320 W. 4th Street, Suite 200, Los Angeles, California 90013
Phone (213) 576-6600 FAX (213) 576-6640
Internet Address: http://www.swrcb.ca.gov/~rwqcb4

CHEMICAL STORAGE AND USE QUESTIONNAIRE CHROMIUM INVESTIGATION

I.	Company name: Honeywell International (formerly known as AlliedSignal)
. C	Company address: 2525 West 190th Street Unit No.
. C	City: <u>Torrance</u> Zip code: <u>90504</u> Phone: (31) <u>512-2296</u>
. S	Standard Industrial Classification (SIC): 3700 (assigned to former North Hollywood
. В	Brief description of business:
	Historical manufacturing of hydraulic and pneumatic valves (1941 - 1992)
_	
	PA Generator Number: CAD 008325334 Years in business at this location: 1941 t
Aı	nswer the following questions relative to present operations:
Aı	nswer the following questions relative to present operations: Do you do plating or manufacture circuit boards? Yes No
Aı	nswer the following questions relative to present operations:
Aı	nswer the following questions relative to present operations: Do you do plating or manufacture circuit boards? Yes No
Aı	nswer the following questions relative to present operations: Do you do plating or manufacture circuit boards? Yes No
Aı A.	nswer the following questions relative to present operations: Do you do plating or manufacture circuit boards? Yes No
A. A. B.	nswer the following questions relative to present operations: Do you do plating or manufacture circuit boards? Yes No If yes, please explain:
A. A. B. C.	nswer the following questions relative to present operations: Do you do plating or manufacture circuit boards? Yes No If yes, please explain: Do you have plating or anodizing tanks? Yes No
A. A. B. C.	nswer the following questions relative to present operations: Do you do plating or manufacture circuit boards? Yes No If yes, please explain: Do you have plating or anodizing tanks? Yes No Do you perform any metal work? Yes No
B. C.	nswer the following questions relative to present operations: Do you do plating or manufacture circuit boards? Yes No If yes, please explain: Do you have plating or anodizing tanks? Yes No Do you perform any metal work? Yes No Do you have a clarifier, sump, tank or other holding

California Environmental Protection Agency

Recycled Paper

Chemical Storage and Use Qu Heavy Metal Investigation	estionnaire Page 2	File No. 111.0180
G. Has any soil, waste	water and/or groundwater in	vestigations been conducted on the
property?	_	Yes No
If so, by what state of	or local agency?	
8. Answer the following qu	nestions regarding past oper	ations:
A. Do you know if plati	location? x Yes No	
If yes, please explain	:	**
Review of histor	ical records show that	plating operations were conducted
at the property	from 1941 to 1992.	
B. Did you once have pl	ating or anodizing tanks?	x YesNo
C. Did you perform any	metal work?	x YesNo
D. Did you have a clarif	ier, sump, tank or other	
holding tanks for was	ite water?	_x YesNo
E. Did you have an indu	strial waste permit for sewe	r discharge? x Yes No
F. Did you have a drum	storage area?	<u>x</u> Yes <u> No</u>
G. Have any soil, waste	water and/or groundwater	
investigations been co	onducted on the property?	<u>x</u> Yes <u> No</u>
9. Name(s) of former tenants sheet if necessary).	s(s), dates of operation and	type of business (provide a separate
Company Name	Type of Business	Dates of Operation at the Site
Bendix Corporation	Valve Manufacturing	1941 - 1983
Allied/Bendix	Valve Manufacturing	1983 - 1985
AlliedSignal	Valve Manufacturing	1985 - 1992

California Environmental Protection Agency

Chemical Storage and Use	Questionnaire
Heavy Metal Investigation	

File No. 111.080

vy Metal Investigation Page 3

 List all processes in which metallic compounds (derived from the elements listed in Table 1) are used.

Documented process tanks involving metallic compounds consists of (1) Type I

Anodize (2) Type II Anodize (3) Type III Anodize (4) Nickel Acetate (5) Dichromate

Seal (6) Aluminum Strip (7) Chrome Plate (8) Thin - Dense Chrome (9) Caustic
Chrome Strip (10) Dull Cadmium (11) Bright Cadmium (12) Nickel Strike (13)

Chrome Conversion (14) Cadmium Strip (15) Chromatic Acid Neutralization (16) Etch

II. Property owner information

- Home Depot 11600 Sherman Way, N. Hollywood, CA 91605

 Name of current property owner: Public Storage 11620 Sherman Way, No. Hollwood, CA 91605
- 2. Mailing address of property owner: Raiser 11668 Sherman Way, N. Hollywood, CA 91605
- 3. City: North Hollywood Zip code: 91605 Phone: () Home Depot (818) 764-9600

 Public Storage (818) 765-6520
 Kaiser (818) 503-6580
- 4. Prior property owner(s) and the dates of their ownership

Property Owner	Dates of Ownership	
	From	То
Bendix Corporation	1941	1983
Allied/Bendix	1983	1985
AlliedSignal	1985	1997

III. Waste Management

What are the sources of industrial waste from the site? (Identify sources by process, composition of wastes generated and approximate quantity disposed of monthly).
 Sources of industrial waste from the site consisted of:(1) treated effluent discharged from the wastewater clarifier; (2) precipitation withdrawn from the wastewater clarifier; and (3) offsite disposal of spent acids, organic chemicals, solvents, and plating tank solutions.

California Environmental Protection Agency

Recycled Paper

Chemical Storage and		File No.	111.080
Heavy Metal Investiga	ation Page 4		
IV. Sewer Infor	mation (1941 – 1992)		
1. x Industrial	Septic tank Muni	cipal Cesspool	•
2. Was a different s	sewer system used in the past? N/A	* Yes	No
If yes, specify typ	pe		
*The sewer disc	charge was ceased in 1992.		
V. Chemical Sto	orage and Use		
	ing sections for all chemicals (inor n the past. Add separate sheets to		urrent use
1. Chemical name:	See the attached tables		
Common/Trade n	name:	Quantity stored:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3. Storage method:	Underground tank	Drums	
	Above ground tank	Other (specify)	
4. Waste disposal:	Sewered	Onsite recycling	
	Hauled	Offsite recycling	
5. Is the waste treate	d prior to disposal?	Yes	No
If yes, specify trea	tment method:		
6. Is the waste stored	d prior to disposal?	Yes	No
7. Is manifest docum	entation available for designated v	vaste	
streams?		Yes _	No
. Chemical name: _			
. Common/Trade na	me:	Quantity stored:	
. Storage method:	Underground tank	Drums	
	Above ground tank	Other (specify)	
. Waste disposal:	Sewered	Onsite recycling	
	Hauled	Offsite recycling	
	California Environmental Pro	tection Agency	

the second secon	Chemical Storage and Use Questionnaire Heavy Metal Investigation	File No. 111.080 Page 5
-	5. Is the waste treated prior to disposal? If yes, specify treatment method:	? Yes No
	6. Is the waste stored prior to disposal?7. Is manifest documentation for design	
Section Contracts	streams available?	Yes No
Sur-graph .		
		••
	and off.	
The same of the same	Signature:	Date: 4/4/01
1	Printed name: Benny Dehghi Phone number: (310) 512-2296	Title: Mgr., Remediation & Evaluation Services

California Environmental Protection Agency

I. Chemical Name: Chromic Acid		
2. Common/Trade Name: Same	Quantity Stored:	1900 gal (1991 data)
3. Storage Method:	Underground Tan	x Drums
X	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	x No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	x Yes	No
7. Is manifest documentation available for designated	d waste Yes	No
streams?		
1. Chemical Name: Cadmium		
2. Common/Trade Name: Cadmium Plating Soluti		1120 gal (1991 data)
	Jnderground Tank	X Drums
	Aboveground Tank	Other
	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	X Yes	X No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designated	I waste Yes	No
streams?		
I Chemical Name: Conner		
1. Chemical Name: Copper	Quantity Storad:	350 gal (1991 data)
2. Common/Trade Name: Copper Plating	Quantity Stored:	350 gal (1991 data)
Common/Trade Name: Copper Plating Storage Method:	Juderground Tank	Drums
2. Common/Trade Name: Copper Plating 3. Storage Method: X A	Juderground Tank Aboveground Tank	Drums Other
2. Common/Trade Name: Copper Plating 3. Storage Method: X A 4. Waste Disposal: S	Jnderground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: Copper Plating 3. Storage Method: X A 4. Waste Disposal: X F	Jnderground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: Copper Plating 3. Storage Method: X A 4. Waste Disposal: S X F 5. Is the waste treated prior to disposal?	Jnderground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: Copper Plating 3. Storage Method: X A 4. Waste Disposal: S X F 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered HauledXYes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: Copper Plating 3. Storage Method: X A 4. Waste Disposal: S X F 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: Copper Plating 3. Storage Method: X 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: Copper Plating 3. Storage Method: X A 4. Waste Disposal: S X F 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: Copper Plating 3. Storage Method: X 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: Copper Plating 3. Storage Method: X A 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams?	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: Copper Plating 3. Storage Method: X 4. Waste Disposal: S X F 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate	Underground Tank Aboveground Tank Sewered Hauled X Yes Yes waste Yes	Drums Other Onsite Recycling Offsite Recycling No No No
2. Common/Trade Name: Copper Plating 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate 2. Common/Trade Name: Same	Underground Tank Aboveground Tank Sewered Hauled X Yes Yes Yes Waste Yes Quantity Stored:	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: Copper Plating 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate 2. Common/Trade Name: Same 3. Storage Method:	Underground Tank Aboveground Tank Sewered Hauled X Yes Yes Yes Yes Waste Yes Quantity Stored: Underground Tank	Drums Other Onsite Recycling Offsite Recycling No No No No No 20 gal (1988 data)
2. Common/Trade Name: Copper Plating 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate 2. Common/Trade Name: Same 3. Storage Method:	Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling Offsite Recycling No No No No Drums Drums
2. Common/Trade Name: Copper Plating 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate 2. Common/Trade Name: Same 3. Storage Method: 4. Waste Disposal: Some	Underground Tank Aboveground Tank Sewered Hauled X Yes Yes Yes Yes Waste Yes Quantity Stored: Underground Tank	Drums
2. Common/Trade Name: Copper Plating 3. Storage Method: X A 4. Waste Disposal: S 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate 2. Common/Trade Name: Same 3. Storage Method: A 4. Waste Disposal: S	Underground Tank Aboveground Tank Sewered Hauled	Drums
2. Common/Trade Name: Copper Plating 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate 2. Common/Trade Name: Same 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled	Drums
2. Common/Trade Name: Copper Plating 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate 2. Common/Trade Name: Same 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled	Drums
2. Common/Trade Name: Copper Plating 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate 2. Common/Trade Name: Same 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled X Yes Yes Yes Yes Waste Yes Underground Tank Aboveground Tank Aboveground Tank Aboveground Tank Ewered Hauled Yes Yes Yes	Drums Other Onsite Recycling Offsite Recycling No No No No No Other(5 gal container) Offsite Recycling Offsite Recycling Offsite Recycling No
2. Common/Trade Name: Copper Plating 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designated streams? 1. Chemical Name: Stannous Fluoborate 2. Common/Trade Name: Same 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled X Yes Yes Yes Yes Waste Yes Underground Tank Aboveground Tank Aboveground Tank Aboveground Tank Ewered Hauled Yes Yes Yes	Drums Other Onsite Recycling Offsite Recycling No No No No No Other(5 gal container) Offsite Recycling No

Chemical Name: Copper Strip		
2. Common/Trade Name:	Quantity Stored:	110 gal (1988 data)
Storage Method:	Underground Tan	X Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designal	ed waste Yes	No
streams?		
Chemical Name: Chromic Acid		
2. Common/Trade Name:	Quantity Stored:	900 lb (1988 data)
3. Storage Method:	Underground Tank	X Drums
3. Storage Method.	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
4. Wasie Disposal.	Hauled	Offsite Recycling
5. Is the wards treated prior to disposal?	Yes	No No
5. Is the waste treated prior to disposal? If yes, specified treatment method:	res	100
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designat		No
streams?	ed wasie Tes	140
Streams !		
1. Chemical Name: Compound 100 Chrome		
2. Common/Trade Name:	Quantity Stored:	200 lb (1988 data)
3. Storage Method:	Underground Tank	X Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designate		No No
streams?		
1. Chemical Name: Unichrome		
2. Common/Trade Name:	Quantity Stored:	350 lb (1988 data)
3. Storage Method:	Underground Tank	X Drums
	Aboveground Tank	Other(5 gal container)
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	-	
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designate	d waste Yes	No
streams?		

Chemical Name: Cadmium Oxide		
2. Common/Trade Name:	Quantity Stored:	150 lb (1988 data)
3. Storage Method:	Underground Tan	Drums
	Aboveground Tank	x Other (bucket)
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designate	d waste Yes	No
streams?		
Chemical Name: Sodium Hydroxide		
2. Common/Trade Name:	Quantity Stored:	110 gal (1988 data)
	Underground Tank	X Drums
	Aboveground Tank	Other
	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designate	d waste Yes	No
streams?		
Chemical Name: Potassium Cyanide Common/Trade Name:	Quantity Stored:	70 gol (1088 dota)
	Quantity Stored: Quantity Stored:	70 gal (1988 data) X Drums
	Aboveground Tank	Other
	Sewered	Onsite Recycling
•	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designated		No No
streams?	· Misic	
I. Chemical Name: Copper Cyanide		
2. Common/Trade Name:	The state of the s	200 lb (1988 data)
	Inderground Tank	X Drums
	Aboveground Tank	Other
	sewered	Onsite Recycling
	lauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No No
7. Is manifest documentation available for designated	waste Yes	No
streams?		

Chemical Name: Sodium Bichromate		
2. Common/Trade Name:	Quantity Stored:	300 lb (1988 data)
3. Storage Method:	Underground Tan	X Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designation	ited waste Yes	No
streams?		
1. Chemical Name: Sodium Dichromate	MANAGEMENT OF THE PROPERTY OF	
2. Common/Trade Name:	Quantity Stored:	100 lb (1988 data)
3. Storage Method:	Underground Tank	X Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designa	ted waste Yes	No
streams?		
Chemical Name: Sodium Hydroxide		
Common/Trade Name: Caustic Soda Beads	Quantity Stored:	500 lb (1988 data)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	X Other (bags)
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		.,
6. Is waste stored prior to disposal?	Yes	No
Is manifest documentation available for designal		
_	ted waste Yes	No
streams?	ed waste Yes	No
-	ed waste Yes	No
streams?	ed waste Yes	No
streams? 1. Chemical Name: Nickel Chloride		
1. Chemical Name: Nickel Chloride 2. Common/Trade Name:	Quantity Stored:	2 gal (1988 data)
streams? 1. Chemical Name: Nickel Chloride	Quantity Stored: Underground Tank	2 gal (1988 data) Drums
1. Chemical Name: Nickel Chloride 2. Common/Trade Name: 3. Storage Method:	Quantity Stored: Underground Tank Aboveground Tank	2 gal (1988 data) Drums Other(Bottles)
1. Chemical Name: Nickel Chloride 2. Common/Trade Name:	Quantity Stored: Underground Tank Aboveground Tank Sewered	2 gal (1988 data) Drums Other(Bottles) Onsite Recycling
1. Chemical Name: Nickel Chloride 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	Quantity Stored: Underground Tank Aboveground Tank	2 gal (1988 data) Drums Other(Bottles) Onsite Recycling Offsite Recycling
1. Chemical Name: Nickel Chloride 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Quantity Stored: Underground Tank Aboveground Tank Sewered	2 gal (1988 data) Drums Other(Bottles) Onsite Recycling
1. Chemical Name: Nickel Chloride 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes	2 gal (1988 data) Drums X Other(Bottles) Onsite Recycling Offsite Recycling No
1. Chemical Name: Nickel Chloride 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes	2 gal (1988 data) Drums Other(Bottles) Onsite Recycling Offsite Recycling No No
1. Chemical Name: Nickel Chloride 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes	2 gal (1988 data) Drums X Other(Bottles) Onsite Recycling Offsite Recycling No
1. Chemical Name: Nickel Chloride 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes	2 gal (1988 data) Drums Other(Bottles) Onsite Recycling Offsite Recycling No No

Chemical Name: Chromic Acid		
2. Common/Trade Name: 1081 Chromic Acid	Quantity Stored:	0.05 Ton (1987)
3. Storage Method:	Underground Tan	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
-	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designate	led waste Yes	No
streams?		
1. Chemical Name: Chromic Acid		
2. Common/Trade Name: Chromic Acid Flakes	Quantity Stored:	5.2 Tons (1981 to 1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designat	ed waste Yes	No
streams?		
1 Chaminal Mamas Chambian Triavida		
1. Chemical Name: Chromium Trioxide		
2. Common/Trade Name:	Quantity Stored:	2 kg (1987)
	Underground Tank	Drums
Common/Trade Name: Storage Method:	Underground Tank Aboveground Tank	Drums Other
2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat	Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat	Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams?	Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: Ammonium Chromate	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes ed waste Yes	Drums Other Onsite Recycling Offsite Recycling No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: Ammonium Chromate 2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes ed waste Yes Quantity Stored:	Drums Other Onsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: Ammonium Chromate	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Yes Quantity Stored: Underground Tank	Drums Other Onsite Recycling No No No No No No No Drums Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: Ammonium Chromate 2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Quantity Stored: Underground Tank Aboveground Tank	Drums Other Onsite Recycling Offsite Recycling No No No No No No Drums Drums Other
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: Ammonium Chromate 2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Quantity Stored: Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling No Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Quantity Stored: Underground Tank Aboveground Tank	Drums Other Onsite Recycling No No No No No No No No No Other Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Quantity Stored: Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling No Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: Ammonium Chromate 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling No No No No No No No Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: Ammonium Chromate 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling No No No No No No No Other Onsite Recycling Offsite Recycling No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: Ammonium Chromate 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes	Drums Other Onsite Recycling No No No No No No No Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designat streams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes	Drums Other Onsite Recycling No No No No No No No Other Onsite Recycling Offsite Recycling No No No

I. Cliemical Name:	Ammonium Molybdat		
2. Common/Trade Name:		Quantity Stored:	890 gm
3. Storage Method:		Underground Tank	Drums
-		Aboveground Tank	Other
4. Waste Disposal:		Sewered	Onsite Recycling
	•	— Hauled	Offsite Recycling
5. Is the waste treated prior	r to disposal?	Yes	No
If yes, specified treatmen			
6. Is waste stored prior to o		Yes	No
7. Is manifest documentati	=		No
streams?	on available for design	ateu waste 1 es	
	Barium Chloride		
2. Common/Trade Name:		Quantity Stored:	300 gm (1987)
3. Storage Method:		Underground Tank	Drums
•		Aboveground Tank	Other
4. Waste Disposal:		Sewered	Onsite Recycling
•		— Hauled	Offsite Recycling
5. Is the waste treated prior	r to disposal?	Yes	No ·
If yes, specified treatmen			- A TO
6. Is waste stored prior to d		Yes	No
7. Is manifest documentation	-		No
streams?	on available for design	area waste Tes	
Chemical Name:	Cadmium Solution		
2. Common/Trade Name:		Quantity Stored:	4 gal (1985 to 1987)
3. Storage Method:		Underground Tank	Drums
		Aboveground Tank	Other
4. Waste Disposal:		Sewered	Onsite Recycling
•		Hauled	Offsite Recycling
5. Is the waste treated prior	to disposal?	Yes	No
If yes, specified treatmer	=		
6. Is waste stored prior to d		Yes	No
			No No
7. Is manifest documentation streams?	on avanable for designa	ateu waste res	INU
	Cadmium Oxide		
		Quantity Stored	0.55 Ton (1971 to 1980)
			
2. Common/Trade Name:		Underground Tank	Drums
2. Common/Trade Name:			
2. Common/Trade Name: 3. Storage Method:		Underground Tank	Drums
Chemical Name:		Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	to disposal?	Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior		Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
 Common/Trade Name: Storage Method: Waste Disposal: Is the waste treated prior If yes, specified treatment 	t method:	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior	t method: isposal?	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling

Chemical Name: Calcium Chlor	ride	
2. Common/Trade Name:	Quantity Stored:	50 gal (1980 to 1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
_	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for	r designated waste Yes	No
streams?		
I. Chemical Name: Calcium Fluori	de	
2. Common/Trade Name:	Quantity Stored:	10 gal (1983 to 1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for	designated waste Yes	No
streams?		
1. Chemical Name: Calcium Nitrate	:	•
2. Common/Trade Name:	Quantity Stored:	95 gal (1983 to 1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for	designated waste Yes	No
streams?		
		· · · · · · · · · · · · · · · · · · ·
I. Chemical Name: Chromium Sulfa	ate	
2. Common/Trade Name:	Quantity Stored:	25 gal (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	<u>—</u>	
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for o	designated waste Yes	No
streams?		

Chemical Name: Cobalt Nitrate		
2. Common/Trade Name:	Quantity Stored:	50 gal (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designat	ed waste Yes	No
streams?		
Chemical Name: Copper Alkaline Solutio	n	
2. Common/Trade Name:	Quantity Stored:	3 gal (1984 to 1985)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designat	ed waste Yes	No
streams?		
1 Charles November 1		
Chemical Name: Copper Ammonium Nitr Common/Trade Name:	Quantity Stored:	20 col (1097)
	Underground Tank	20 gal (1987) Drums
3. Storage Method:	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
4. Waste Disposal.	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designate	ed waste Yes	No No
streams?		
Chemical Name: Copper Cyanide	Occupie Stored	0.45 Ten (1077 to 1095)
2. Common/Trade Name:	Quantity Stored:	0.45 Ton (1977 to 1985)
	Underground Tank	Drums
2. Common/Trade Name: 3. Storage Method:	Underground Tank Aboveground Tank	Drums Other
2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums Other Onsite Recycling Offsite Recycling No

I. Chemical Name: Copper Sulfate		
2. Common/Trade Name:	Quantity Stored:	1.5 kg (1987)
3. Storage Method:	Underground Tank	Druins
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
-	_ Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designation	ited waste Yes	No
streams?		
Chemical Name: Ferric Sulfate		
2. Common/Trade Name:	Quantity Stored:	435 gm (1987)
3. Storage Method:	Underground Tank	Drums
-	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
-	- Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	-	
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designation	ted waste Yes	No
streams?		
I Chemical Name: Ferrous Ammonium Su	lfate.	
Chemical Name: Ferrous Ammonium Su Common/Trade Name:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	360 gm (1987)
2. Common/Trade Name:	Quantity Stored:	360 gm (1987) Drums
	Quantity Stored: Underground Tank	
2. Common/Trade Name:	Quantity Stored:	Drums
2. Common/Trade Name: 3. Storage Method:	Quantity Stored: Underground Tank Aboveground Tank	Drums Other
2. Common/Trade Name: 3. Storage Method:	Quantity Stored: Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designal.	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designal.	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams?	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designal.	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Led waste Yes	Drums Other Onsite Recycling Offsite Recycling No No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Ferric Sulfate 2. Common/Trade Name:	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Yes Yes Quantity Stored:	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Ferric Sulfate	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes ted waste Quantity Stored: Underground Tank	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Ferric Sulfate 2. Common/Trade Name: 3. Storage Method:	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Yes Underground Tank Quantity Stored: Underground Tank Aboveground Tank	Drums Other Onsite Recycling No No No No No No Drums Other
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Ferric Sulfate 2. Common/Trade Name:	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes ted waste Quantity Stored: Underground Tank	Drums Other Onsite Recycling No No No No No No No Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Ferric Sulfate 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Yes Underground Tank Aboveground Tank Aboveground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Ferric Sulfate 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Yes Underground Tank Aboveground Tank Aboveground Tank Aboveground Tank Sewered Hauled	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Ferric Sulfate 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Yes Underground Tank Aboveground Tank Aboveground Tank Aboveground Tank Sewered Hauled	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Ferric Sulfate 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Yes Underground Tank Aboveground Tank Aboveground Tank Sewered Hauled Yes Yes Yes	Drums Other Onsite Recycling Offsite Recycling No No No No Other Onsite Recycling No No No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Ferric Sulfate 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Yes Underground Tank Aboveground Tank Aboveground Tank Sewered Hauled Yes Yes Yes	Drums

1. Chemical Name: Magnesium Chloride		
2. Common/Trade Name:	Quantity Stored:	450 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designa	tcd waste Yes	No
streams?		
Chemical Name: Magnesium Oxide		
2. Common/Trade Name:	Quantity Stored:	395 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
•	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	-	
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designat	ed waste Yes	No
streams?		
1 61		
1. Chemical Name: Magnesium Sulfate	O	A50 (1007)
2. Common/Trade Name:	Quantity Stored:	450 gm (1987)
	Underground Tank	Drums
2. Common/Trade Name: 3. Storage Method:	Underground Tank Aboveground Tank	Drums Other
2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designate.	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designate.	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designatistreams?	Underground Tank Aboveground Tank Sewered HauledYesYes	Drums Other Onsite Recycling Offsite Recycling No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designatistreams? 1. Chemical Name: Nickel Plate	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes ed waste Yes	Drums Other Onsite Recycling Offsite Recycling No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designate streams? 1. Chemical Name: Nickel Plate 2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes ed waste Quantity Stored:	Drums Other Onsite Recycling Offsite Recycling No No No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designatistreams? 1. Chemical Name: Nickel Plate	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes ed waste Quantity Stored: Underground Tank	Drums Other Onsite Recycling Offsite Recycling No No No No Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designate streams? 1. Chemical Name: Nickel Plate Nickel Plate	Underground Tank Aboveground Tank Sewered HauledYesYes ed waste Yes Quantity Stored: Underground Tank Aboveground Tank	Drums Other Onsite Recycling No No No No No No No Other
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designate streams? 1. Chemical Name: Nickel Plate 2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered Hauled YesYes ed waste Yes Quantity Stored: Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling Offsite Recycling No No No No Other Onsite Recycling No No No Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designatistreams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes ed waste Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled	Drums Other Onsite Recycling Offsite Recycling No No No No Other Onsite Recycling No Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designatistreams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled YesYes ed waste Yes Quantity Stored: Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling Offsite Recycling No No No No Other Onsite Recycling No No No Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designatistreams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Cod waste Quantity Stored: Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No No No No Other Onsite Recycling No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designatistreams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Control Ves	Drums Other Onsite Recycling Offsite Recycling No No No No Signature Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designatistreams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Control Ves	Drums Other Onsite Recycling Offsite Recycling No No No No Other Onsite Recycling No No No

1. Chemical Name: Nickel	Sulfamate (99%)			
	cel Sulfamate # 24	Quantity Stored:	10 gal (1987)	_
3. Storage Method:	Undergr	ound Tank	Drums	_
· ·	-	ound Tank	Other	
4. Waste Disposal:	Sewered		Onsite Recycling	
•	Hauled		Offsite Recycling	
5. Is the waste treated prior to dis	sposal?	Yes	No	
If yes, specified treatment met	-			
6. Is waste stored prior to dispose		Yes	No	
7. Is manifest documentation ava		Yes	No	
streams?	Ü			
	Sulfamate (99%)			
2. Common/Trade Name: Nicl	cel Sulfamate #101	Quantity Stored:	25 gal (1984 to 1985)	
3. Storage Method:	Undergr	ound Tank	Drums	
	Abovegr	ound Tank	Other	
4. Waste Disposal:	Sewered		Onsite Recycling	
	Hauled		Offsite Recycling	
5. Is the waste treated prior to dis	posal?	Yes	No	
If yes, specified treatment met		•		
6. Is waste stored prior to disposa		Yes	No	
7. Is manifest documentation ava	ilable for designated waste	Yes	No	
streams?				
				_
	a			
***************************************	Sulfate			_
2. Common/Trade Name:		Quantity Stored:	430 gm (1987)	_
3. Storage Method:		ound Tank	Drums	
		ound Tank	Other	
4. Waste Disposal:	Sewered		Onsite Recycling	
	. Hauled		Offsite Recycling	
5. Is the waste treated prior to dis	•	Yes	No	
If yes, specified treatment metl				
6. Is waste stored prior to disposa		Yes	No	
7. Is manifest documentation avai	lable for designated waste	Yes	No	
streams?				
				-
Chemical Name: Nickel	Ammonium Sulfate			
2. Common/Trade Name:	Annionan Sanac	Quantity Stored:	95 gm (1987)	•
3. Storage Method:	Undergro	und Tank	Drums	-
3. Storage Method.		und Tank	Other	
4. Waste Disposal:	Abovegio	und I ann	Onsite Recycling	
T. Trasic Dispusal.	Sowered			
•	Scwered			
•	Hauled	Vac	Offsite Recycling	
5. Is the waste treated prior to disp	— Hauled	Yes		
5. Is the waste treated prior to disp If yes, specified treatment meth	Hauled bosal?		Offsite Recycling No	
Is the waste treated prior to disp If yes, specified treatment meth Is waste stored prior to disposal	mosal? Hauled bosal? Hauled bosal?	Yes	Offsite Recycling No No	
5. Is the waste treated prior to disp If yes, specified treatment meth	mosal? Hauled bosal? Hauled bosal?		Offsite Recycling No	

I. Chemical Name: Potassium Biph	thalate	
2. Common/Trade Name:	Quantity Stored:	5 gm (1987)
3. Storage Method:	Underground Tank	Drums
-	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
-	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	***************************************	
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for	designated waste Yes	No
streams?		
Chemical Name: Potassium Bron	nate	
2. Common/Trade Name:	Quantity Stored:	450 gm (1987)
3. Storage Method:	Underground Tank	Drums
5. Biorage Metriou.	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
4, Waste Disposal.	Hanled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	165	No
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for		No
streams?	designated waste 1 es	110
Chemical Name: Potassium Bron		
2. Common/Trade Name:	Quantity Stored:	450 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hanled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for	designated waste Yes	No
streams?		
1. Chemical Name: Potassium Carbo		
2. Common/Trade Name:		2.5 kg (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
Waste Disposal:	Sewered	Onsite Recycling
-	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	420000	
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for d	esignated waste Yes	No
streams?		

1. Chemical Name: Potassium Chloride		
2. Common/Trade Name:	Quantity Stored:	1000 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
-	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for des	ignated waste Yes	No
streams?		
1. Chemical Name: Potassium Cyanide		
2. Common/Trade Name:	Quantity Stored:	0.95 Ton (1977 to 1981)
3. Storage Method:	Underground Tank	Druins
-	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
-	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for des	ignated waste Yes	No
streams?		
1. Chemical Name: Potassium Dichrom	ate	
2. Common/Trade Name:	Quantity Stored:	750 gm (1987)
3. Storage Method:	Underground Tank	Drums
<u></u>	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
•	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		-
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for des		No
streams?		
1. Chemical Name: Potassium Ferricani	de	
2. Common/Trade Name:	Quantity Stored:	440 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
1. Waste Dispositi.	Hauled	Offsite Recycling
5 Is the waste treated prior to disposal?	Yes	No No
5. Is the waste treated prior to disposal? If yes, specified treatment method:	165	
6. Is waste stored prior to disposal?	Yes	No
•	***************************************	No
7. Is manifest documentation available for desi streams?	Rustica mastic 1 c2	140
su cams:		

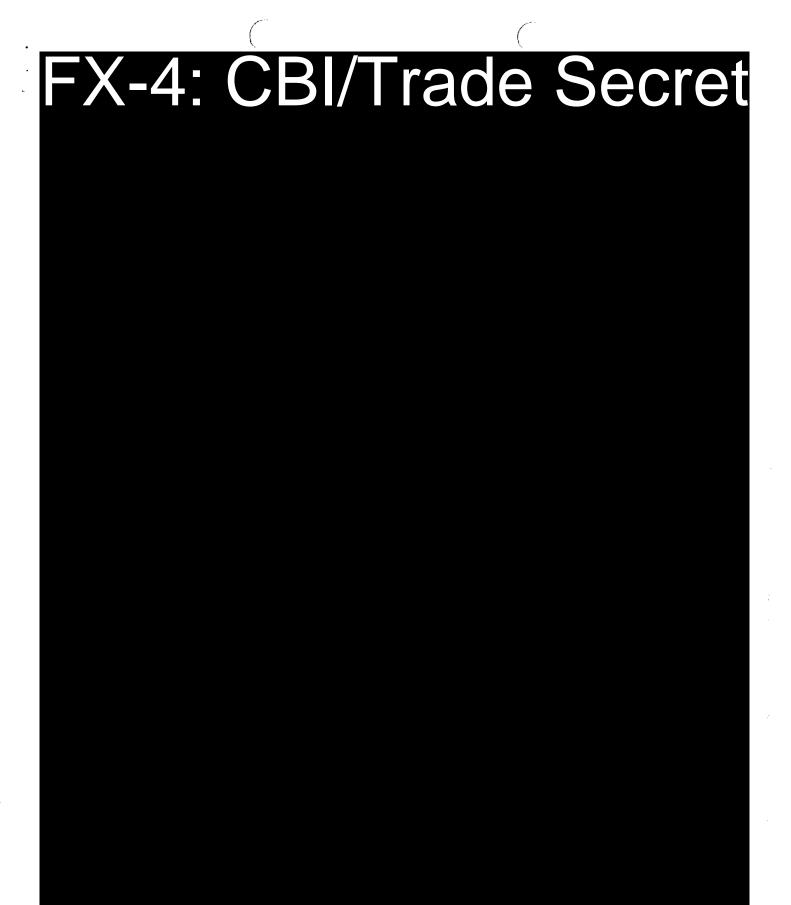
Chemical Name: Potassium Ferrocyanide		
2. Common/Trade Name:	Quantity Stored:	890 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No .
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designa	ted waste Yes	No
streams?		
Chemical Name: Potassium Fluoride		
2. Common/Trade Name:	Quantity Stored:	2 kg (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		•
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designation	cd waste Yes	No
streams?		
Chemical Name: Potassium Hydroxide		
2. Common/Trade Name:	Quantity Stored:	0.8 Ton (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designat	ed waste Yes	No
streams?		
Chemical Name: Potassium Iodate		
2. Common/Trade Name:	Quantity Stored:	450 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designate	ed waste Yes	No
streams?		

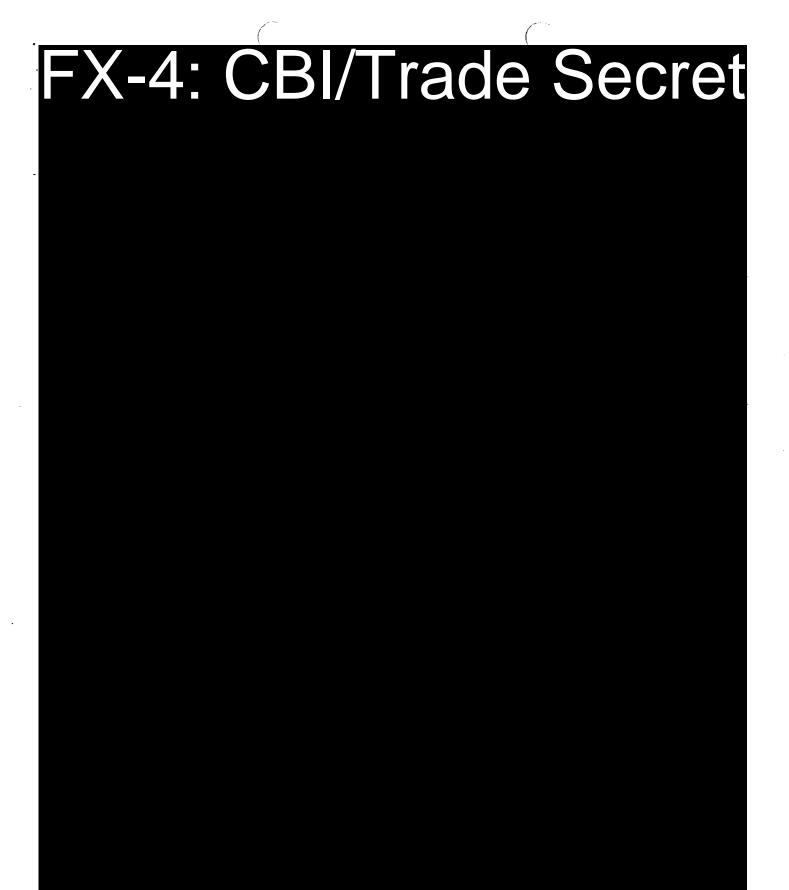
Chemical Name: Potassium lodide		
2. Common/Trade Name:	Quantity Stored:	125 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	_ Hanled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for design	ated waste Yes	No
streams?		
Chemical Name: Potassium Permangana	ite	
2. Common/Trade Name:	Quantity Stored:	800 gm (1987)
3. Storage Method:	Underground Tank	Drums
<u></u>	_ Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	_ Hanled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		•
6. Is waste stored prior to disposal?	Ycs	No
7. Is manifest documentation available for designation	ated waste Yes	No
streams?		
Chemical Name: Potassium Sulfate		
Chemical Name: Potassium Sulfate Common/Trade Name:	Quantity Stored:	2.5 kg (1987)
	Underground Tank	2.5 kg (1987) Drums
2. Common/Trade Name:	Underground Tank Aboveground Tank	Drums Other
2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	Underground Tank Aboveground Tank Sewered Hanled	Orums Other Onsite Recycling Offsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Underground Tank Aboveground Tank Sewered	Drums Other Onsite Recycling
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designation.	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designation.	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designation.	Underground Tank Aboveground Tank Sewered Hauled Yes	Drums Other Onsite Recycling Offsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Potassium Thiocyanate	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes ated waste Yes	Drums Other Onsite Recycling Offsite Recycling No No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Potassium Thiocyanate 2. Common/Trade Name:	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Ated waste Quantity Stored:	Drums Other Onsite Recycling Offsite Recycling No No No No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Potassium Thiocyanate	Underground Tank Aboveground Tank Sewered Hauled Yes Yes Yes Yes Underground Tank Underground Tank	Drums Other Onsite Recycling No No No No No No No No No Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method:	Underground Tank Aboveground Tank Sewered Handed Yes Yes Yes Ited waste Quantity Stored: Underground Tank Aboveground Tank	Drums Other Onsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method:	Underground Tank Aboveground Tank Sewered Handed Yes Yes Yes Underground Tank Aboveground Tank Aboveground Tank Sewered	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal:	Underground Tank Aboveground Tank Sewered Handed Yes Yes Yes Underground Tank Aboveground Tank Aboveground Tank Sewered Handed	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Underground Tank Aboveground Tank Sewered Handed Yes Yes Yes Underground Tank Aboveground Tank Aboveground Tank Sewered	Drums
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: Potassium Thiocyanate 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Underground Tank Aboveground Tank Sewered Handed Yes Yes Yes Underground Tank Aboveground Tank Sewered Handed Yes	Drums Other Onsite Recycling Offsite Recycling No No No No Other Onsite Recycling No No No No No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Underground Tank Aboveground Tank Sewered Handed Yes Yes Yes Aboveground Tank Aboveground Tank Aboveground Tank Sewered Handed Yes Yes	Drums Other Onsite Recycling Offsite Recycling No No No No Other Onsite Recycling No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal? 7. Is manifest documentation available for designa streams? 1. Chemical Name: 2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal?	Underground Tank Aboveground Tank Sewered Handed Yes Yes Yes Aboveground Tank Aboveground Tank Aboveground Tank Sewered Handed Yes Yes	Drums Other Onsite Recycling Offsite Recycling No No No No Other Onsite Recycling No No No No No

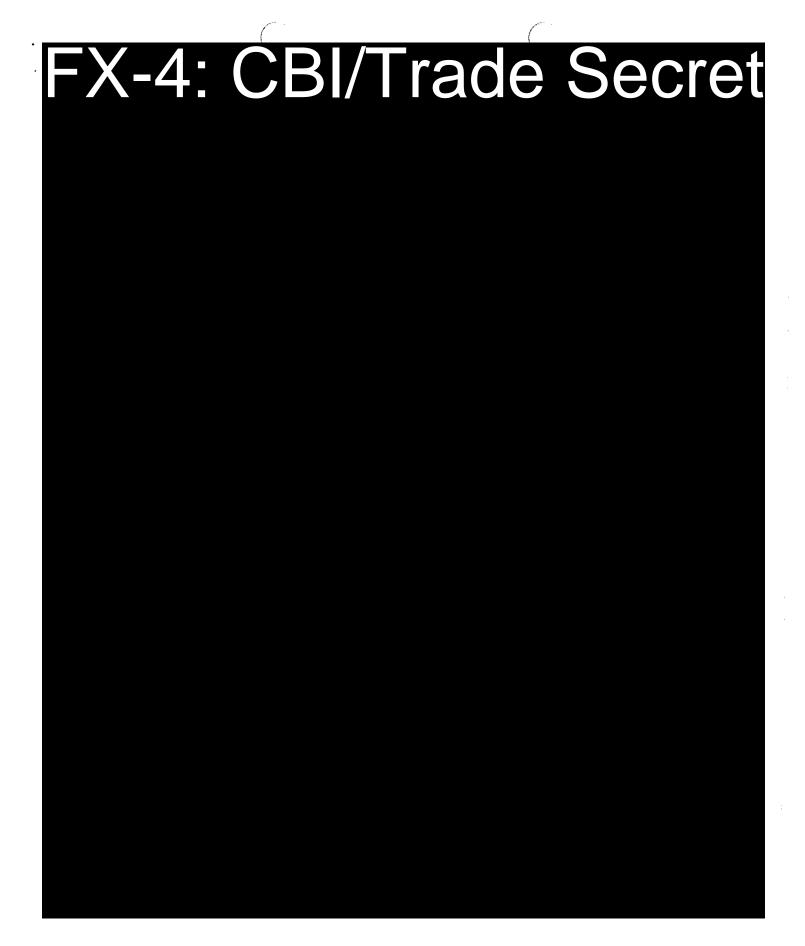
1. Chemical Name: Silver Chloride	O with Co. I	500 (1007)
2. Common/Trade Name:	Quantity Stored:	500 gm (1987)
3. Storage Method:	Underground Tank Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
4. Waste Disposal.	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	163	110
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for des		No
streams?	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chemical Name: Silver Nitrate		
2. Common/Trade Name:	Quantity Stored:	10 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
•	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for des streams?	ignated waste Yes	No
1. Chemical Name: Sodium Bicarbonate 2. Common/Trade Name: Baking Soda	Quantity Stored:	2.5 kg (1987)
3. Stórage Method:	Underground Tank	Drums
4. Wests Discussed	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
5. In the wests treated union to dispose 12	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method: 6. Is waste stored prior to disposal?	Yes	No
 Is waste stored prior to disposar: Is manifest documentation available for desi 		No
streams?	gnated waste Tes	140
Chemical Name: Sodium Bichromate		
2. Common/Trade Name:	Quantity Stored:	0.25 Ton (1987)
3. Storage Method:	Underground Tank	Drums
5. Storage Method.	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No No
If yes, specified treatment method:		• • •
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for design		No No
streams?		

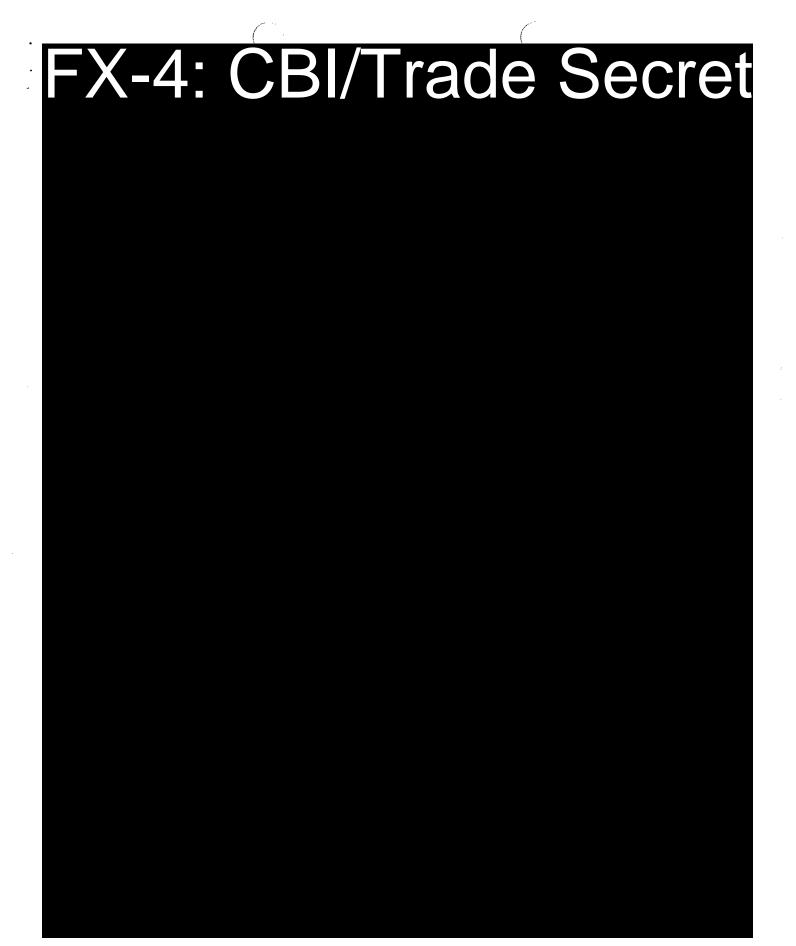
Chemical Name: Sodium Biffuoride		
2. Common/Trade Name:	Quantity Stored:	2.3 kg (1987)
3. Storage Method: Und	lerground Tank	Drums
Abo	veground Tank	Other
	ered	Onsite Recycling
Hav	led	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designated w	aste Yes	No
streams?		
Chemical Name: Sodium Borate		
2. Common/Trade Name:	Quantity Stored:	500 gm (1987)
3. Storage Method: Und	erground Tank	Drums
Abo	veground Tank	Other
4. Waste Disposal: Scu	ered	Onsite Recycling
. Han	led	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designated wa	iste Yes	No
streams?		
	· · · · · · · · · · · · · · · · · · ·	
Chemical Name: Sodium Chloride		
2. Common/Trade Name:	Quantity Stored:	150 gm (1987)
3. Storage Method: Und	erground Tank	Drums
Abo	veground Tank	Other
4. Waste Disposal: Sew	ered	Onsite Recycling
Hau	cd	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7 In an air fact decomposition available for decisal and one		
7. Is manifest documentation available for designated wa	ste Yes	No
7. Is manifest documentation available for designated was streams?	ste Yes	No
_	ste Yes	No
_	ste Yes	No
streams?	ste Yes	
1. Chemical Name: Sodium Cyanide 2. Common/Trade Name:	Quantity Stored:	3.25 Tons (1977 to 1987)
1. Chemical Name: Sodium Cyanide 2. Common/Trade Name:Unde	Quantity Stored:	3.25 Tons (1977 to 1987) Drums
1. Chemical Name: Sodium Cyanide 2. Common/Trade Name: 3. Storage Method: Under Abort	Quantity Stored: _ erground Tank eground Tank	3.25 Tons (I977 to 1987) Drums Other
1. Chemical Name: Sodium Cyanide 2. Common/Trade Name: Under Abort 4. Waste Disposal: Scween	Quantity Stored: erground Tank eground Tank ered	3.25 Tons (1977 to 1987) Other Onsite Recycling
1. Chemical Name: Sodium Cyanide 2. Common/Trade Name: 3. Storage Method: Und Abov 4. Waste Disposal: Scwe	Quantity Stored: _ erground Tank reground Tank red	3.25 Tons (1977 to 1987) Drums Other Onsite Recycling Offsite Recycling
1. Chemical Name: Sodium Cyanide 2. Common/Trade Name: 3. Storage Method: Under Abort 4. Waste Disposal: Sewer Haul 5. Is the waste treated prior to disposal?	Quantity Stored: erground Tank eground Tank ered	3.25 Tons (1977 to 1987) Other Onsite Recycling
1. Chemical Name: Sodium Cyanide 2. Common/Trade Name: 3. Storage Method: Under Abort 4. Waste Disposal: Sewer Haul 5. Is the waste treated prior to disposal? If yes, specified treatment method:	Quantity Stored: _ erground Tank reground Tank red ed Yes	3.25 Tons (1977 to 1987) Drums Other Onsite Recycling Offsite Recycling No
1. Chemical Name: Sodium Cyanide 2. Common/Trade Name: 3. Storage Method: Undo About 4. Waste Disposal: Sewer Haul 5. Is the waste treated prior to disposal? If yes, specified treatment method: 6. Is waste stored prior to disposal?	Quantity Stored: Quantity Stored: reground Tank reground Tank red ed Yes Yes	3.25 Tons (1977 to 1987) Drums Other Onsite Recycling Offsite Recycling No No
1. Chemical Name: Sodium Cyanide 2. Common/Trade Name: 3. Storage Method: Under Abort 4. Waste Disposal: Sewer Haul 5. Is the waste treated prior to disposal?	Quantity Stored: Quantity Stored: reground Tank reground Tank red ed Yes Yes	3.25 Tons (1977 to 1987) Drums Other Onsite Recycling Offsite Recycling No

.,
ing
ling
ing
ing
ing
ing
-
-
-
-
-
-
-
-
-
-
ing
ng
ing
ng
ng
ng
ng

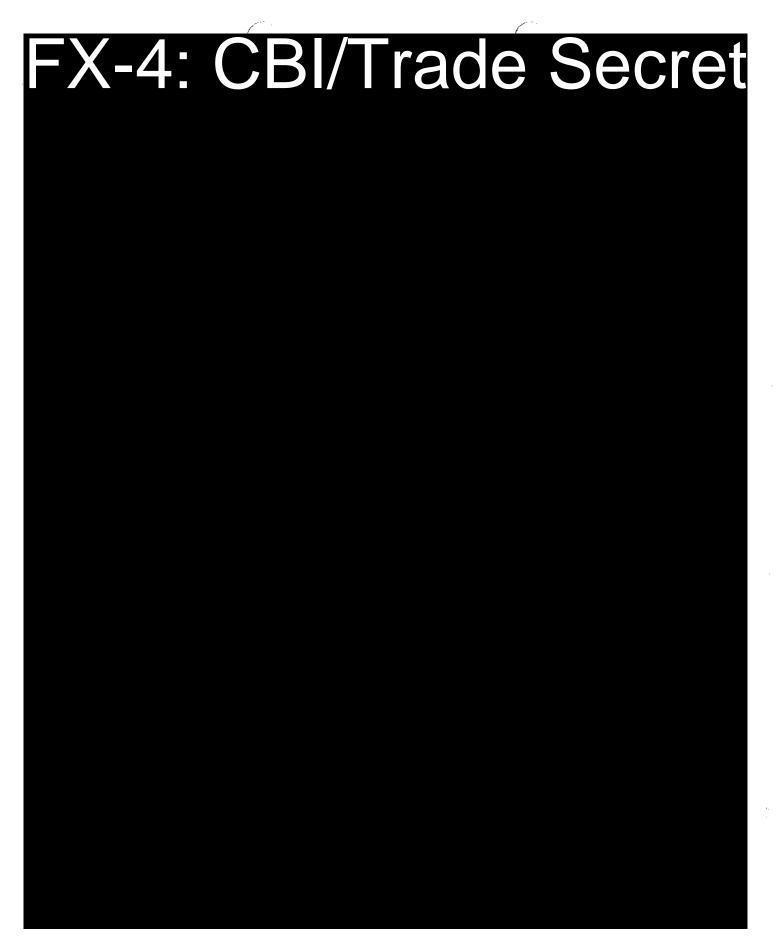

1. Chemical Name: Sodium Sulfate		
2. Common/Trade Name:	Quantity Stored:	500 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for desi	ignated waste Yes	No
streams?		
Chemical Name: Sodium Sulfide		
2. Common/Trade Name:	Quantity Stored:	500 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for desi	gnated waste Yes	— No
streams?		
1. Chemical Name: Sodium Tartrate	Overtin Stand	101-(1007)
2. Common/Trade Name:	Quantity Stored:	1.9 kg (1987)
3. Storage Method:	Underground Tank	Drums Other
4. Wasta Disposal:	Aboveground Tank Sewered	Other Operation
4. Waste Disposal:	Hauled	Onsite Recycling
5. Is the waste treated prior to disposal?	Yes	Offsite Recycling No
If yes, specified treatment method:	Yes	No
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for design		No
streams?	gnated waste 1 es	140
Silvanis:		
1. Chemical Name: Sodium Thiocyanate		
2. Common/Trade Name:	Quantity Stored:	500 gm (1987)
3. Storage Method:	Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:		
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for design	gnated waste Yes	No
streams?	-	

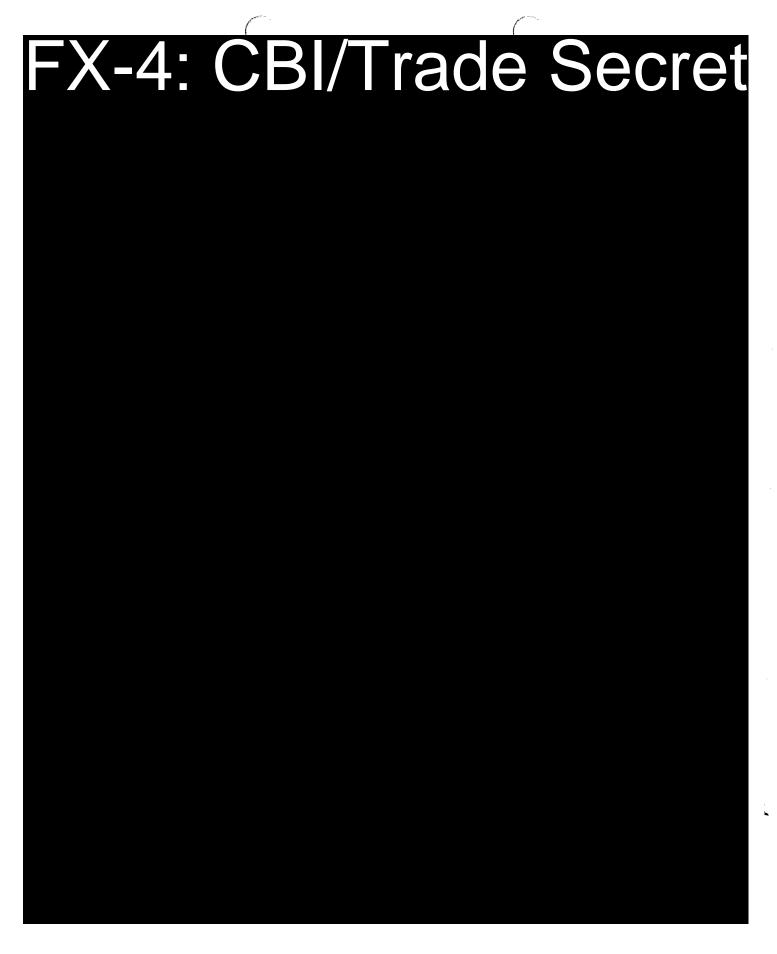

Chemical Name: Sodium Thiosulfate		
2. Common/Trade Name:	Quantity Stored:	2000 gm (1987)
3. Storage Method:	Underground Tank	Dnims
-	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
-	Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	.,	.,
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for design	ated waste Yes	No
streams?	-	water-propriates
Chemical Name: Stannic Flo Borate		
2. Common/Trade Name: Tin Acid	Quantity Stored:	75 gal (1977 to 1987)
3. Storage Method:	_ Underground Tank	Drums
5: .	_ Aboveground Tank	Other
4. Waste Disposal:	_ Scwered	Onsite Recycling
5 T	_ Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	Vac	No
6. Is waste stored prior to disposal?7. Is manifest documentation available for design	ated waste Yes	No
streams?	ated waste i es	140
strains:	*************************************	
1. Chemical Name: Stannous Chloride		
2. Common/Trade Name:	Quantity Stored:	200 gm (1987)
3. Storage Method:	_ Underground Tank	Drums
	Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	_ Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Ycs	No
If yes, specified treatment method:		N.
6. Is waste stored prior to disposal?	Yes	No
7. Is manifest documentation available for designation available for designation and the second seco	ated waste Yes	No
streams?	V _{ee} dingerkensterselderen	************
I. Chemical Name: Strontium Nitrate		400 (1007)
2. Common/Trade Name:	Quantity Stored:	400 gm (1987)
3. Storage Method:	Underground Tank	Drums
	_ Aboveground Tank	Other
4. Waste Disposal:	Sewered	Onsite Recycling
	_ Hauled	Offsite Recycling
5. Is the waste treated prior to disposal?	Yes	No
If yes, specified treatment method:	Vaa	No
6. Is waste stored prior to disposal?	ted waste · Yes	No
7. Is manifest documentation available for designa streams?	ited waste - 1 es	140
Streams:		

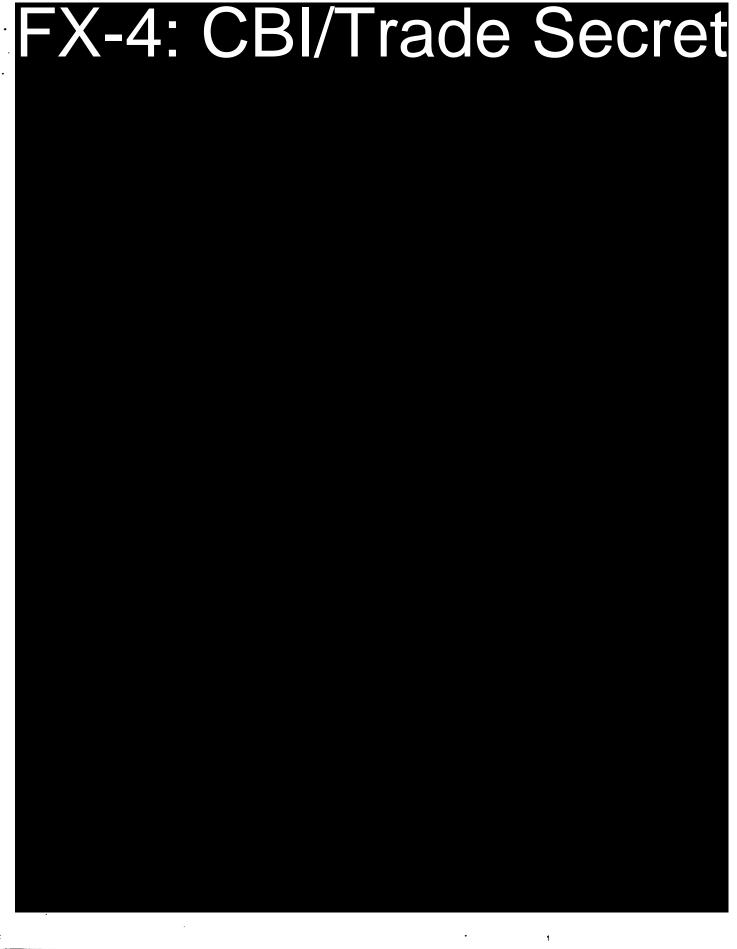

2. Common/Trade Name:	and the second second		
3. Storage Method: Underground Tank Drums	1. Chemical Name: <u>Titanium Dioxide</u>	Quantity Stand	400 gm (1987)
Aboveground Tank			
A waste Disposal: Sewered Onsite Recycling	J. Sitilage Method.		
Hauled Offsite Recycling Fee No	4 Waste Disposal:		
5. Is the waste treated prior to disposal? If yes, specified treatment method: 5. Is waste stored prior to disposal? 7. Is manifest documentation available for designated waste 7. Is the waste treated prior to disposal? 8. Is the waste treated prior to disposal? 9. Is manifest documentation available for designated waste 9. Is manifest documentation available for designated waste 9. Is the waste treated prior to disposal? 9. Is manifest documentation available for designated waste 9. Is the waste treated prior to disposal? 9. Is waste stored prior to disposal? 9. Is waste stored prior to disposal? 9. Is manifest documentation available for designated waste 9. Yes 9. No 9. Is manifest documentation available for designated waste 9. Yes 9. No 9. Is manifest documentation available for designated waste 9. Yes 9. No 9. Is manifest documentation available for designated waste 9. Onsite Recycling 1. Is the waste treated prior to disposal? 1. Is waste stored prior to disposal? 1. Is waste treated prior to disposal? 1. Is waste stored prio			
If yes, specified treatment method:	5 Is the waste treated prior to disposal?		
5. Is waste stored prior to disposal? 7. Is manifest documentation available for designated waste streams? 1. Chemical Name: Zine Chromate 2. Common/Trade Name: Underground Tank Other 3. Storage Method: Sewered Onsite Recycling Other available for designated waste stored prior to disposal? 1. Is manifest documentation available for designated waste Sewered Onsite Recycling Other 1. Storage Method: Underground Tank Offsite Recycling Other Offsite Recycling Other Other Offsite Recycling Other Other Other Other Offsite Recycling Other			
7. Is manifest documentation available for designated waste streams? 1. Chemical Name: Zinc Chromate 2. Common/Trade Name: Quantity Stored: 4 gal (1987) 3. Storage Method: Underground Tank Aboveground Tank Other 4. Waste Disposal: Sewered Onsite Recycling Offsite		Yes	No
Chemical Name: Zinc Chromate Quantity Stored: 4 gal (1987)	• •	gnated waste Yes	No
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? 5. Is manifest documentation available for designated waste 5. Is the waste treated prior to disposal? 6. Waste Disposal: 7. Chemical Name: 8. Chemical Name: 9. Chemical Name: 1. Is waste treated prior to disposal? 1. Is manifest documentation available for designated waste 1. Storage Method: 1. Storage Meth			
2. Common/Trade Name: 3. Storage Method: 4. Waste Disposal: 5. Is the waste treated prior to disposal? 5. Is manifest documentation available for designated waste 5. Is the waste treated prior to disposal? 6. Waste Disposal: 7. Chemical Name: 8. Chemical Name: 9. Chemical Name: 1. Is waste treated prior to disposal? 1. Is manifest documentation available for designated waste 1. Storage Method: 1. Storage Meth			
Storage Method: Underground Tank Aboveground Tank Aboveground Tank Other		O with County	4 1 (1007)
Aboveground Tank Sewered Onsite Recycling Offsite Recycling Aboveground Tank Sewered Onsite Recycling Offsite Recycling Offsite Recycling Offsite Recycling Offsite Recycling Offsite Recycling Sewered Yes No If yes, specified treatment method: Is manifest documentation available for designated waste Common/Trade Name: Common/Trade Name			
Sewered Onsite Recycling Offsite Recycling Offsite Recycling Offsite Recycling Yes No	3. Storage Method:	·····	
Hauled Offsite Recycling No No If yes, specified treatment method: Yes No No No Streams? Yes No No No No No No No N	4. Wanta Dianacal:		
is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No No streams? Chemical Name: Zinc Oxide	4. waste Disposai:		
If yes, specified treatment method: 5. Is waste stored prior to disposal? 7. Is manifest documentation available for designated waste yes No streams? Chemical Name: Zinc Oxide Common/Trade Name: Quantity Stored: 2000 gm (1987) Storage Method: Underground Tank Drums Aboveground Tank Other Waste Disposal: Sewered Onsite Recycling Is the waste treated prior to disposal? Yes No streams? Chemical Name: Zinc Sulfate Common/Trade Name: Quantity Stored: Onsite Recycling Aboveground Tank Other No Is manifest documentation available for designated waste yes No streams? Chemical Name: Zinc Sulfate Common/Trade Name: Quantity Stored: Storage Method: Underground Tank Drums Aboveground Tank Other Waste Disposal: Sewered Onsite Recycling Aboveground Tank Other Waste Disposal: Sewered Onsite Recycling Aboveground Tank Other Waste Disposal: Sewered Onsite Recycling Is the waste treated prior to disposal? Yes No Is the waste treated prior to disposal? Yes No Is the waste treated prior to disposal? Yes No Is the waste treated prior to disposal? Yes No Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No	S. To the weste transed prior to dispose!		
5. Is waste stored prior to disposal? 2. Is manifest documentation available for designated waste streams? 2. Common/Trade Name: 3. Storage Method: 4. Common/Trade Name: 4. Common/Trade Name: 4. Common/Trade Name: 5. Storage Method: 4. Common/Trade Name: 4. Common/Trade Name: 5. Storage Method: 4. Common/Trade Name: 4. Common/Trade Name: 5. Storage Method: 4. Common/Trade Name: 5. Storage Method: 4. Common/Trade Name: 5. Storage Method: 6. Common/Trade Name: 7. Common/Trade Name: 7. Common/Trade Name: 8. Common/Trade Name: 8. Common/Trade Name: 9. Common/Trade Nam	•	res	INO
Is manifest documentation available for designated waste streams? Chemical Name: Zinc Oxide		Vos	No
. Chemical Name: Zinc Oxide Common/Trade Name: Quantity Stored: 2000 gm (1987) Storage Method: Underground Tank Other Aboveground Tank Other Maste Disposal: Sewered Onsite Recycling Offsite Recycling Is the waste treated prior to disposal? Yes No Is manifest documentation available for designated waste stored Phone Common/Trade Name: Zinc Sulfate Common/Trade Name: Quantity Stored: Storage Method: Underground Tank Drums Aboveground Tank Other Onsite Recycling No Is manifest documentation available for designated waste stored prior to disposal? Storage Method: Underground Tank Drums Aboveground Tank Other Waste Disposal: Sewered Onsite Recycling Hauled Offsite Recycling Is the waste treated prior to disposal? Yes No Is the waste treated prior to disposal? Yes No Is waste stored prior to disposal? Yes No Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No			
Common/Trade Name: Storage Method: Underground Tank Aboveground Tank Other Aboveground Tank Other Sewered Hauled Offsite Recycling Offsite Recycling No If yes, specified treatment method: Is waste stored prior to disposal? Is the maste treated prior to disposal? Chemical Name: Storage Method: Storage Method: Underground Tank Other No No If yes, specified treatment method: Is waste stored prior to disposal? Chemical Name: Storage Method: Underground Tank Aboveground Tank Other Offsite Recycling No Ves No Drums Aboveground Tank Other Onsite Recycling Offsite Recycling Offsite Recycling Offsite Recycling Offsite Recycling Offsite Recycling Is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is waste stored prior to disposal? Yes No No No Is manifest documentation available for designated waste Yes No		ghated waste res	
Storage Method: Underground Tank		Quantity Stand	2000 am (1097)
Aboveground Tank Other Onsite Recycling Hauled Offsite Recycling Offsite Recycling Is the waste treated prior to disposal? Is waste stored prior to disposal? Is waste stored prior to disposal? Is manifest documentation available for designated waste streams? Chemical Name: Common/Trade Name: Storage Method: Ves Underground Tank Aboveground Tank Other Waste Disposal: Sewered Hauled Offsite Recycling No Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No		······································	
Waste Disposal: Sewered Onsite Recycling Hauled Offsite Recycling	5. Storage Method.	-	
Hanled Offsite Recycling Is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste streams? Chemical Name: Zinc Sulfate Common/Trade Name: Quantity Stored: Storage Method: Underground Tank Drums Aboveground Tank Other Waste Disposal: Sewered Onsite Recycling Hauled Offsite Recycling Is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No	Waste Disnosal		
Is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste streams? Chemical Name: Zinc Sulfate Common/Trade Name: Quantity Stored: Storage Method: Underground Tank Drums Aboveground Tank Other Waste Disposal: Sewered Onsite Recycling Hauled Offsite Recycling Is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No	Waste Disposar.		
If yes, specified treatment method: Is waste stored prior to disposal? Is manifest documentation available for designated waste yes No streams? Chemical Name: Zinc Sulfate Common/Trade Name: Quantity Stored: Storage Method: Underground Tank Drums Aboveground Tank Other Waste Disposal: Sewered Onsite Recycling Is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No	Is the waste treated prior to disposal?		
Is waste stored prior to disposal? Is manifest documentation available for designated waste streams? Chemical Name: Zinc Sulfate Common/Trade Name: Quantity Stored: Storage Method: Underground Tank Drums Aboveground Tank Other Waste Disposal: Sewered Onsite Recycling Hauled Offsite Recycling Is the waste treated prior to disposal? Yes No Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No			
. Chemical Name: Zinc Sulfate . Common/Trade Name: Quantity Stored: . Storage Method: Underground Tank Drums Aboveground Tank Other . Waste Disposal: Sewered Onsite Recycling Hauled Offsite Recycling Is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No	6. Is waste stored prior to disposal?	Yes	No
. Chemical Name: Zinc Sulfate . Common/Trade Name: Quantity Stored: . Storage Method: Underground Tank Drums	•		
. Common/Trade Name: Storage Method: Underground Tank Aboveground Tank Other Sewered Hauled Offsite Recycling Hauled Offsite Recycling If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Onsite Recycling Yes No No	•		
. Common/Trade Name: Storage Method: Underground Tank Aboveground Tank Other Sewered Hauled Offsite Recycling Hauled Offsite Recycling If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Onsite Recycling Yes No No			
. Common/Trade Name: Storage Method: Underground Tank Aboveground Tank Other Sewered Hauled Offsite Recycling Hauled Offsite Recycling If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Onsite Recycling Yes No No	. Chemical Name: Zinc Sulfate		
Storage Method: Underground Tank Aboveground Tank Other Onsite Recycling Hauled Offsite Recycling Is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Offsite Recycling No	. Common/Trade Name:	Quantity Stored:	
Aboveground Tank Other Onsite Recycling Hauled Offsite Recycling Hauled Offsite Recycling Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No	. Storage Method:		Drums
Waste Disposal: Sewered Hauled Offsite Recycling Hauled Offsite Recycling Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No			
Hauled Offsite Recycling Is the waste treated prior to disposal? Yes No If yes, specified treatment method: Is waste stored prior to disposal? Yes No Is manifest documentation available for designated waste Yes No	. Waste Disposal:		Onsite Recycling
Is the waste treated prior to disposal? If yes, specified treatment method: Is waste stored prior to disposal? Is manifest documentation available for designated waste Yes No No	•		
If yes, specified treatment method: Is waste stored prior to disposal? Is manifest documentation available for designated waste Yes No	. Is the waste treated prior to disposal?	Ycs	
Is waste stored prior to disposal? Is manifest documentation available for designated waste Yes No No			
Is manifest documentation available for designated waste Yes No	. Is waste stored prior to disposal?	Yes	No
		nated waste Yes	No
	-		

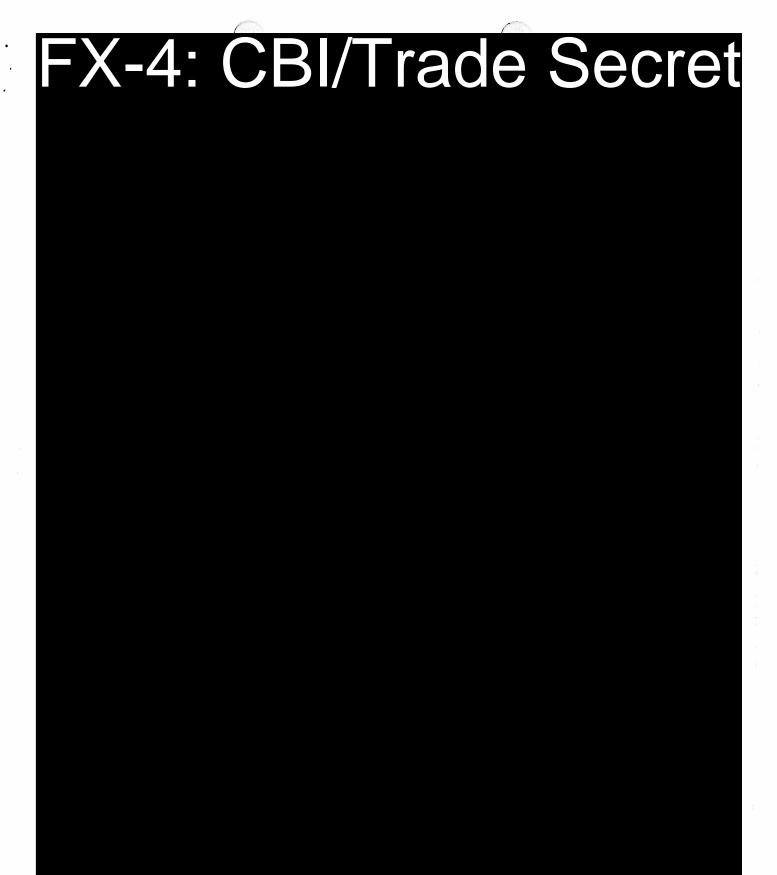


CBI/Trade Secret

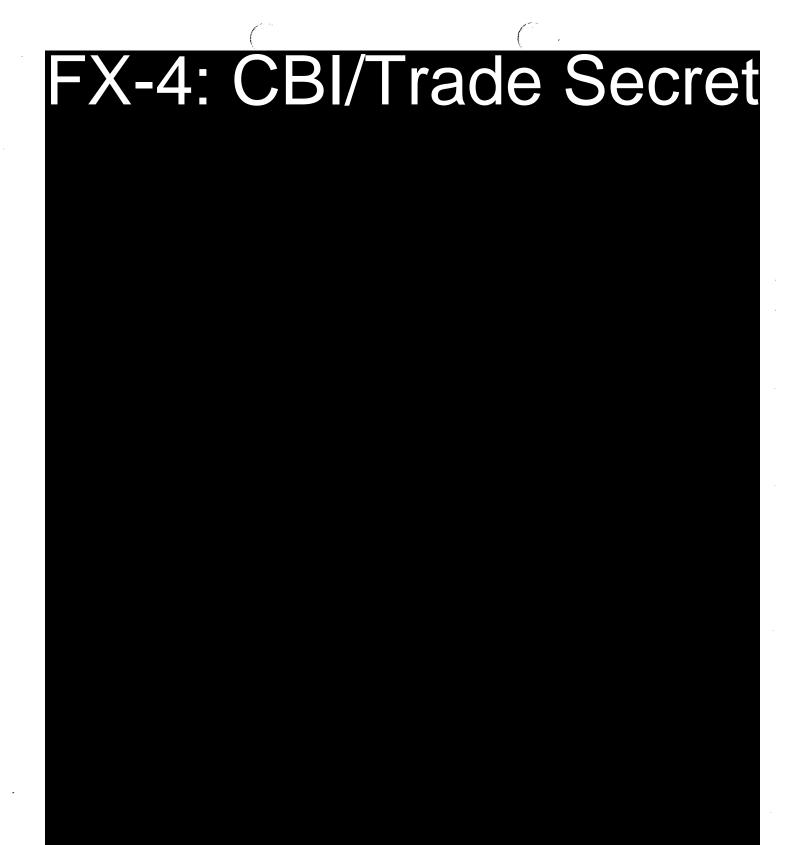


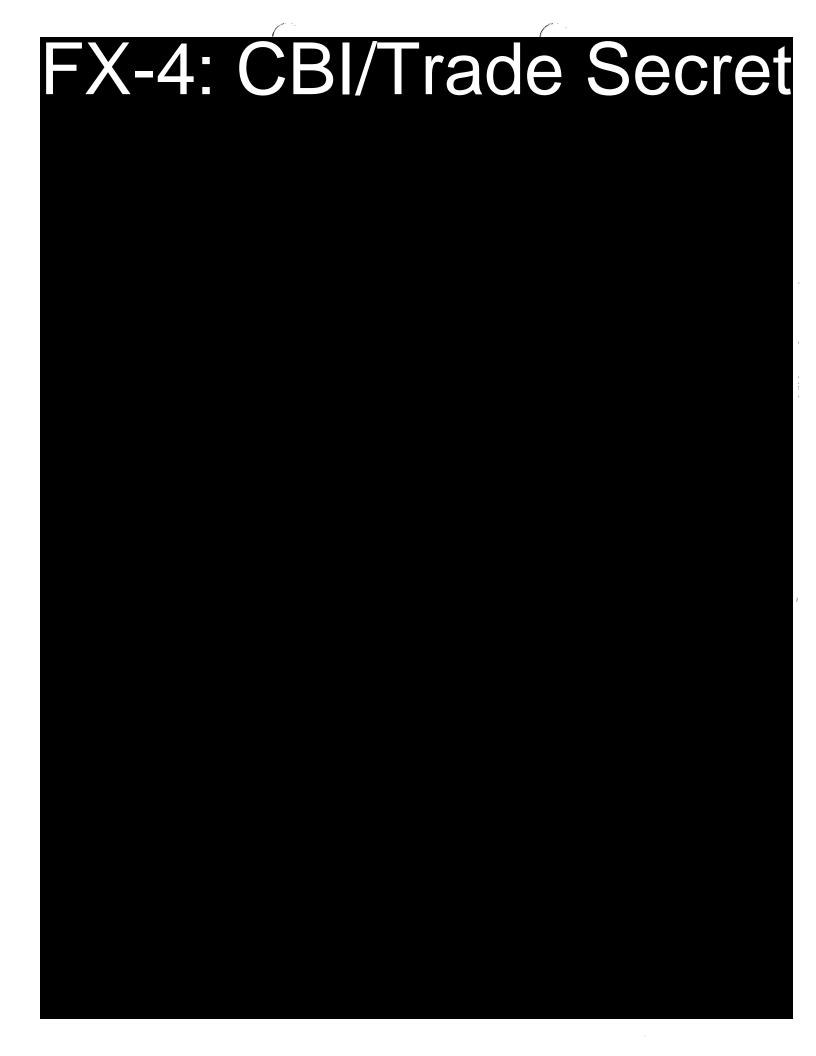






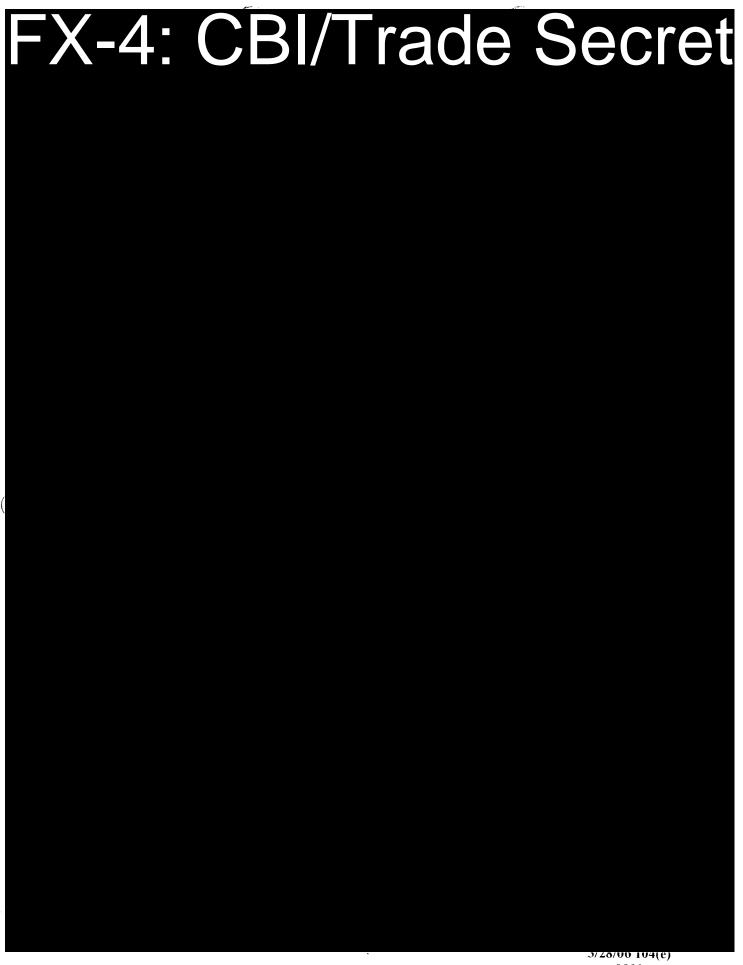
0075


[402929.3]


0076

[402929.3]

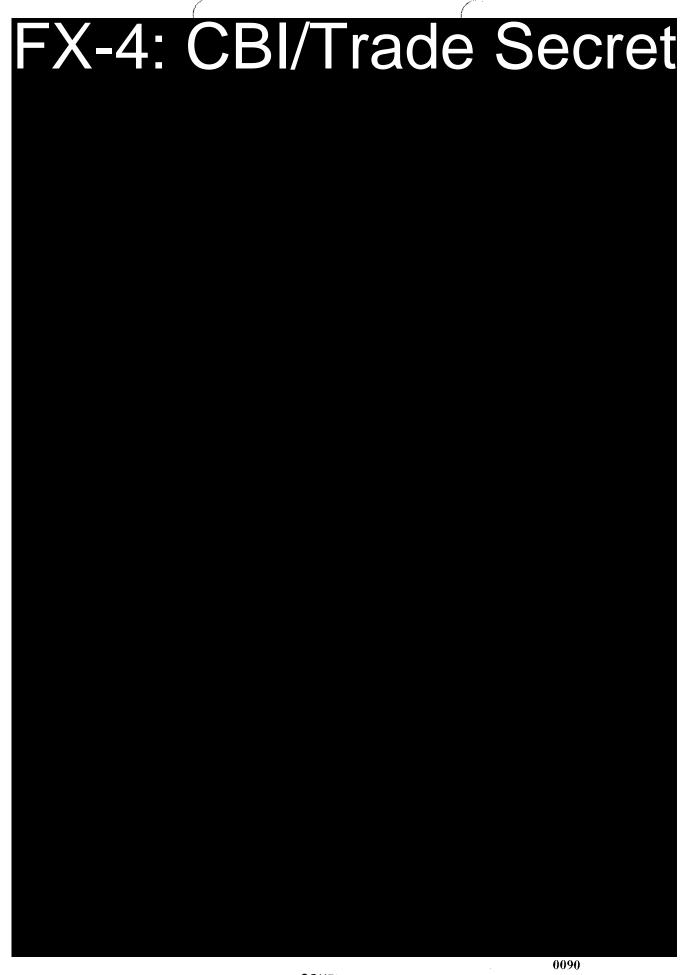
3/28/06 104(e)



CONFIDENTIAL

CONFIDENTIAL

. •


CONFIDENTIAL

HOME\PURAGM7.NHD [12/15/93]

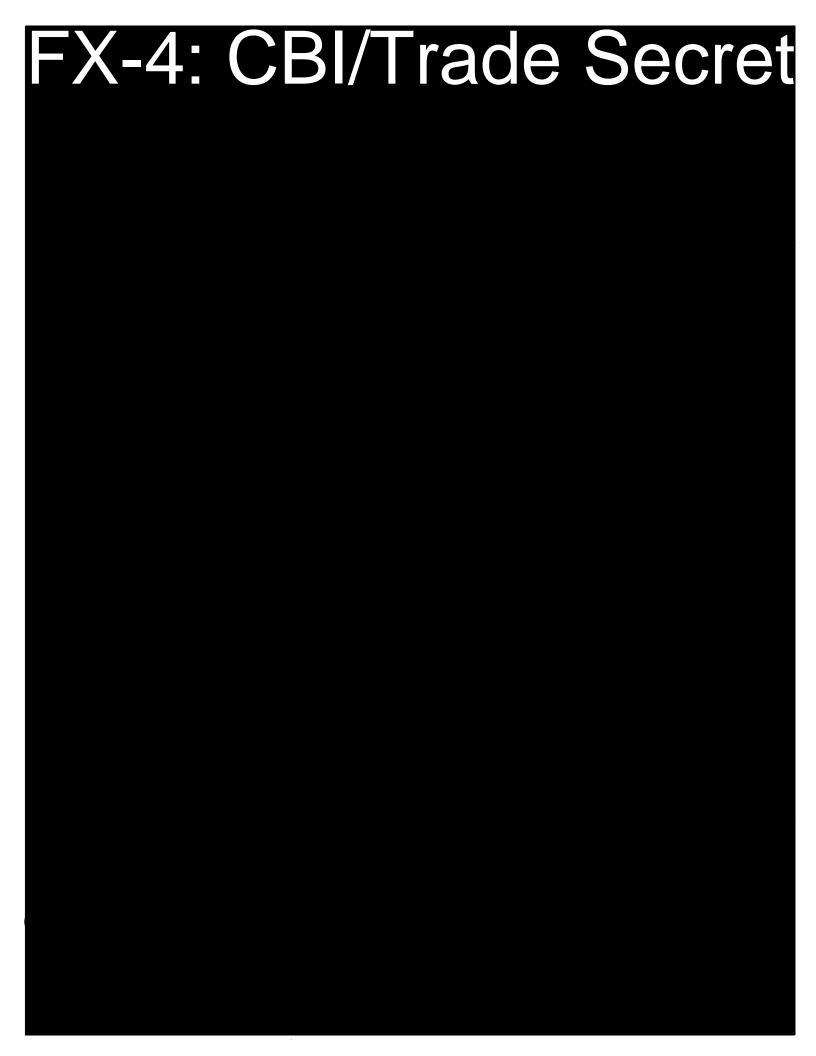
0088

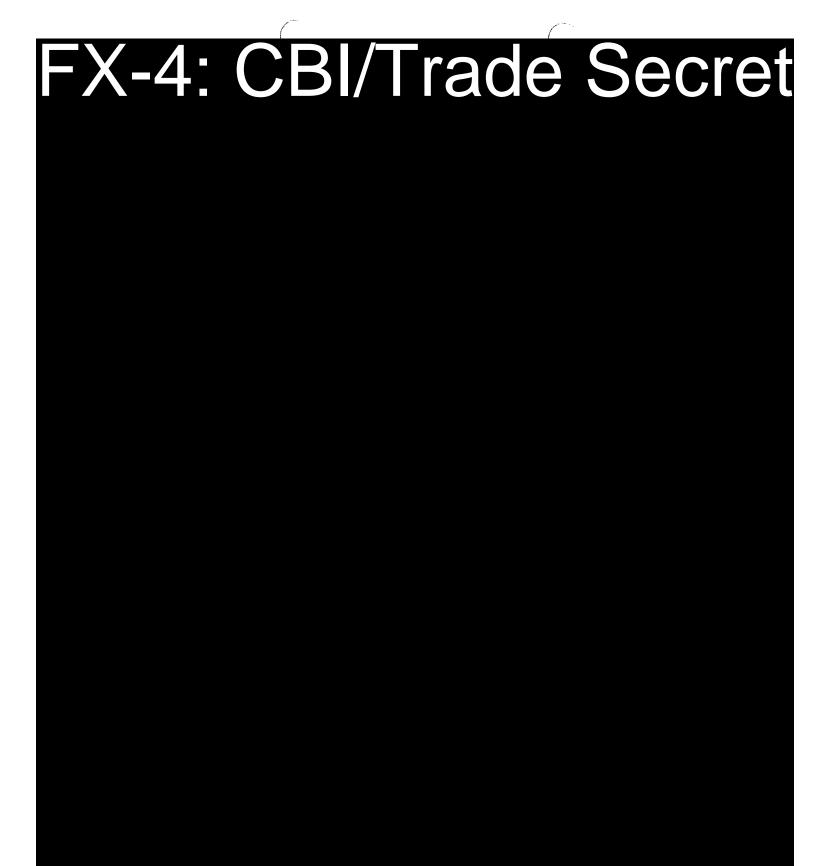
3/28/06 104(e) 0089

0093

טעעט

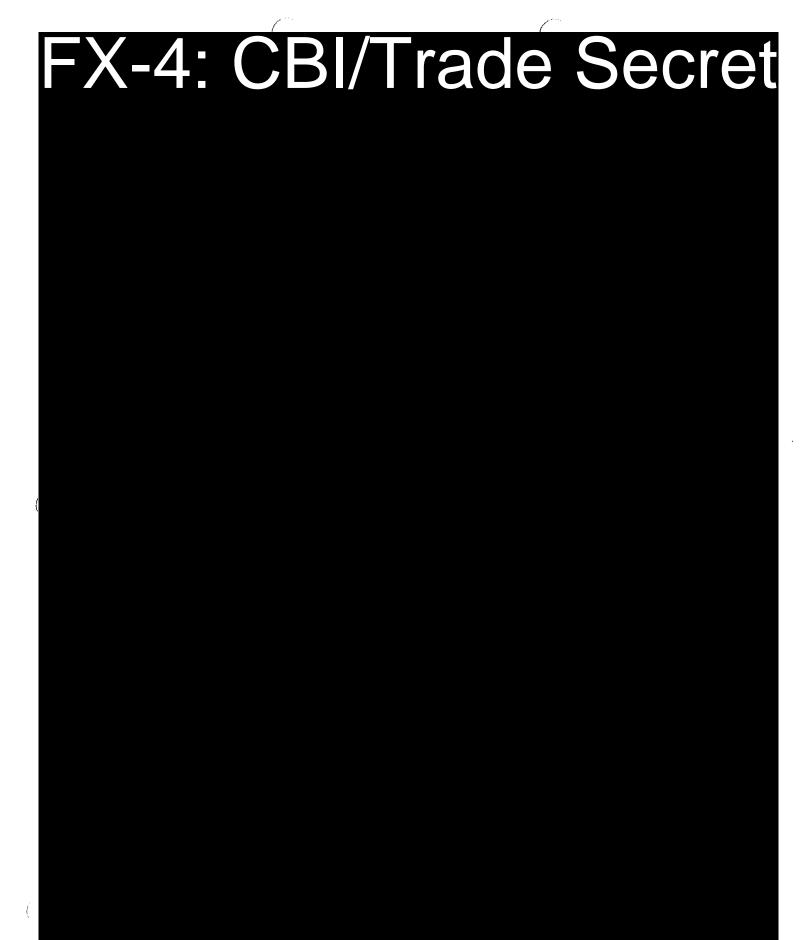

CONFIDENTIAL


0098

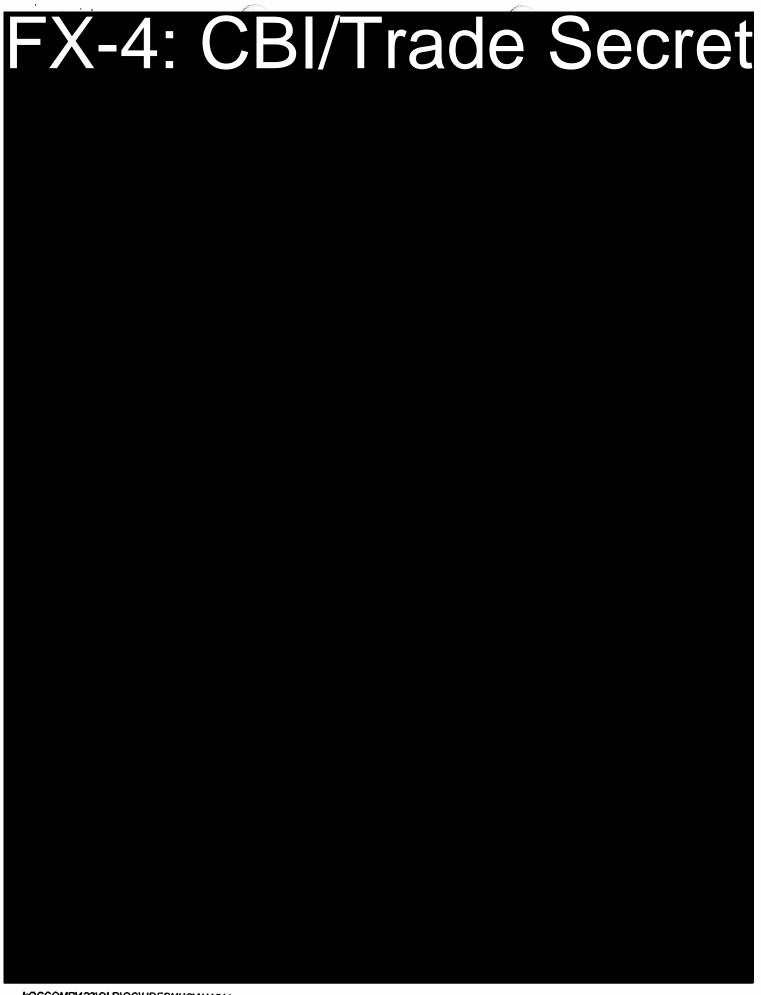

)/20/00 IV7(C)

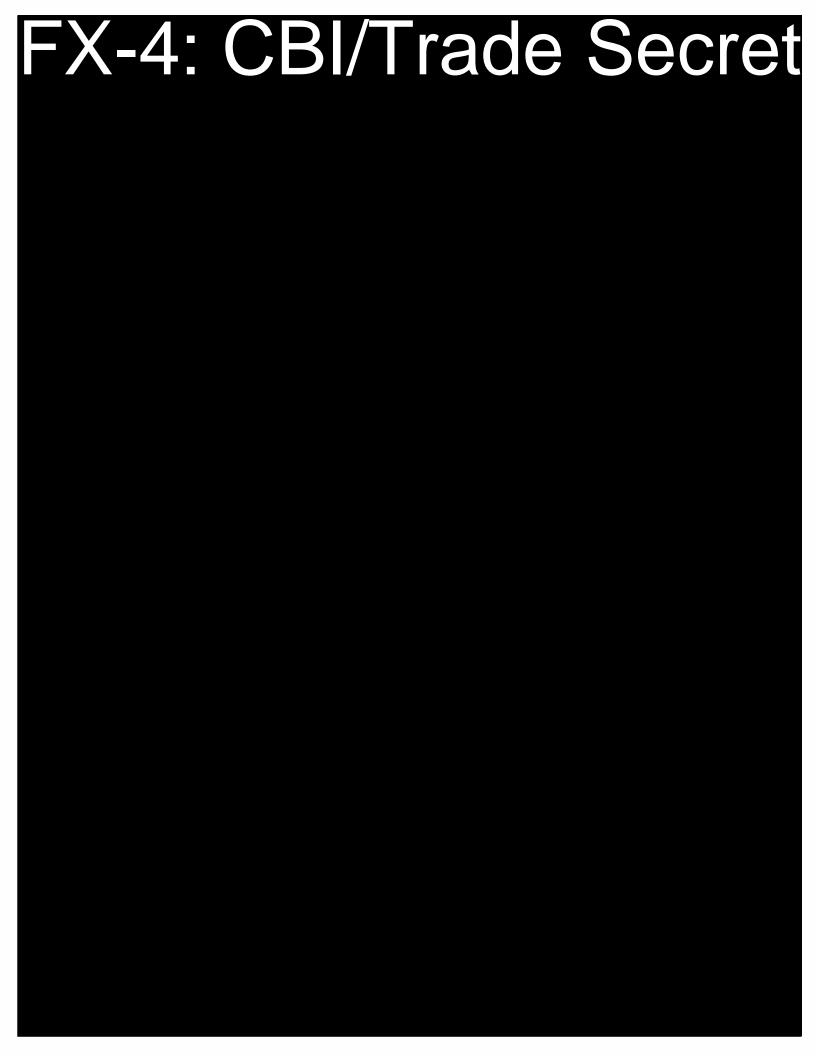
0107



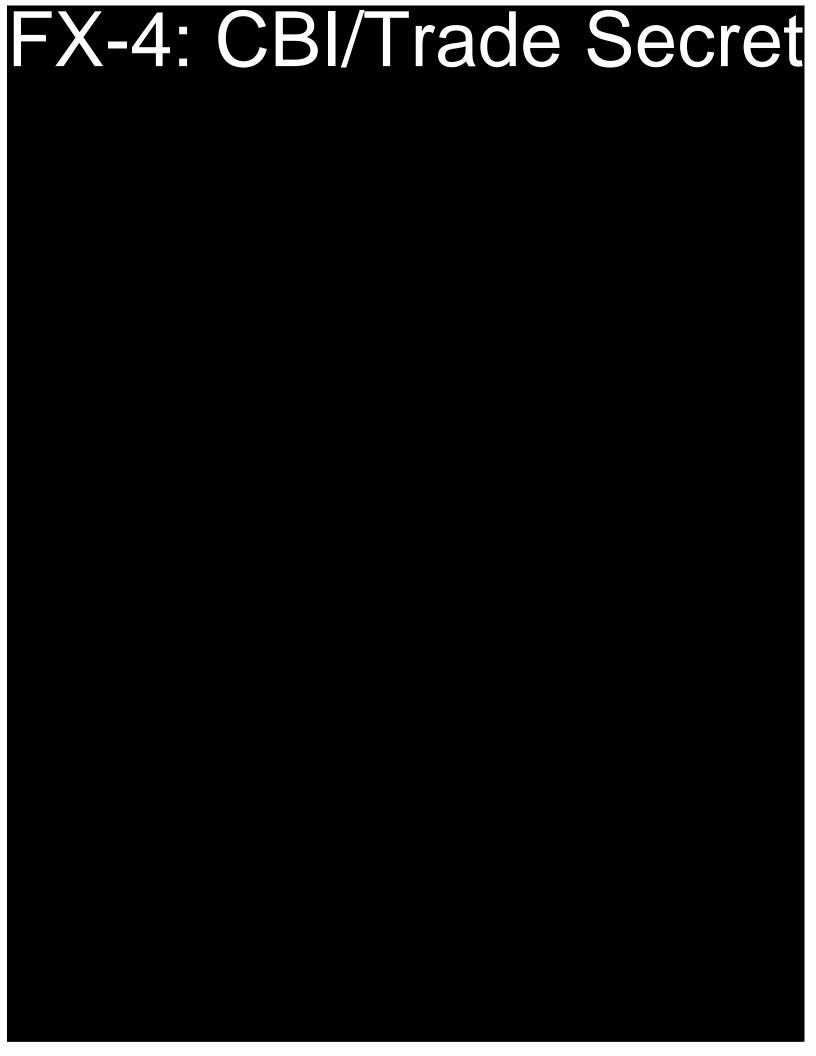


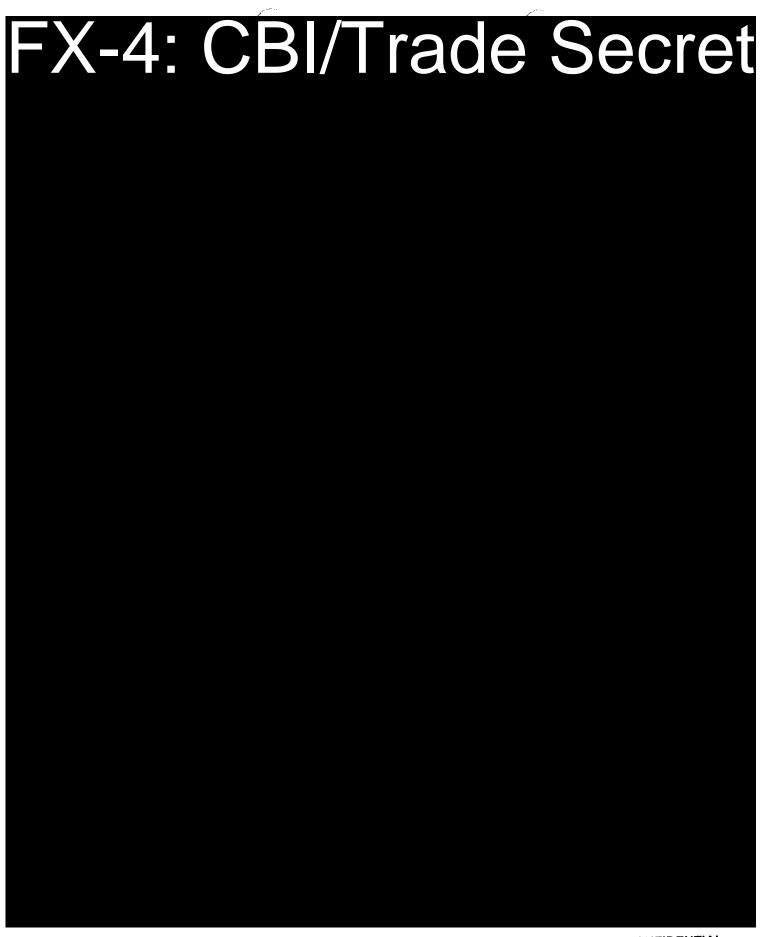



3/28/06 104(e) 0131

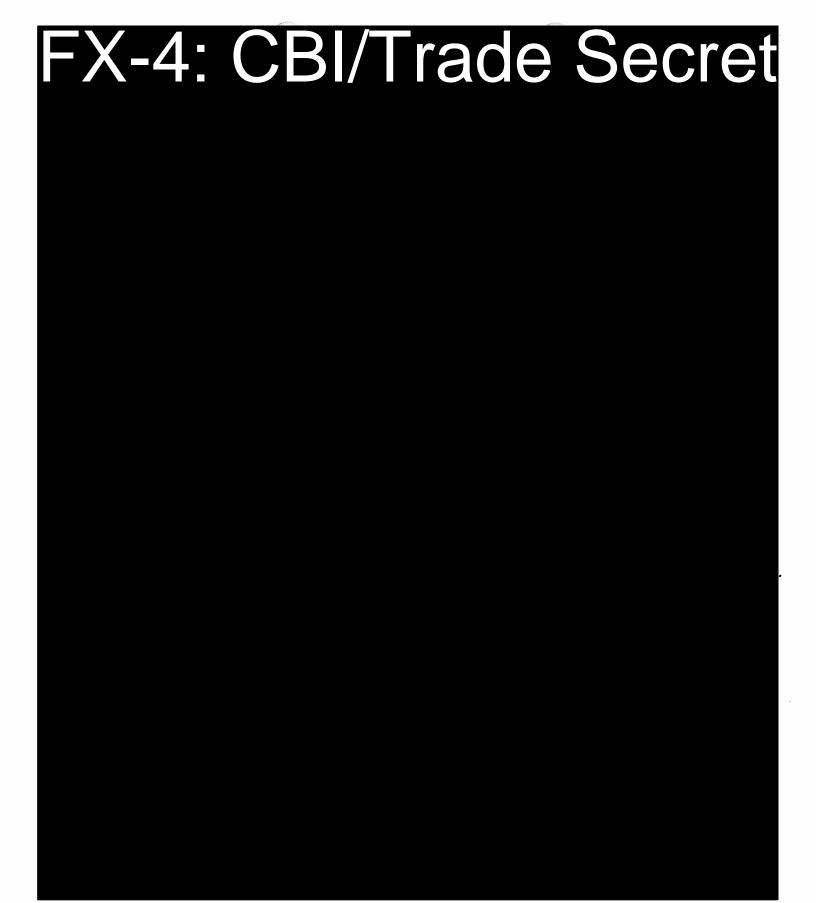








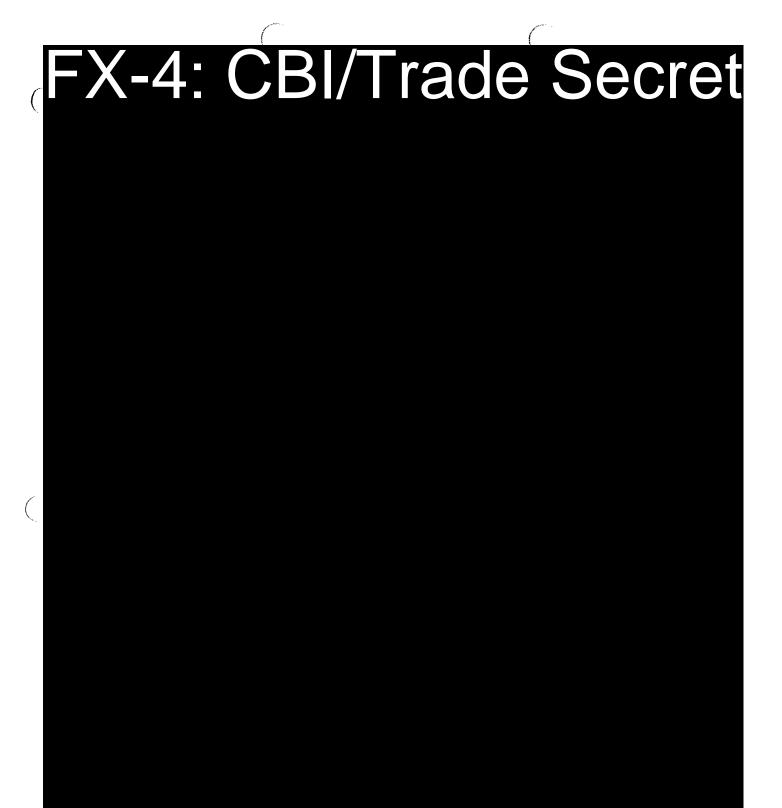
3

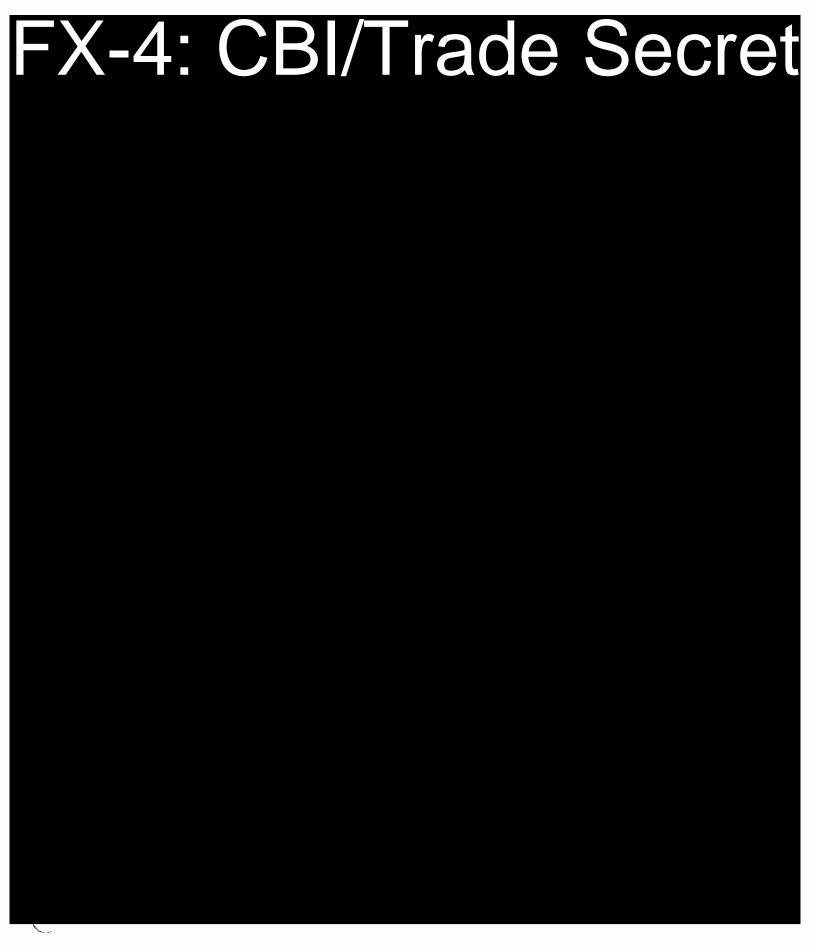


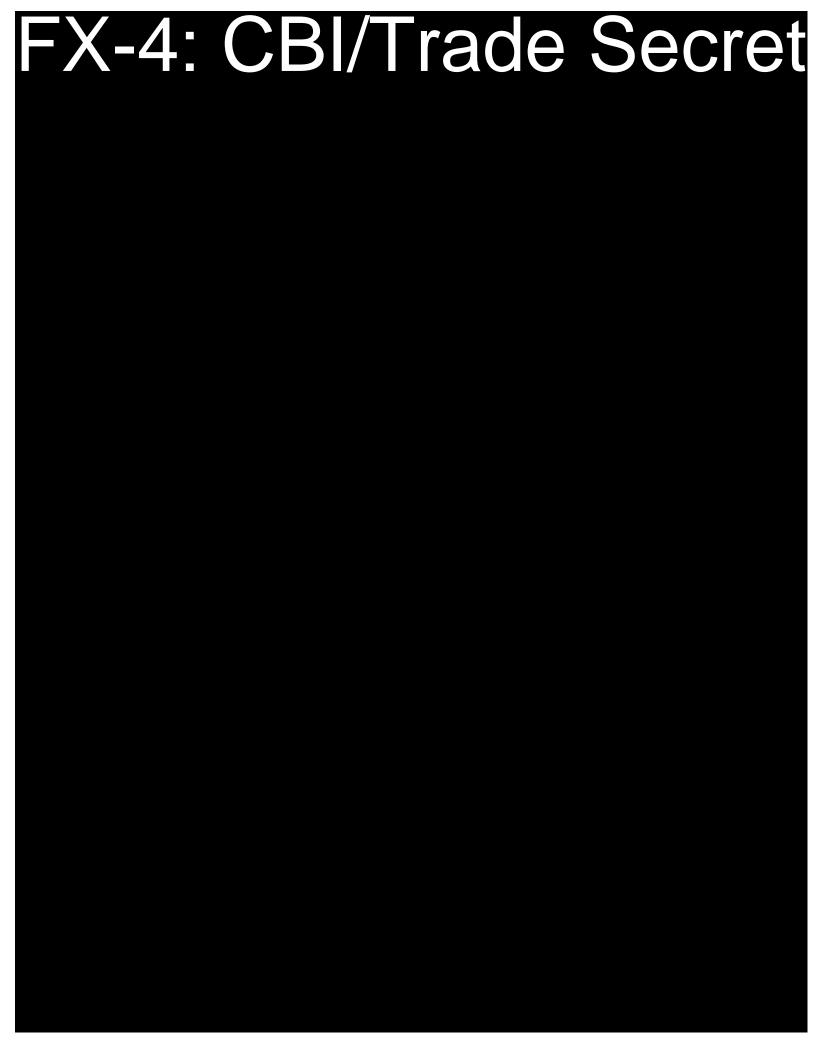
FX-4: CBI/Trade Secret

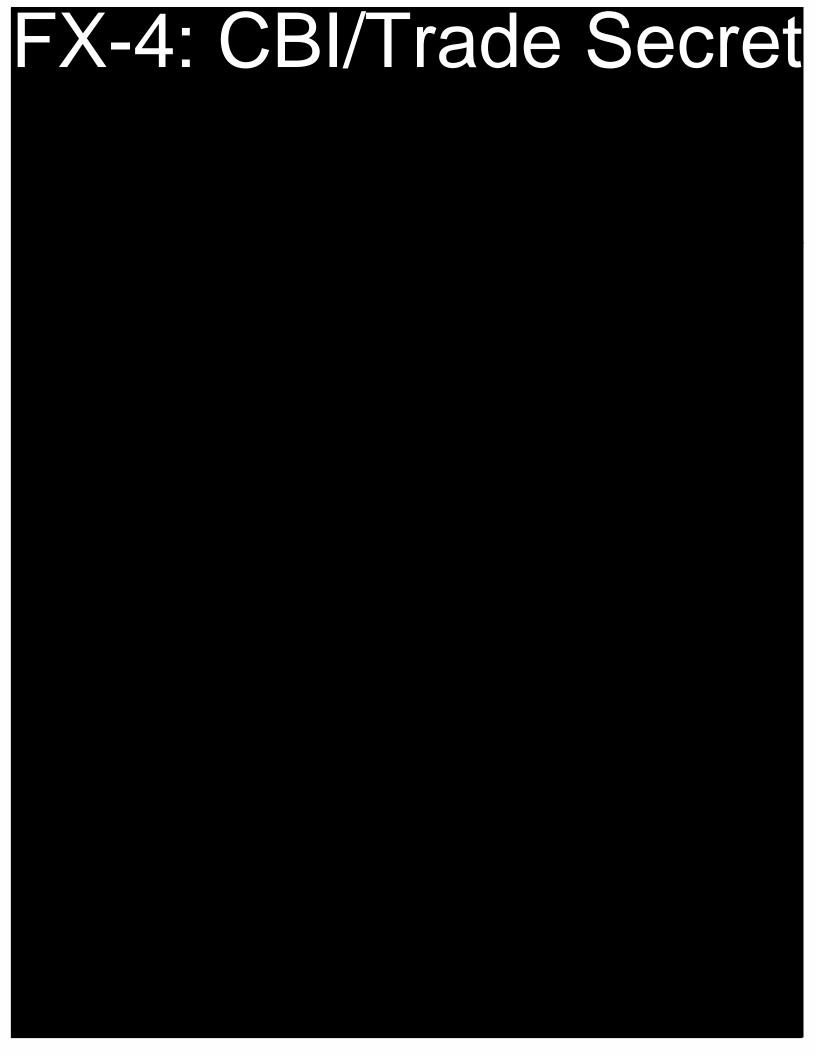
D:\HOME\NHD\AGR\SLPEASE.AGT [12/5/94]

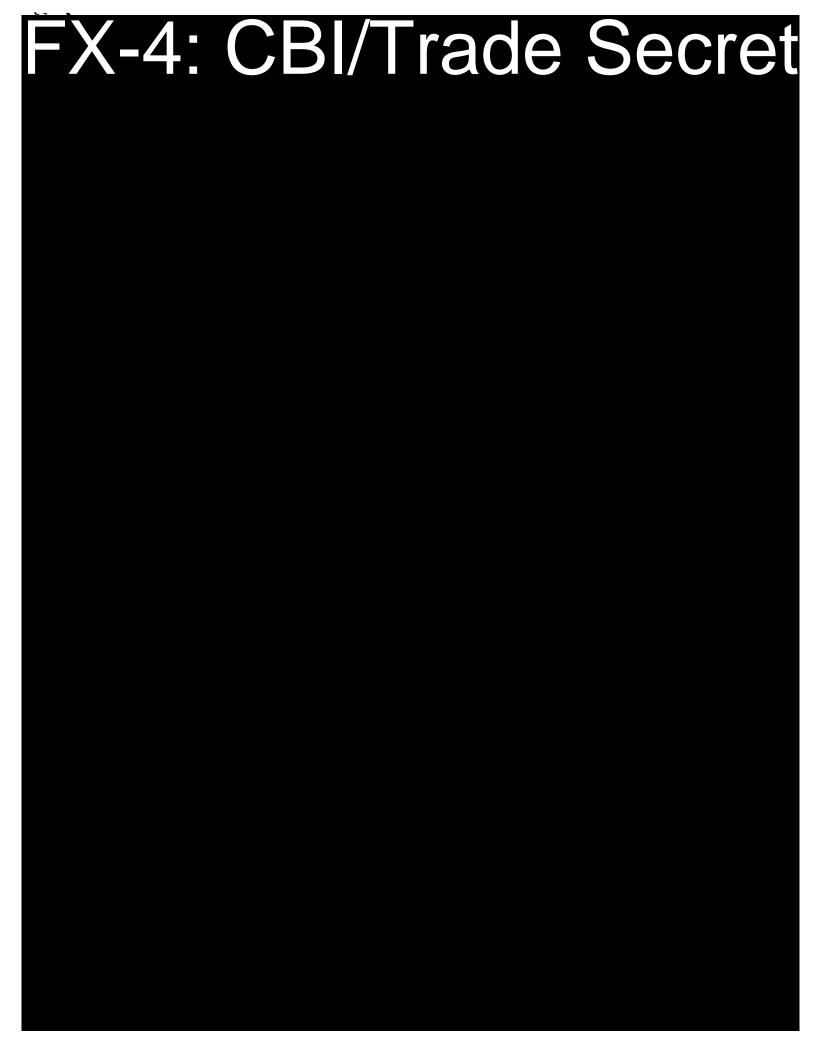
D:\HOME\NHD\AGR\SLPEASE.AGT [12/5/94]



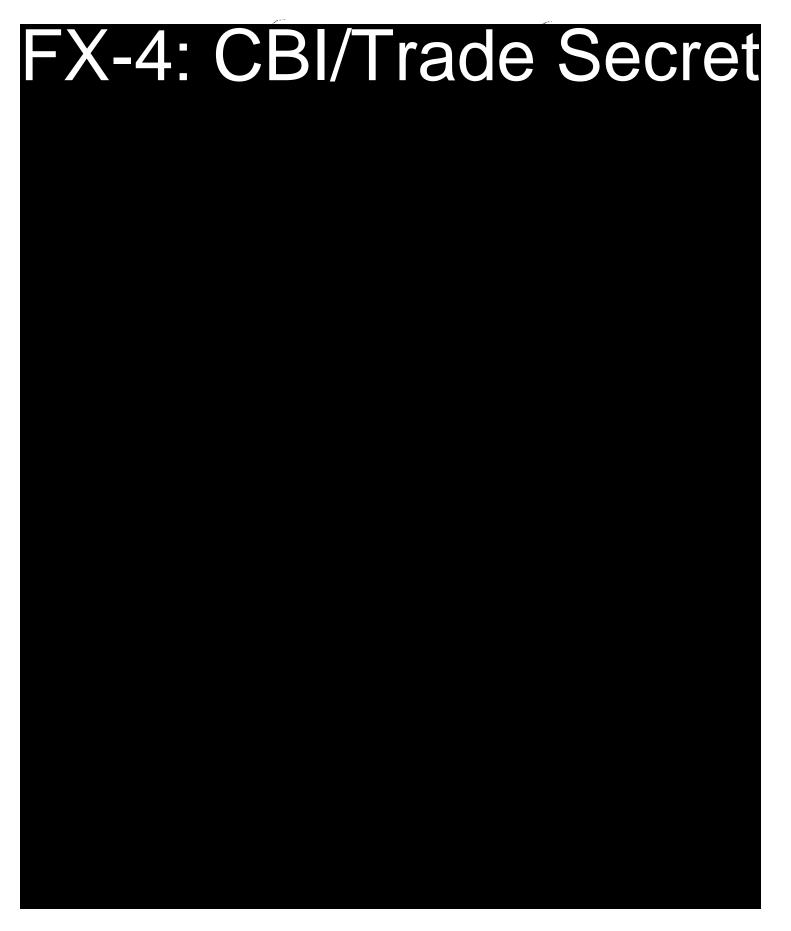

FX-4: CBI/Trade Secret

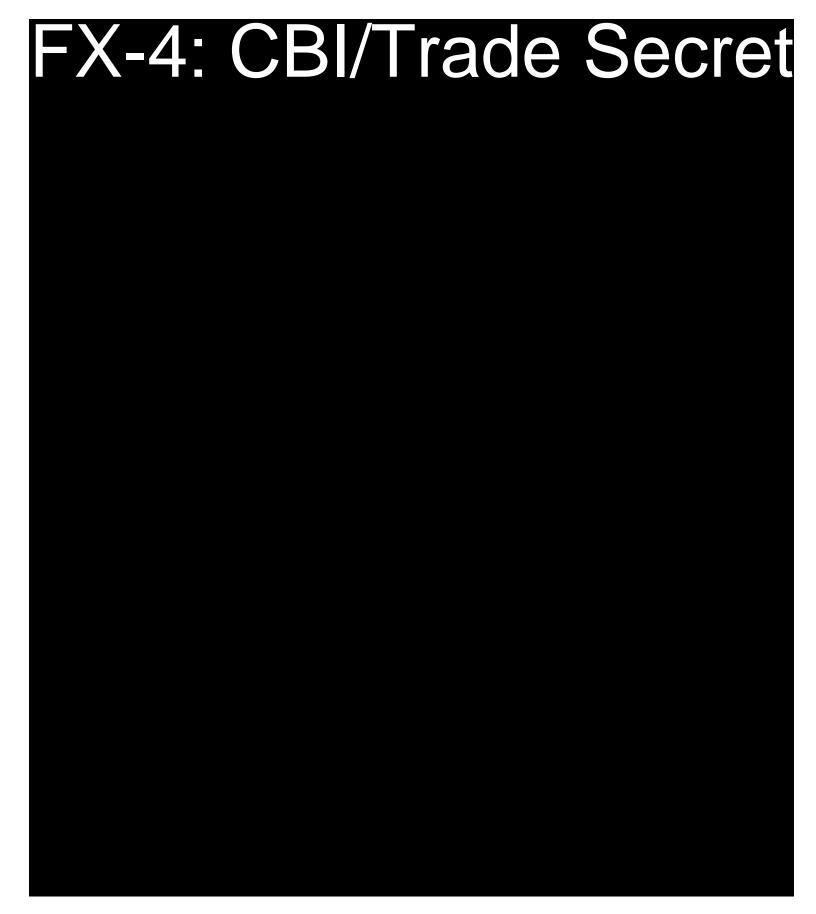

D:\HOME\NHD\AGR\LICENSE.AGT [12/5/94]

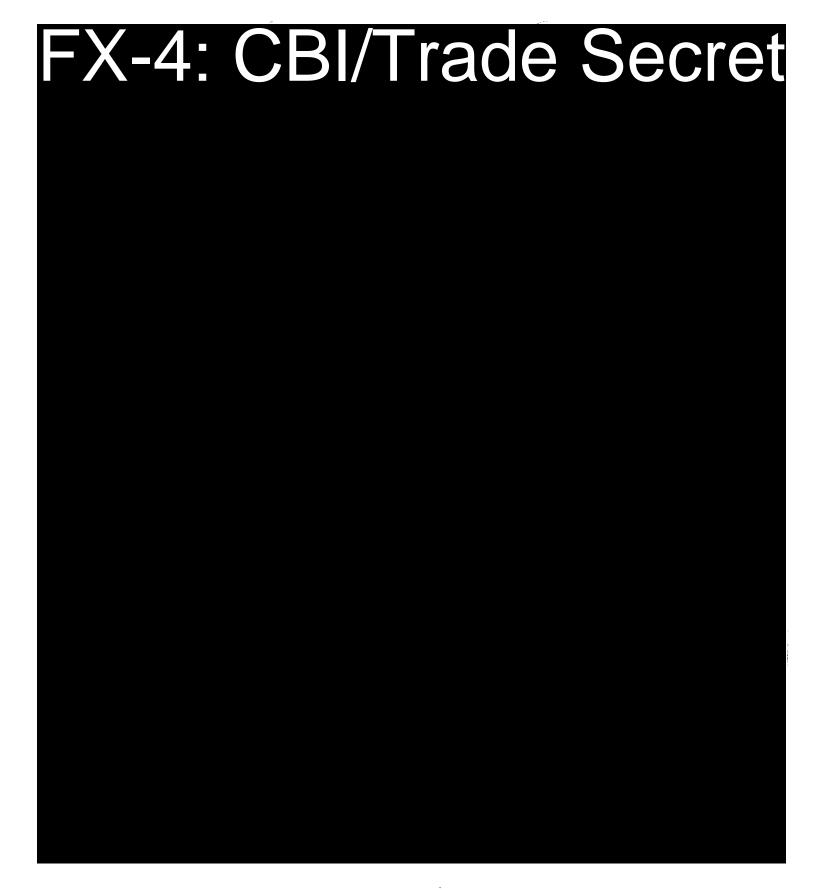

CONFIDENTIAL

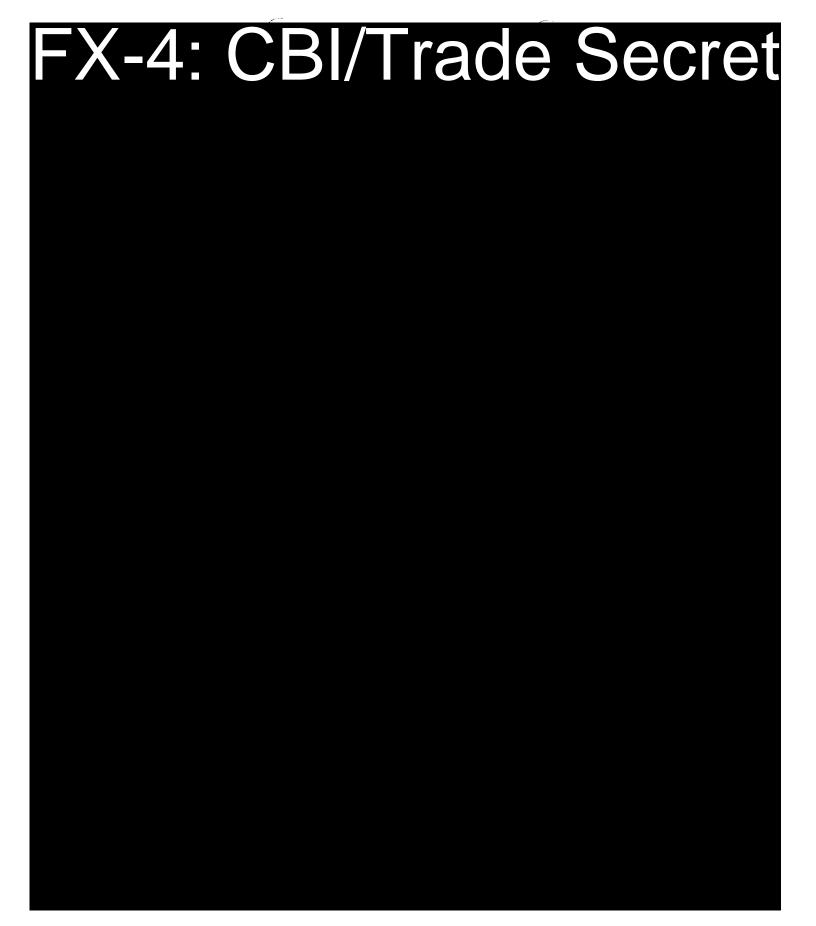


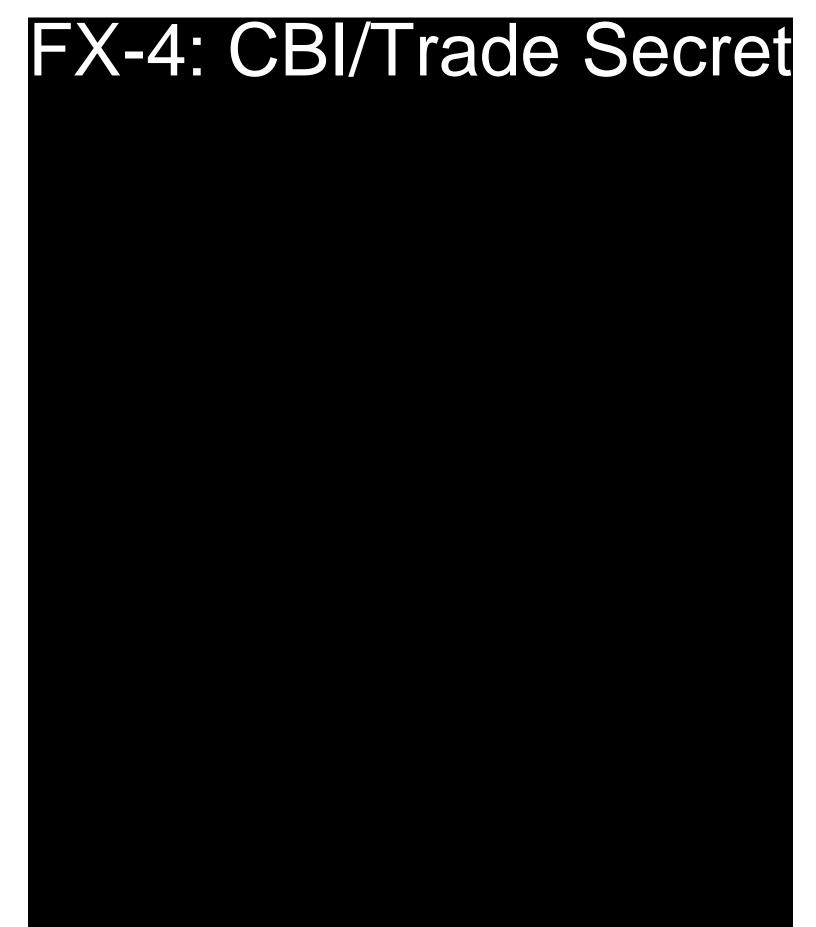




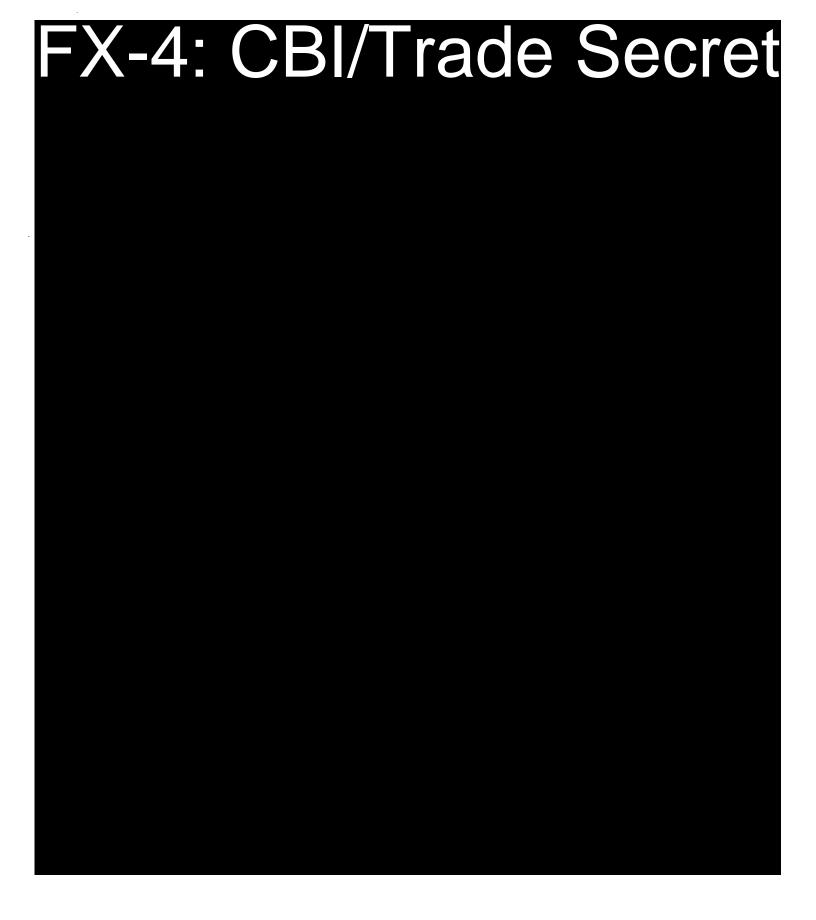


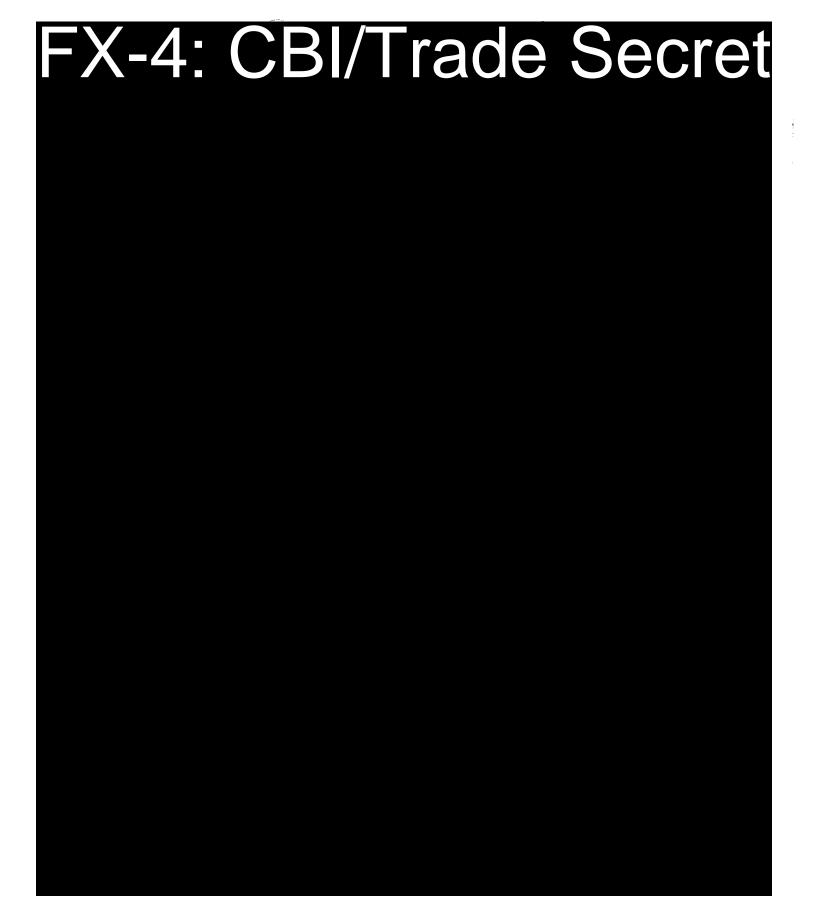


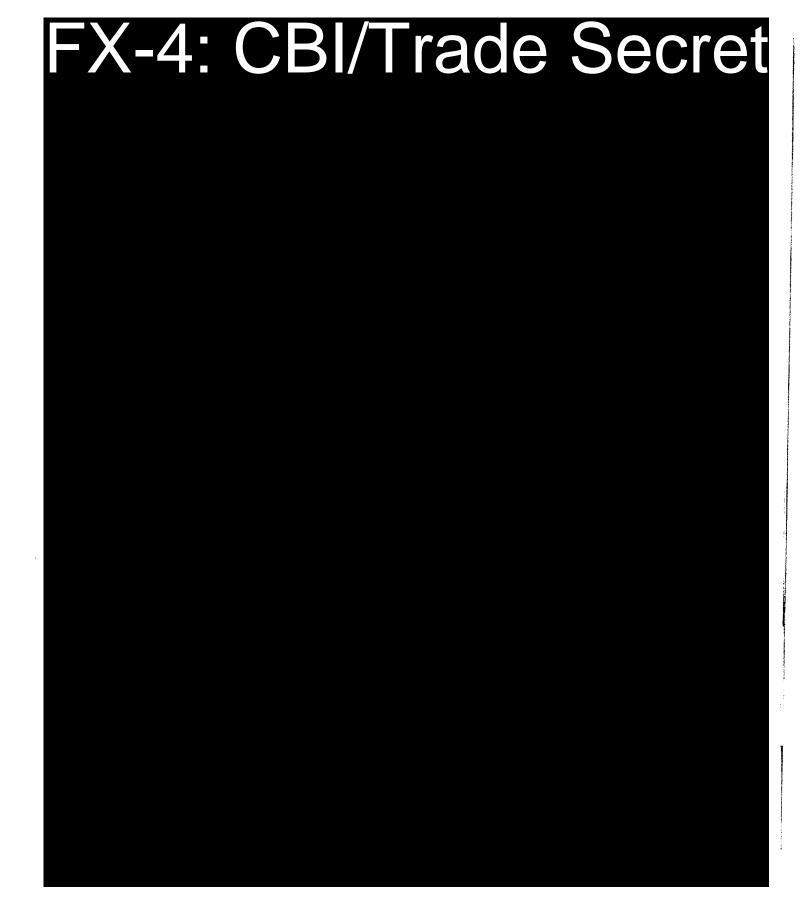


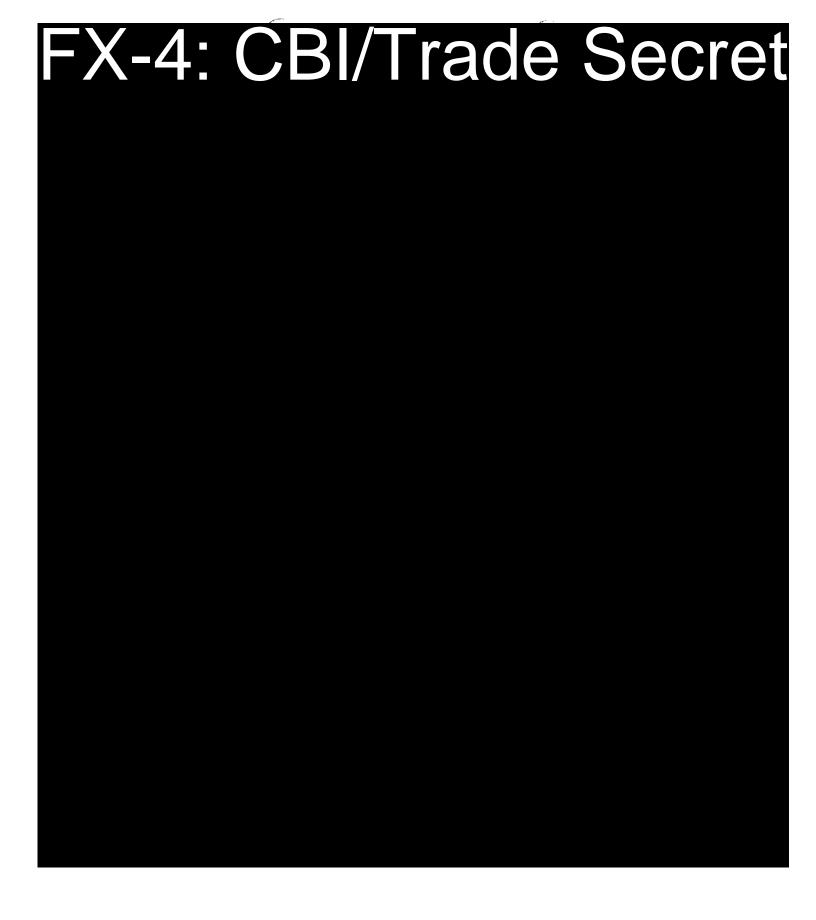


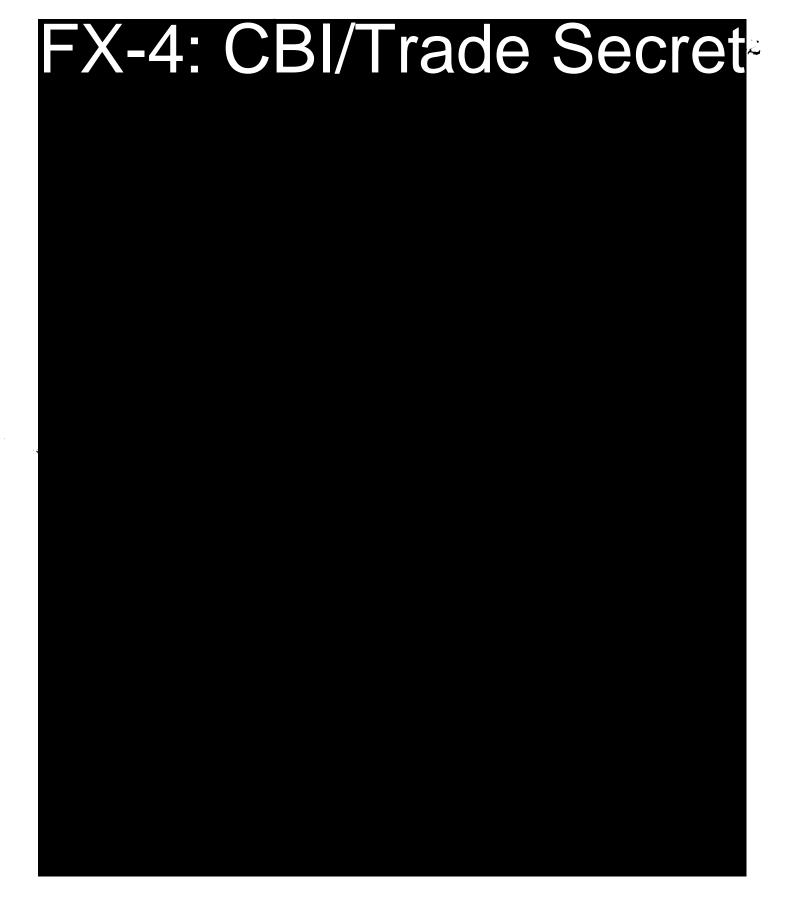


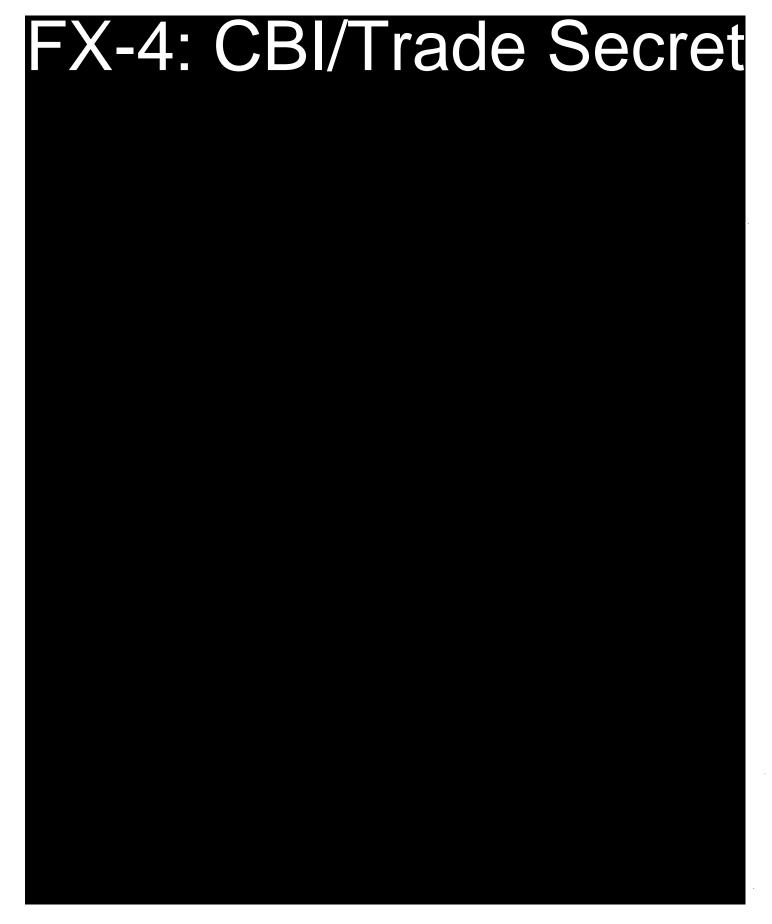


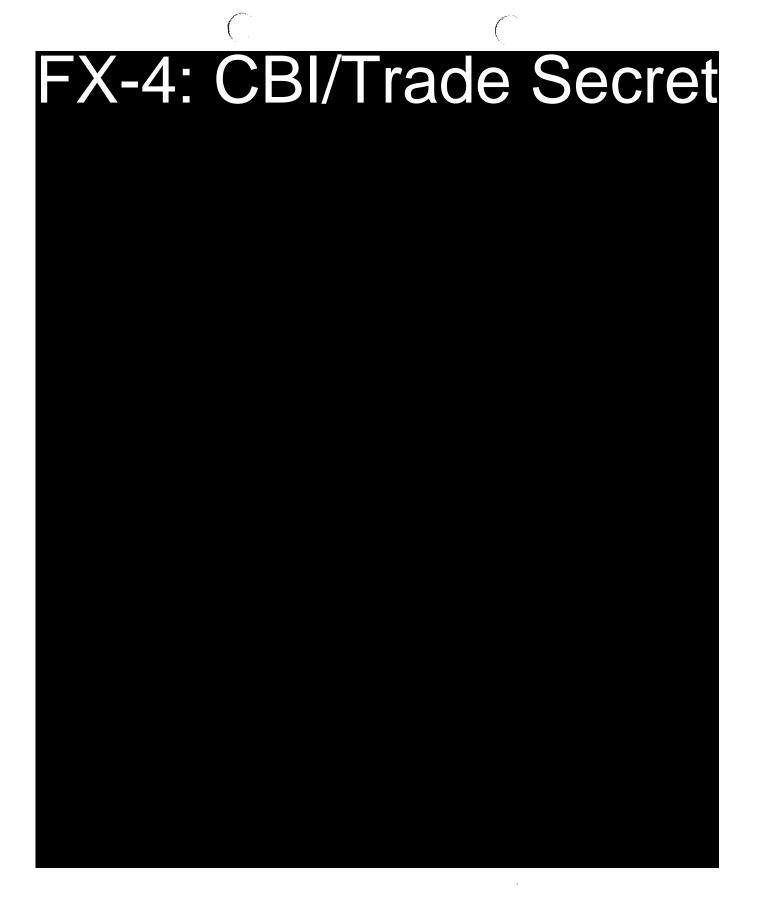


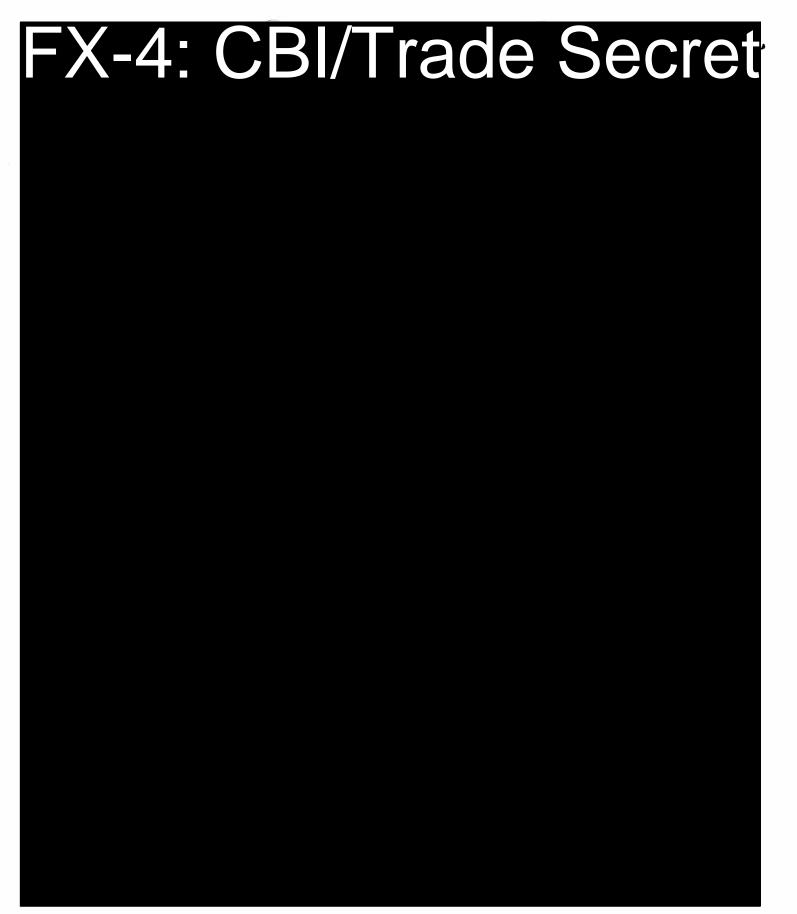


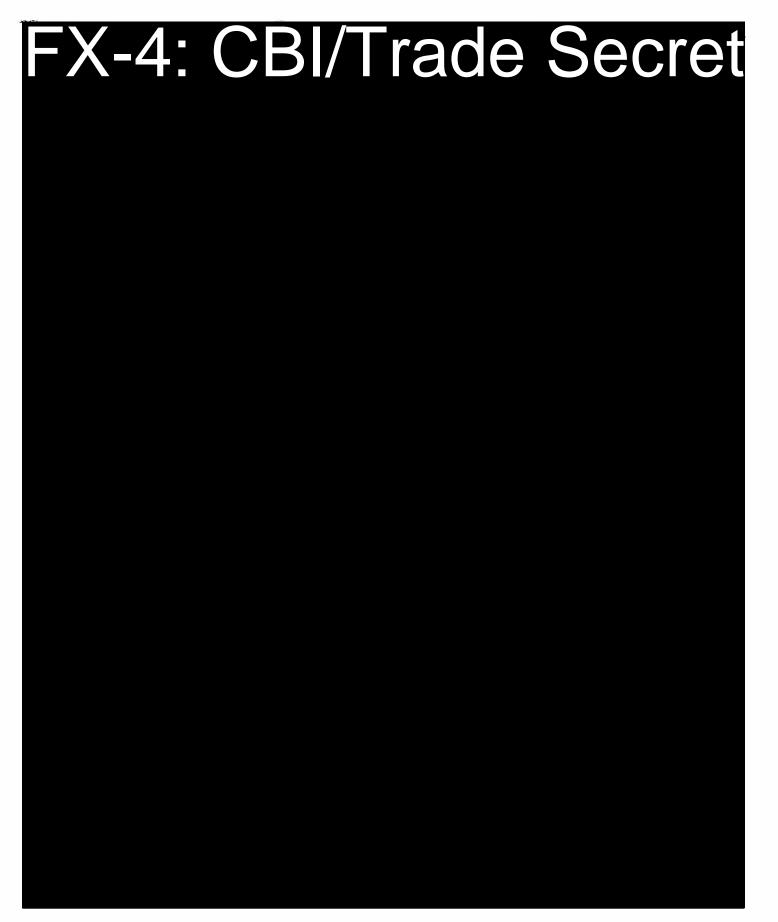


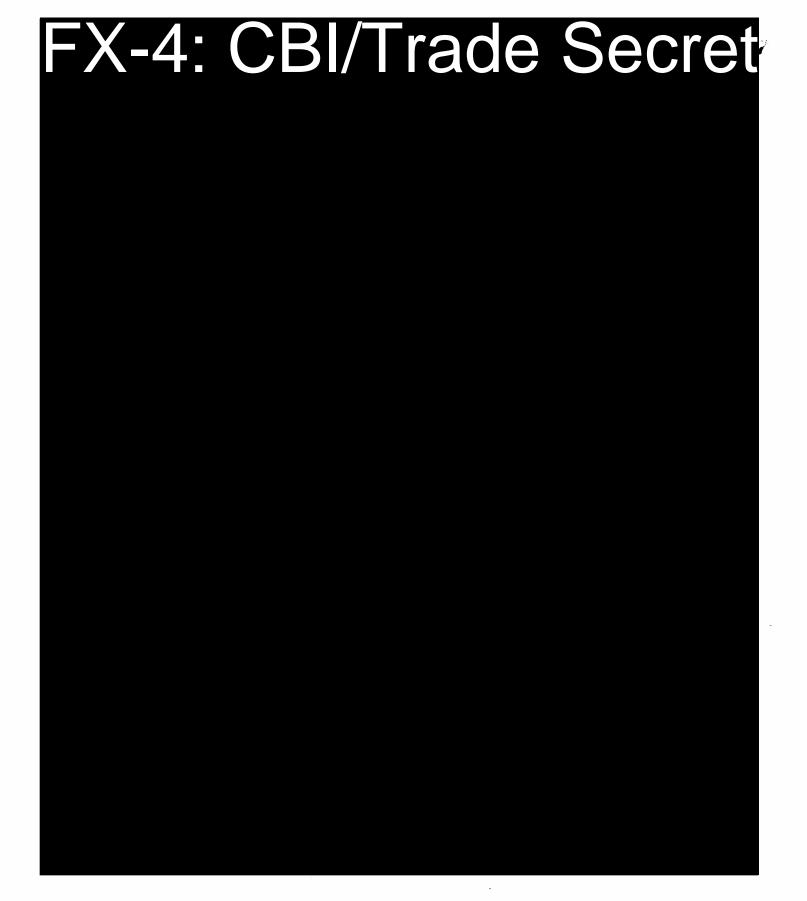




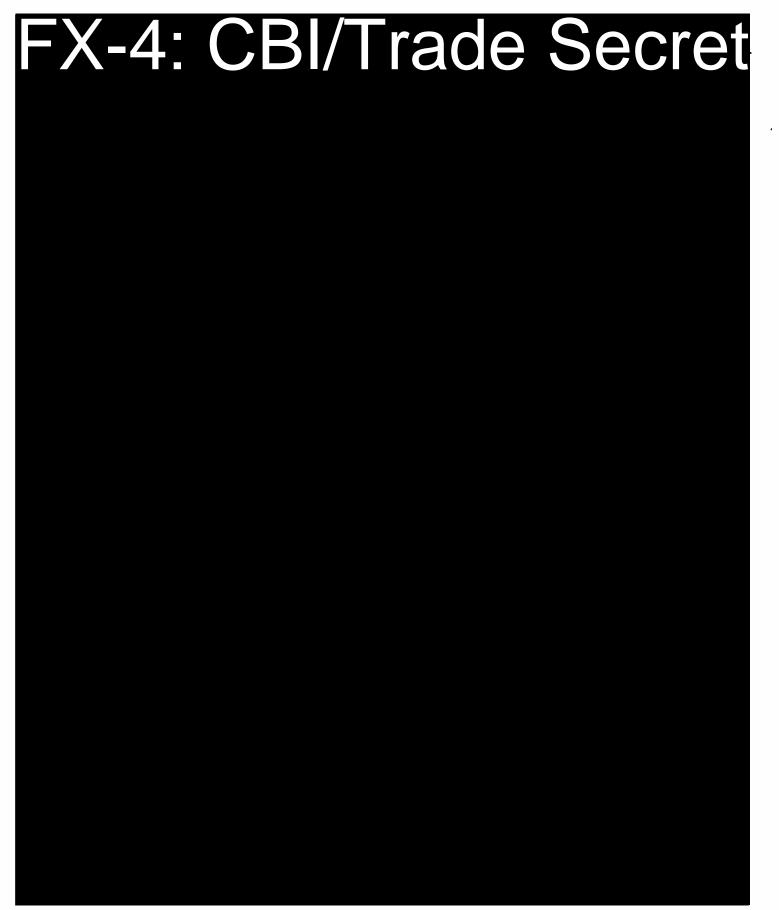


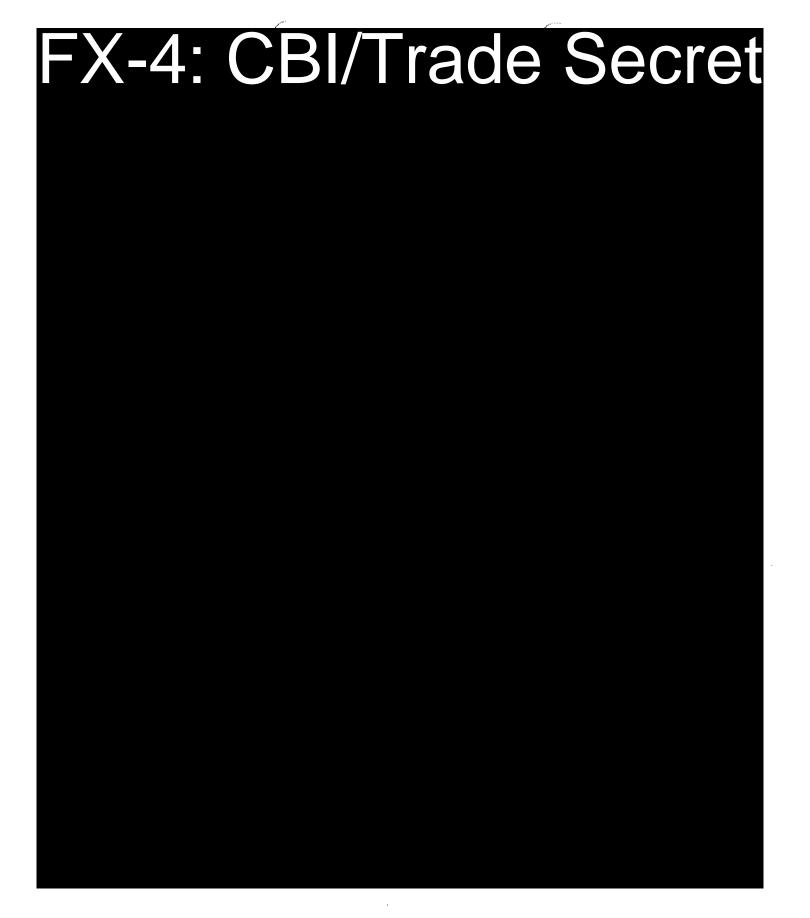


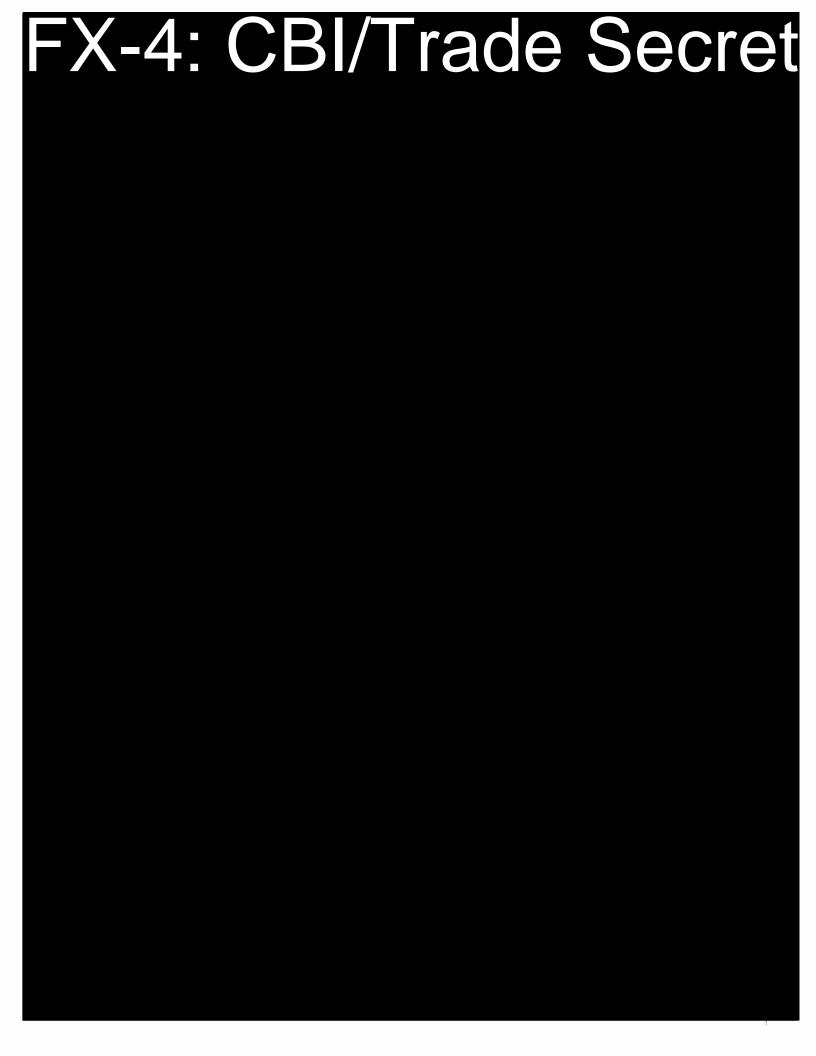


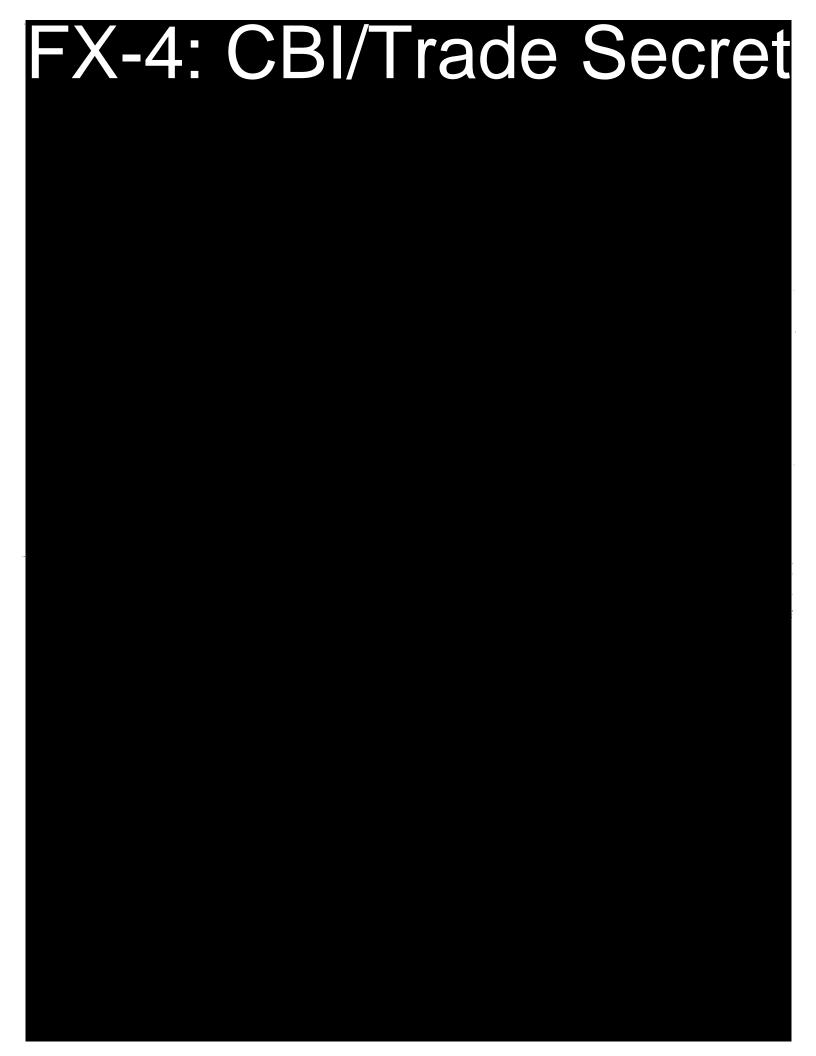




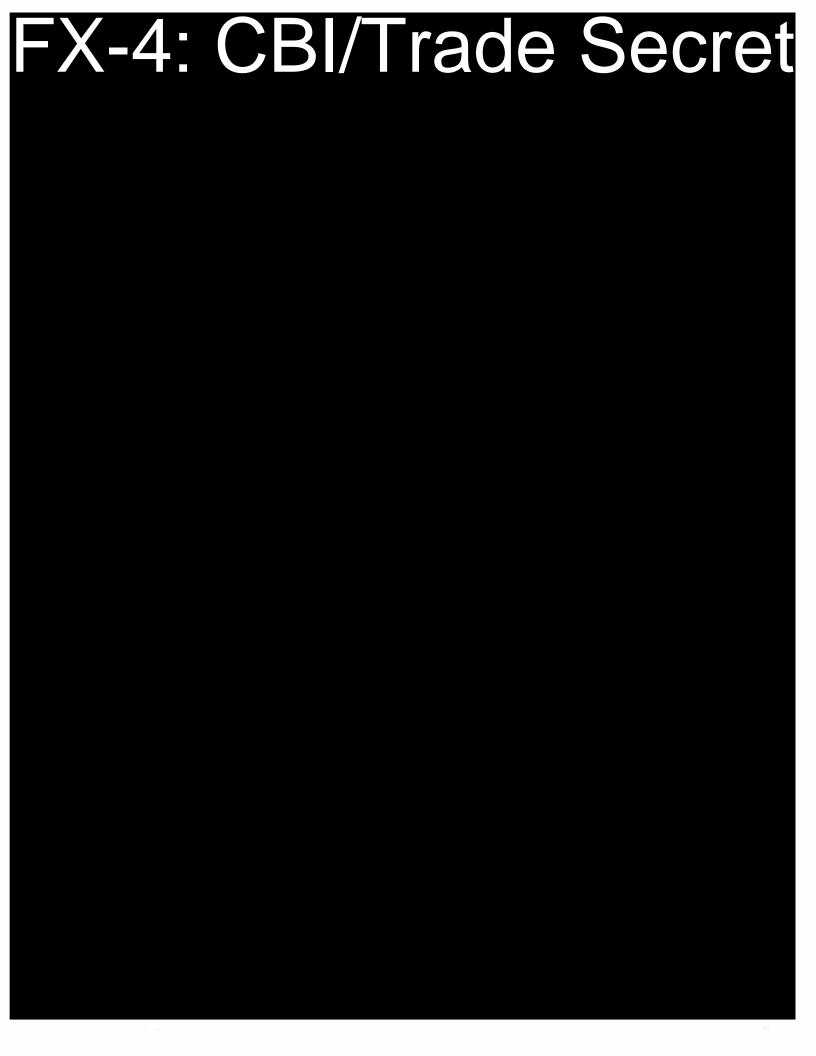


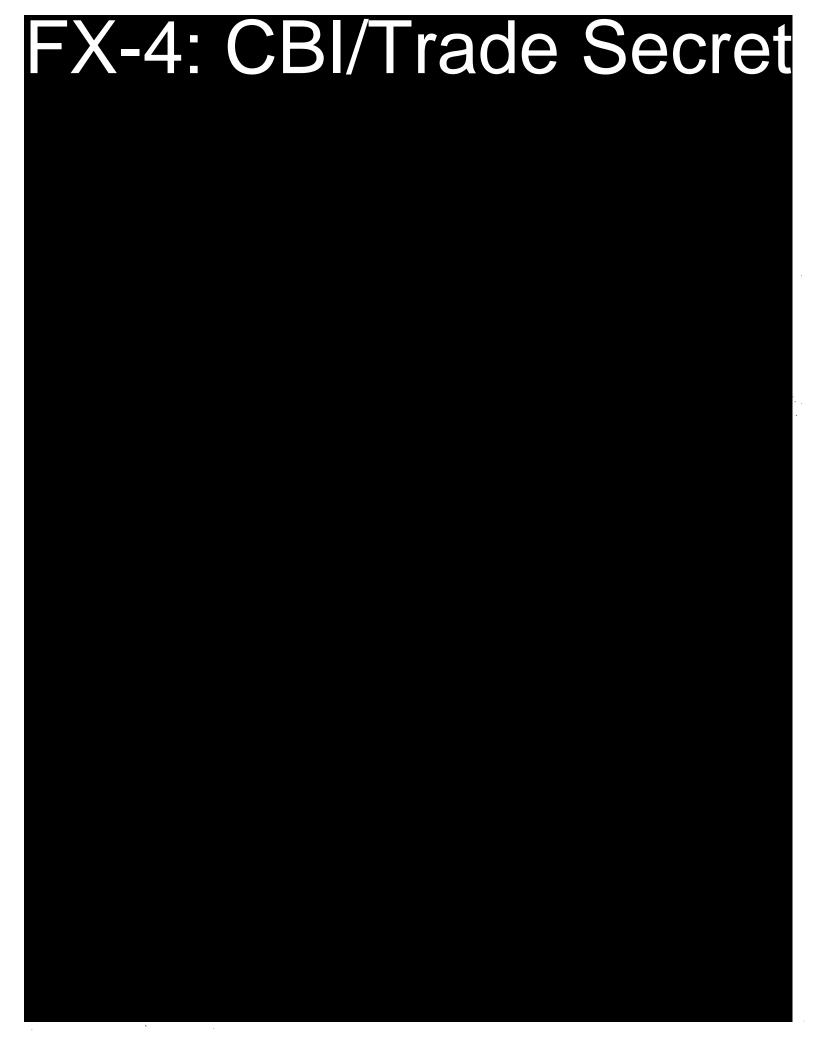


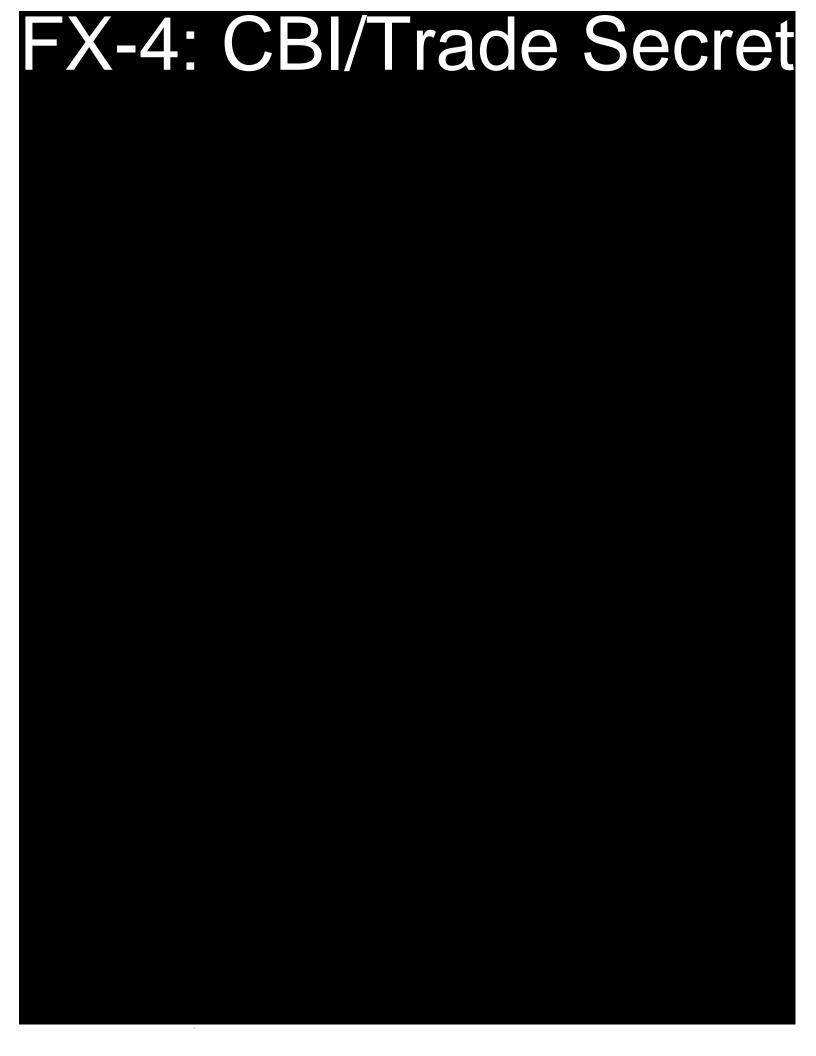


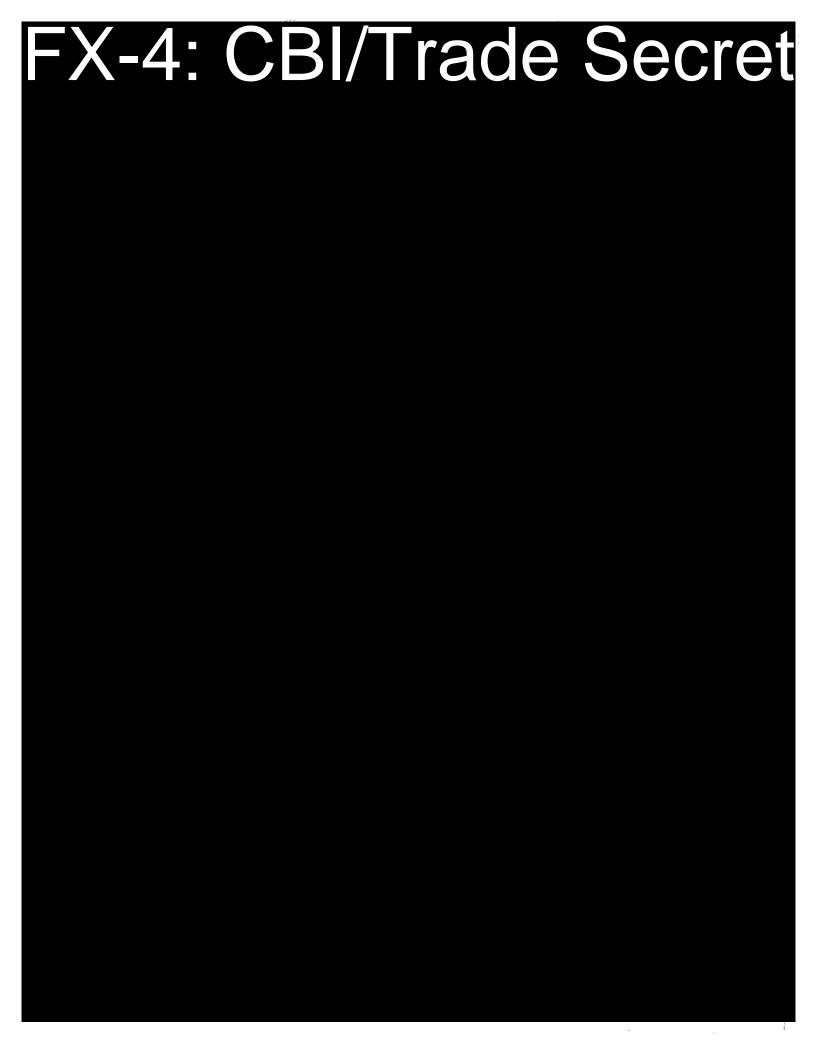


FX-4: CBI/Trade Secret


FX-4: CBI/Trade Secret


FX-4: CBI/Trade Secret


The Contract of the Contract o



	PLICATION FOR WELL PERMIT						
EN۱	/IRONMENTAL HEALTH 2525 Corporate Place Monterey Par	rk, Ca 91754	DATE				
COL	UNTY OF LOS ANGELES DEPARTMENT OF HEALTH SERVICES		6-28-93				
	TYPE OF PERMIT (CHECK)	TYPE OF WELL					
	☐ NEW WELL CONSTRUCTION	☐ PRIVATE DOMESTIC	CATHODIC				
	☐ RECONSTRUCTION OR RENOVATION	☐ PUBLIC DOMESTIC	INDUSTRIAL				
_	DESTRUCTION	IRRIGATION	GRAVEL PACK				
Ŏ.		OBSERVATION/MONITO	ORING TEST				
DESCRIPTION	TYPE OF CASING 5/8	— ~ ,	12-1-				
	METHOD OF SEALING OF CASING	STEEL - 4	30 Y.D.				
DES		THE SEAL					
_							
	METHOD OF DESTRUCTION	/	7				
	EXCAMPTE AMOUND TOP S OF	CASING/ REMAR	NE TOP S				
	OF CASING/INSTAU TRAME P	PE & PHESSUS	GROUT 10 SACK				
	ADDRESS (NUMBER, STREET, AND NEAREST INTERSECTION)		CITY SWANY				
	DIAGRAM (SHOW PROPERTY LINES, STREET, ADDRESS, WELL SITE, SEWERS, AND PR	HELM - EAST OF	= IN. HOLLYWARD				
	ordinate and control and property well site, sewens, and pr	HIVATE SEWAGE DISPOSAL SYSTEMS ALOI	NG WITH LABELS AND DIMENSIONS)				
	Soterum	way					
_							
LOCATION			14				
ΆŢ			1 3				
ŏ	ξ 1		15 = XET				
-	T WELL	L-SUTE					
	$\sqrt{2}$	U- I	13				
	y j		-				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		10				
	3		1				
	Ç						
	NAME OF WELL DRILLER (PRINT)	NAME OF WELL OWNER (PRIN	T)				
	TRADE NAME	AULED.	SIGNAC				
	MCCAUA	MAILING ADDRESS	musa way				
	BUSINESS ADDRESS CITY	CITY					
	13855 CENTRUM AVE COUNC	2 N. HOLLYW	1001, CA.				
	I hereby agree to comply in every respect with all	DISPOSITION OF APPLICAT	TION: (For Sanitarians Use Only)				
	regulations of the County Preventive/Public Health	APPROVED	☐ DENIED				
E	Services and with all ordinances and laws of the County of Los Angeles and of the State of California pertaining to	APPROVED WITH COND	ITIONS				
APPLICANT	well construction, reconstruction and destruction, Upon	7					
אָל	completion of well and within ten days thereafter, I will furnish the County Preventive/Public Health Services with		anditions, report reason or conditions				
API	a complete log of the well, giving date drilled, depth of						
	well, all perforations in casing, and any other data deemed necessary by such County Preventive/Public Health						
	Services.						
	1 pm/am						
	Applicants of	DATE SANITA	RIAN				
	V Applicant's Signature	11995	and floor				
I		Power Comments	men.				

When signed by Section Chief, this application is a permit.

TRO SUPPLY & SERVICE , MANAGEMENT D. 21865 East Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

No.8834 page 1 Permit No. R-F56654

This initial permit mass be renewed ANI-DALLY with If the billing for annual teneway fee (Rule 30), it is not

LEGAL OWNER

OR OPERATOR:

ENVIROSUPPLY & SERVICE, INC

1791 KAISER AVE IRVINE, CA 92614

ID 134055

Equipment Location:

11668 SHERMAN WAY, NORTH HOLLYWOOD, CA 91605

Equipment Description:

SOIL-VAPOR EXTRACTION AND TREATMENT SYSTEM FOR HYDROCARBON IN-SITU REMEDIATION (ES & S, MODEL NO. CET 200, SERIAL NO. 278), CONSISTING OF:

- VAPOR EXTRACTION WELLS. 1.
- LIQUID VAPOR SEPARATOR, 2.
- 3. EXTRACTION BLOWER, MAXIMUM 200 SCFM, 7.5 H.P.
- THREE ACTIVATED CARBON ADSORBERS, IN SERIES, WITH 3000 POUNDS TOTAL OF 4. ACTIVATED CARBON.
- EXHAUST STACK, 13' HIGH ABOVE GRADE. S.

Conditions:

- 1) OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW.
- THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2) CONDITION AT ALL TIMES.
- 3) IDENTIFICATION TAG(S) OR NAME PLATE(S) SHALL BE DISPLAYED ON THE EQUIPMENT TO SHOW MANUFACTURER MODEL NO. AND SERIAL NO. THE TAG(S) SHALL BE ISSUED BY THE MANUFACTURER AND SHALL BE AFFIXED TO THE EQUIPMENT IN A PERMANENT AND CONSPICUOUS POSITION.
- 4) CURRENT CONTACT PERSON NAME, COMPANY, AND PHONE NUMBER SHALL BE DISPLAYED IN A PERMANENT AND CONSPICUOUS POSITION.
- A FLOW INDICATOR SHALL BE MAINTAINED AT THE INLET STREAM(S) TO THE VAPOR CONTROL SYSTEM TO INDICATE THE TOTAL AIR FLOW RATE IN STANDARD CUBIC FEET PER MINUTE (SCFM). IN CASE A PRESSURE SENSOR DEVICE IS USED IN PLACE OF THE FLOW INDICATOR, A CONVERSION CHART SHALL BE AVAILABLE TO INDICATE THE CORRESPONDENT FLOW RATE, IN SCFM, TO THE PRESSURE READING.

PERMIT TO CONSTRUCT/OPERATE

No. 8834 P. 3

page 2

Permit No.

R-F56654

A/N. 406889

CONTINUATION OF PERMIT TO LONGING THE POPERATE.

- 6) THE TOTAL FLOW RATE MEASURED UNDER CONDITION NO. 5 SHALL NOT EXCEED 200 SCFM.
- 7) THE EXTRACTION BLOWER SHALL ONLY BE OPERATED WHEN ALL EXTRACTED VAPORS ARE VENTED TO THREE CARBON ADSORBERS CONNECTED IN SERIES WITH AT LEAST 3000 POUNDS OF TOTAL ACTIVATED CARBON.
- 8) VOLATILE ORGANIC COMPOUNDS (VOC) CONCENTRATION SHALL BE MEASURED AT THE INLET AND OUTLET OF THE PRIMARY ADSORBER AND THE OUTLET OF THE SECONDARY AND TERTIARY ADSORBERS AT LEAST ONCE EVERY OPERATING DAY FOR THE FIRST 14 DAYS AND MONTHLY THEREAFTER, BY USING A PHOTO IONIZATION DETECTOR (PID) OR AQMD APPROVED ORGANIC VAPOR ANALYZER CALIBRATED IN PARTS PER MILLION BY VOLUME (PPMV) OF HEXANE.
- 9) GRAB SAMPLES SHALL BE COLLECTED FROM THE INLET TO THE PRIMARY ADSORBER AND AT THE OUTLET OF THE TERTIARY ADSORBER, AT LEAST ONCE EVERY OPERATING DAY FOR THE FIRST WEEK AND MONTHLY THEREAFTER. THE SAMPLES SHALL BE ANALYZED, AND SPECIATED IN ACCORDANCE WITH THE SCAQMD APPROVED METHODS, FOR VOLATILB ORGANIC COMPOUNDS (VOC1) CONCENTRATIONS, IN PPMV. THE RESULTS OF THE FIRST WEEK AND MONTHLY GRAB SAMPLES SHALL BE RECORDED AND MAINTAINED ON FILE.
- 10) WHENEVER THE VOC CONCENTRATION AT THE OUTLET OF SECONDARY ADSORBER REACHES 50 PPMV, AS HEXANE, THEN THE CARBON SHALL BE REPLACED AS FOLLOWS:
 - PRIMARY ADSORBER REPLACED WITH EITHER FRESH ADSORBENT OR ADSORBENT IN SECONDARY ADSORBER.
 - B. SECONDARY ADSORBER REPLACED WITH TERTIARY ADSORBENT, AND
 - C. TERTIARY ADSORBENT REPLACED WITH FRESH ADSORBENT.
- THE PCE AND TCE CONCENTRATION MEASURED, UNDER CONDITION NO. 9, AT THE OUTLET OF THE TERTIARY CARBON ADSORBER SHALL NOT EXCEED 14.2 PPBV AND 234 PPBV, RESPECTIVELY.

No.8834 page 3 Permit No. R-F56654 AN 406889

PERMIT TO CONSTRUCT/OPERATE

ATOMEDIA PATIONE OF TERMINATOR ONSTRUCT/OPERATE

- 12) THIS EQUIPMENT SHALL NOT BE OPERATED TO EXTRACT AND TREAT THE COMPOUNDS LISTED IN TABLE-I, UNDER RULE 1401, AMENDED ON MAY 3, 2002, EXCEPT THE FOLLOWING:
 - 1.1-DICHLOROETHYLENE A.
 - 1,1,1-TRICHLOROETHANE B.
 - C, BENZENE
 - D. TRICHLOROETHYLENE (TCE)
 - E. TOLUENE
 - F. TETRACHLOROETHYLENE (PCE)
 - G. ETHYLBENZENE
 - H. XYLENES (ISOMERS & MIXERS)
 - 1,3,5-TRIMETHYLBENZENE Ī.
 - 1,2,4 TRIMETHYLBENZENE J.
 - TRACES OF OTHER ORGANICS (NOT TO EXCEED 2 PPBV) K.
- THE OPERATOR SHALL SUBMIT IN WRITING THE RESULTS OF THE FIRST MONTH OF 13) MONITORING, GRAB SAMPLES' ANALYSIS, THE WEEKLY VAPOR INLET FLOW RATE READINGS (SCFM), AND THE INITIAL VERIFICATION OF SOIL CHARACTERIZATION ANALYSIS. THE RESULTS SHALL BE SUBMITTED TO THE ATTENTION OF:
 - SCAOMD, TOXICS AND WASTE MANAGEMENT TEAM, 21865 E. COPLEY DRIVE, DIAMOND BAR, CA 91765. THE SUBMITTAL SHALL INCLUDE A COPY OF THE ACTIVE PERMIT.
- THE ACTIVATED CARBON USED IN THE ADSORBER SHALL HAVE A CARBON TETRACHLORIDE 14) (CTC) NO. OF NOT LESS THAN 60% AS MEASURED BY ASTM METHOD D3467.
- UPON COMPLETION, ANY VAPOR EXTRACTION WELL(S) AND DUCT(S) SHALL BE CAPPED TO 15) PREVENT VAPORS FROM VENTING TO THE ATMOSPHERE, VAPORS SHALL NOT BE EXTRACTED FROM THE SOIL, UNLESS VENTED TO THE VAPOR CONTROL SYSTEM.
- RECORDS SHALL BE MAINTAINED AS REQUIRED TO DETERMINE COMPLIANCE WITH THE 16) PERMIT CONDITIONS. THE RECORDS SHALL BE KEPT FOR AT LEAST TWO YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST.

THIS PERMIT TO CONSTRUCT/OPERATE R-F56654 SUPERSEDES PERMIT TO CONSTRUCT/OPERATE F56654 ISSUED 12/03/2002.

NOTICE

IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR COPY SHALL BE POSTED ON OR WITHIN 8 METERS OF THE EQUIPMENT.

ORIGINAL

110T

nage A Permit No. R-F56654

PERMIT TO CONSTRUCT/OPERATE

CONTINUATION OF PERMIT TO CONSTRUCTION FRATE.

THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT CANNOT BE CONSIDERED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF OTHER GOVERNMENT AGENCIES.

EXECUTIVE OFFICER

Courtes Car !

By Dorris M. Bailey/gr01 1/7/2003

ORIGINAL

(62C/140-G340)	AUG-05-2004 DE	1:28 FRO WIR	SOMMENTAL HEALT	1	TD 1 .406200	P.03/25		
RECONSTRUCTION OF RENDVATION DECOMPTION DECOMPTION OF THE PROPERTY OF THE PROP	A SEWAGE / NOU	ntain é rural frogram	9 - PINTRONMENTAL	HEALTH DIVISION	DATE: 7	23/04		
SOTTERM SOTT ADDRESS SOTT ADDRESS TOWNING TOWNING TOWNING NO. OF WELLS IN FACE PARCEL ATTICK sto way with well locations NO. OF WELLS IN FACE PARCEL ATTICK sto way with well locations NO. OF WELLS IN FACE PARCEL ATTICK sto way with well locations Towns from A 1 - 5 c. 20 PV C Society Assort of A 2 - 5 c. 20 PV C Society Assort of A 3 - 5 c. 20 PV C Society Assort of A 4 - 5 c. 20 PV C Society Assort of A 5 c. 20 PV C Society A 5 c. 20 PV C Society A 5 c. 20 PV C Society Assort of A 5 c. 20 PV C Society A 5 c. 20 PV C	MEW WELL CON RECONSTRUCTI	PIRUCTION ON OR RENDVATION	N S	NITORING THODIC				
Township Range Sortion May Book Prig Clid. A Triangle NO. OF WELLEN RACE FARCE. Attack at to very with well hosteron Franking facility Page and site of A 1 - Scil 80 PVC Souther facility South of the Control		TURE TO THE PARTY OF THE PARTY		N = 575.70	\$-W-11.	di		
Township NO. OF WELLS IN EACH PARCEL Attack sto way with wall heartbox Township Parce Standard Attack sto way with wall heartbox Attack sto way with standard Attack sto way with standard st			cits, V	- A Ha	ZPO			
NO. OF WELLS IN PACE PARCEL Type and Sine of Pace So PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & PVC Type and Sine of A ' Sell & Type and A sell & Sell & Type and A sell & Type and A sell & Sell			HIM Y	T	Map Book Page	Grid, A		
Series (Analy) Solies	NO. OF WELLS IN	EACH PARCEL:	1	9 (2)				
Series (Assister) Subset Messide SEE DAAWING SEE DAAWING SEE DAAWING SCHOOL STEEL SEE DAAWING SCHOOL STEEL SEE SEE SEE SEE SEE SEE SEE SEE SEE	Those and Size of		4.	- Consen	Dogs	3-19		
Dugh of Schwid Service SER DRAW WA Cochair Cole SEE DRAW WA Cochair Cole SEE DRAW WA Well Order Horizon William Service		4,-20480	FVC			Y and		
Consider Code SEE PRADIC W WILL OWN PROCESS WORD THE STATE THE STATE TO THE OWN PROCESS WORD THE STATE OF THE OWN PROCESS WORD THE STATE OWN PROCESS WORD THE STATE OF THE OWN PROCESS WORD THE STATE OF THE OWN PROCESS WORD THE STATE OF THE OWN PROCESS WORD THE STATE OWN PROCESS WORD THE STATE OF THE OWN PROCES		GROWT BE	अराज्या । यद्य	After				
Eachard Caing Science (Const.) Science (Const.) Science (Const.) Well Owner (Const.) Hondry (Libert Titl.) Addres (Const.) Hondry (Libert Titl.) Addres (Const.) Hondry (Libert Titl.) Addres (Const.) Hondry (Libert Titl.) More (Const.) Hondry (Libert Titl.) More (Const.) Hondry (Libert Titl.) Hondry (Hilliam) Hondry (Hilliam		SER DOR	wide	Chy, See 2/p	PASADENA	A:91124		
Well Owner Healer wills in the Tath. The Street of the Str				Telephone	(624) dao-	490do.		
Will Delike 1575 W 19 OT UST Taleshore (310) 112 - 272 C L Will Delike WORK BLIN NEUMERATION SKYPS SEQUENCE After Structure S				IT WELL AND GEOL	OCIC CONDITIONS ENCOUNTED	D to THE WHELD AND A		
TO P Dave To Place Addition To P Dave Addition To Place Addition To Place Addition (200) ITT - 7.29 (200) And Part of	Well Owner			WORK HAN MODE	CATTONI MAY DE REQUIREM	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
Address (210) 517 - 7.79 Law (THIS PERMIT IS COL	POSTRON OF PERMIT (Population (III) TRUE COMPLETE MERCHING	His Cuty)		
Mediablic WOC 65 MELLO ATTO A WAY Addrow WOC 1972 Cide WOTT I CHEE SA 91765 CCT (Kenan In. 7.8.35.26 Toolpheas 1(300) 974-7769 Well Depth Reprinced Woll Depth Reprinced Woll Depth Reprinced Woll Depth Reprinced Depth and Nowbord Postances Type of Performer Scan of Per				APPROVED AND WHEN THE WELL-COMMETICATED EXPECTIVED, NOTIFICAL TO CONSTRUCTION ON DECOMMENTANCE OF REPORT OF THE PROPERTY OF TH				
Address Steel Address Havy City Top Dide Montre Lear E SA 91715 Cot Theran Ma. 7.8352.co Totophena 1(300) 9 14 - 27169 Well Depth for freeder Method of Will Amengener Depth and Number of Performance Type of Performance Method of Utype Ded Except 9 12 10 10 10 10 10 10 10 10 10 10 10 10 10				WORKYLAN APPRO	VAL FROM THE DEPARTMENT.	Tri Die		
CST (Lenan No. 7935210 CST (Lenan No. 7935210 Totophens 1(300)944-77(49 Woll Depth log (moort) Mathod of Well Amendment Depth and Nomber of Performing Since of trafections Type of Performing Since of trafections See that of trafections Pype of Performing Since of trafections See that of the trafection and decomminicating Upon completion of the last of the trafection of the last of the trafection of the last of the trafection of trafections See that of the trafections See that of the trafections See that								
Conditions Totophess I(GOO) 974-7769 Well book boy/moorts Well book boy/moorts Mathod of Well American Depth and Number of Perfections East of Perfections San of Perfections San of Perfections San of Perfections Method of Ulyper Sod Presented Method of Ulyper Sod Presented I faith Divition and with all the regulations of the mathy agree to camply in a way respect with all the regulations of the mathy agree to camply in a way respect with all the regulations of the mathy agree to camply in a way respect with all the regulations of the mathy agree to camply in a way respect with all the regulations of the mathy agree to camply in a way respect with all the regulations of the mathy agree to camply in a way respect with all the regulations of the mathy agree to camply in a way respect with all the regulations of the mathy agree to camply in a way respect with all the regulations and the Environmental shall act mathy their youth of the Environmental shall act mathy their youth of the Environmental shall with a campleton and decommendating to writ the State with a campleton and the Environmental shall be recommended as the self-self-self-self-self-self-self-self-	City/Zip Cirle	10,000		N 8:3-04	ERRS Nypion 200			
Woll Depth bog/records Method of Will Accessory Depth and Number of Perfections Type of Perfections Sim of Perfections Maked of Upper Stel Pressor Application Perfections Milliant of Contany of Ass Angele and the Stella of Contany of Assertation, reconstruction and descentificialing. Upon completions of the Start of Contany of Ass Angele and the Stella of the Well giving state of Affile of the Well giving state of Affile of Open Agreement and Health Division. Application of Contany of Assertation of Contany of Conta	C-S7 Licousu No.			Conditions	0.0	30		
Month of Will Assembler Depth and Number of Performance Type of Performance Som of Performance Minimum (2) Two Business Drug and Amount of Southert S	Totophena	1(800) 974	-2769	KEEP TH	IE WELL A MI	NIMUTY:		
Method of Well Assessment Depth and Number of Performing Type afformations Type afformations Type afformations Type afformations Method of Upper Sud Thematical Applications Minutical Call Applications Minutical						72.73.844		
Popularian Type of Performer Sen of Performer	Mathod of Well			PLEASE NOTIFY THE PEPT. A				
Type of Perforative Som of Perforative Som of Perforative Som of Perforative Types and Amount of Scalars Minimum (2) Two Business Davy Prior To Transitud Code: Standard of Upper Soul Presence Application Minimum (2) Two Business Code of Upper Soul Presence Application (818) 907-4457 (818) 907-4457 (818) 907-4457 Dave Committee on Compily in every respect with all this regulations of the surfy Environmental Health Division and with all or dilanances and involve activatives, reconstruction and decomminimating. Upon completion of the surface with a completion log of the well giving state drilled, depth of the lift perforations in the enalog, and any other date determed Recessary by Apple out Types Apple out Types Date Rists Date Rists Date Rists								
Dry's PRIDE TO STORTING Type and Amount of Scalars Made of Upper Sed Presente Application Servely serve in comply in every respect with all the regulations of the entry serve in compress if calls Division and wife all ordinances and lamans of accessive of Los Angrics and the Sinto of California perialising to well astruction, reconstruction and decommindening. Upon completion of the astruction, reconstruction and decommindening. Astruction, reconstruction and decommindening. Astruction, reconstruction and decommindening. Astruction, reconstruction, reconstruction and decommindening. Astruction, reconstruction and decommindening. Astruction, reconstruction, reconstruction and decommindening. Astruct	Perforances							
Special States of Upper State Presents Application States of Upper State Presents Application Serving agree to company in every respect with all the regulations of the maky Environmental Realth Divition and with all ordinancers and invast of Contents of Contents pertaining to well astronomy, reconstruction and decomminicalization pertaining to well astronomy, reconstruction and decomminicalization of the Environmental and affice with a completion of the Environmental and affice with a completion of the United States of the well giving date drilled, depth of the II. perforations in the enalog and any other date detined necessary by many Environmental Health Divition. Date Rists Page 21 Serving Contents of Conte	Type of Perfering	·						
Standard of Upper Sted Pressents Application Excellent agrees to contempty an away respect with all the pregalactions of the easily Environmental Realth Divition and with all ordinances and known of excessive of Los Angeles and the State of California pertailable to well extractions, reconstruction and decreasioninalists. Upon completion of the land within thirty days thereafter, I will furnish the Environmental alta offices with a completion log of the well giving date drilled, depth of the land perforations in the caulog, and any other date dreimed necessary by racty Environmental Health Divition. Applicate Parish Applicate Parish Call Adv - GBAO Date REST	Type and Amount of			,	IC TO STREITE			
Presents Application ereby segres to comply in every respect with all the regulations of the many Environmental Health Divition and with all ordinances and inward accounts of the many Environmental Health Divition and the saminalizing to well astruction, reconstruction and the saminalizing Upon completion of the Rand within thirty days thereafter, I will furnish the Environmental same office with a completion log of the well giving state drilled, depile of the II, perforations in the enalog, and any other date dreimed perespany by many Environmental Health Division. Applicant injuries. Applicant injuries. Date Rists Rists	Solati	1			917-4457			
maky Environmental Health Divition and with all ordinances and laws of a Centary of Los Angeles and the Sixto of Ceithvain pertaining to well astrontiles, reconstruction and determinisming. Upon completion of the Markov within a completion of a favorable three desirences and within a thirty days thereafter, I will furnish the Environmental with a completion of a favorable diving date drilled, depth of the life, perforations in the caulog, and any other data defined perespany by many Environmental Health Division. Appleant Physics of the Well (1994) Appleant	Presente Application			1.000		3.4		
Examples and the State of California perialising to well astruction, reconstruction and determinishang. Upon completion of the material of the state	ereby agree to comply	n avery respect with all the regression bloods	alations of the					
Heard within thirty days thereafter, I will furnish the Empironmental with affice with a completion log of the well giving date drilled, depils of the ill, perforations in the enalog, and any other date dreimed necessary by ready Empironmental Health Division. Apple and Diplotor Appl	County of Las Angeles	and the State of California per	Pinps (r as)			新		
Date Right Co. 24 440 - 6340	Mand within thirty days	cherenker, I will frestlik the E	avironmental					
Apple salving descriptions (G24) 440 - 6340	il, perforations in the ex	ulog, sad may other date detine	of perestary by	Deta	TENS .			
624) 110-6340	NOT DESIGNATION OF	.1	4					
624) 110-6340	Lan	Apprount alphane	7)			等情報 63分		
	presentation (PRI)	(24) Ado -1=	340	Date .	Delta .	THE PARTY OF THE P		
	-4					到底		
. 外面描葉線	Charles .	4						

VATE	L PERMIT APPL R & SEWAGE/MOUN COMMERCH DRIVE, E	STAIN & RURA	L PROGRAMS - ENVI	RONMENTAL	TION WELLS REALTH DIVISION 113-3016	ወ ሊተ፣	1/23/04	
RECONSTRUCTION OR RENOVATION CAT DECOMMISSIONING INJ					HTORING HODIC CTON BACTION	OTH	EXCHANGE A(Specify): FW-16	
	SITE ADDRESS	651	HARIST	OLLA VI	orth Hou	ywage	91605	
	Townsip		Runge		Section .		p Book Page/ Ghd ATTAC ME	ΞĐ
	NO. OF WELLS IN I	EACH PARCEL	- 2	٨	thich site map with wel			
7	Type and Size of Production Ceries	4"-	Sca80 FUC		Сапрару	PARSO		
	Sanitary / Angular		or BENTO		Crimical Person		HANGON	
	Scaling Material Depth of Sanlony /				Address Clay, State Zlp		WALVUTST	
	Artestry 9cal		DRAWIA		Telephone		140-6340	
	Conductor Caying Beni		PRAWIN		FOUND TO DIFFER	PROM THE SCOPE D	encountered at the pield are Fwork presented to this offic	 L,
	Wall Owner		YWB: ITO		WORK PLAN MODE	Pications May Be	пефильво	
	Address City/Zip Code		EDNCE, C	. 1	I make a billion of the control of t	nsidered comple	IT (Department Des Only) IN WHEN THE WORK PLAN IS	
	Telephons		512 - 22		CONSTRUCTION OF		Pletion loote received. No we o can de dotalted without the partment.	
	Wall Driller		YELO PATIO,			是的政治		
	Addrest	1	ARROW H		Charles and the	Carlo de la contrata del contrata de la contrata del contrata de la contrata del la contrata de la contrata del la contra		1.3
	Clt/Zip Cale		CLOURE C		Data .	PENS		
腦	Call Lincoso No.		3320		Conditions		· · · · · · · · · · · · · · · · · · ·	
	Talephone	1(80	0) 974-2	764		,,		
	Welf Depth . Jug / records							
	Method of Well Appendment							
	Depth and Number of Perforations					<u> </u>		
	Type of Performing							-
	Type and America of Scalant						1	
	Method of Upper Scal					·		
OH BEKSU	iereby agree to comply panty Evylromeetcal H c County of Los Augels party dion, reconstruct H and within thirty da calls affice with a compell, perforations in the county Environmental H applicant points (FRIAT) dephone	lenish Division or es and the State o sion and decomm ys thereafas, I w pletters log of the thereing, and any or leadth Division.	d with all ordinances a f California pertaining telening. Upon comple ill formish the Environ well giving date drilled, ther data deemed neces	and have of to well ston of the mental depth of the casy by	Date .	PENS PENS	Midwell (d. 1888) San San San San San San San San San San	
T	dephond	(020)4	40 ~6340	3				

Teaching That (New District);

AUG-05-2004 (38:29 FR	U . NUIRONME	NTAL HEAL	_TH	то 1	406200	P.04/05	
PEDMIT ADD	TOLTTON			TION WELLS		,	133	
HER & SEWAGE / MOU	ntadi & Rura Bat dudi Pari	(, PROGRAMS - ENVII (, CA 91706 (626) 430-1	KURMENTAL BBO PAK (626	HEVOTH DIAIPHON		DATE: 7/2	3/04	
X NEW WILL CON				NTÓRING		HEAT EXCHANGE	Princip	
RECONSTRUCTI	on or denov	ation		MODIC ECTION		OTHER (Specity):	11	
DECOMMISSION OTHER:	ing			RACTION	-	Gru -	17 人科斯斯	
			1,3					
TOTAL ADDRESS	, ,,	HARTST	. arr N	BRT W HO	i estenas	ZD 0008	91600	
	6 63	1.		Species		Man Book Same (GA)		
Township	,	Range		arzant.		Map Book Paged Gris	ATTACHER	
NO. DE WELLS IN	EACH PARCEL	ı		truch site muy with well locations				
				Company	000	- 1)4	3.9	
Type and Size of	4"-	SCH80 PVC			T PAR	20 NZ.	3	
Seelbry Land	· ·	- 1		Control Person		ES HONE	计数据外	
Seating Material	4/100	or BENTON	1176	Address		س دسم س	100人(1)	
Depth of Savilary / Angular Scal	SEE	- DRAWIN	4	City , State Op		DEND CA		
Conductor Chairs		0		Trisphose	((1)2	4) 44b-C	340	
Seal	ンドモ	PRAWIN	4	IF WILL AND GE	OLOGIC COVOIT	DES ENCODIVIPIED D	THE PERDANE	
Well Owner	11-00	ywere I di	1. Tak	WORK PLAN MO	or from the sco Discasions may	E OF WORK PRESENT	ED TO THIS DAMES.	
Address		W 190 FU	1					
Chy/zip Code		PONCE C		THE PERMIT IC	こいいうかいきょうり こっしょ	PENCY (Department Des PLAYS WEST THE WO	AND THE PROPERTY OF THE PARTY O	
Telephone		112 - 224		DONSTRUCTION	OR DECOMPOSIT	NING CAN BE DUTILAT	ECHVED NO WELL	
Well Driller				WHETLAN AFF	ROVAL PROMIE	DELVEUPELL	- File and the second	
		YPLOPATION						
Address		Aream H		Det Out	EEEE CA			
City/Zip Code.	Moura	CLAURE,CA	91763	B=83-04	ETHS MY	182 Orwar	大学	
Cott Home No		3376		Conditions				
Tenephone	1(800	974-2	109	KEEP .	THE WELL	- A MINIT	Yum - gu	
Well Depth .				(10) TEN	FEET A	DEIZONTAL	Ly . That	
Jos / records				AWAY F	ROM THE	ON-SITE ?	EWER	
Method of Well				AND/OR	STORM	PAIN UN	ES . WAR	
Depth and Mumber of .				PIENSE	NOTIFY	THE DEAT	A	
Perforations						O BUSINE	2 1 241 4 2 2 1 W	
Type of Perforator	.*5		1					
Type and Associated					RIDR TO	NINE IN		
Souliett				WORK				
Menhod of Upper Scal-				(818)	702-445	+	1,49	
		· · · · · · · · · · · · · · · · · · ·						
errby agree to comply it	n cylmy respective and trivities and	Oh all the regulations of with all artificances are	fibe Liewauf					
County of Las Autilia	and the State of	California pertaining to	well				建	
und within thirty day	thereafter, I will	fornish the Environment	noted				10.00	
is perfections in the ci-	alog, and kny pli	rell giving date drilled, d her data decenced vectors	epita of the	Date .	REES	*		
party Environmental H	mbh Division.					11.1.	201 激发	
. N.	والمنظرة فانسد	4	1					
-	Application	A SULTE						
The party of the last	مدارين ا	0-6340		Date	AERS	•	建	
	· · ·	0 0770					FINE	
in manus							THE PARTY	
		•					沙沙	
	· ·;						CHRES	

WATE	L PERMIT APPI R & SEWAGE/MOUT COMMERCE DRIVE, I	TAIN & RURA	NO L PREAMS - ENVI K. CA 91706 (626) 430-	RONMENTAL H	TION WELLS EALTH DIVISION 813-3016	DATE: 1-25-05
下	NEW WELL CONSTRUCTION DECOMMISSION	ON OR RENOV	ATION	CATI	ITORING HODIC CITON	HEAT EXCHANGE OTHER (Specify):
	OTHER:				RACTION	wells Gw-4,-13,4-17
LON	SITE ADDRESS	man Way		CITY	Hoowylloff	ZIP CODE 91605
Š	Township		Ronge		Section	Map Book Page/ Grid
	NO. OF WELLS IN I	BACH PARCEL	ii	At	tach site map with	well locations
	Type and Size of				Company	MMH
	Production Casing				Contact Person	Rick Thomasser
5	Sunitary / Anzeler Scaling Material				Address	1340 Treat Bluz, Sik 200
	Depth of Sanitory/				City , State Zip	MWH Rick Thomasser 1340 Treat Bluz, Size 200 Wilmot Creek, CA 94597 (925) 975-3436
	Annulus Scal				Telephone	(425) 475-3436
	Conductor Casing Scal					EOLOGIC CONDITIONS ENCOUNTERED IN THE FIELD ARE
	Well Owner	Honevure	11 bokonton 1	ne,		ER FROM THE SCOPE OF WORK PRESENTED TO THIS OFFICE ODIFICATIONS MAY BE REQUIRED
Ž.	Address		N. 190th Street			DISPOSITION OF PERMIT (Depurtment Use Only)
S.C.	City/Zip Code		CA 9050L	1		O ONE THE WELL COMPLETE WHEN THE WORK PLAN IS O WHEN THE WELL COMPLETION LOG IS RECEIVED, NO WEL
CLERINFO	Telephone		2-7796		CONSTRUCTION	N OR DECOMMISSIONING CAN DE INITIATED WITHOUT THE PPROVAL FROM THIS DEPARTMENT.
CEBR	Well Driller		xploration +W	elk	- Order I British	WORK REAN APPROVAL
CR/DR	Address	<< 61-	Arrow Highwa	J		This Approval is Valid for 180 Days
OWNE	City/Zip Code		C. CA 91763		Date	REHS
	C-57 License No.	28337	-		Conditions	
	Telephone	T	74-2769			
	Well Depth log / records		<u></u>			
O N	Method of Well Assessment					
NUSSION	Depth and Number of Perforations		,			
LDECOMBA	Type of Performor Size of Perforations				:	
T SAETT	Type and Amount of Scalant					
	Method of Upper Scal Pressure Application					
Co th to wi	ounty Environmental He County of Los Angelonstruction, reconstruction and within thirty do call the office with a company of the contract of the county of t	lealth Division a and the State (ion and decomm ys thereafter, I v oldion log of the	with all the regulations and with all ordinances a few control of California pertaining dissioning. Upon completil furnish the Eavirons well giving thate drilled other data deemed neces	and laws of to well than of the mental depth of the	Date	FINAL INSPECTION REPS
C	ounty Environmental F	leulth Division.	/			
	uf.	Applicage's 8	L FOR BULTI	Massach	The well log mu	PERMIT ISSUED It be submitted in this Department prior to instance of the final approx
A _I	oplicani Name: (PRINT) (dephene: (714) 646-	Michael FL 2007	いたれるの		Date	REHS

76A668-A 3]-33 (Rev. 8)/280))

March 27, 2006

Mr. Dixon Oriola California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

Subject: Submittal of Additional Information for Waste Discharge Requirements (WDR)

Permit Application for Former Honeywell North Hollywood Sitc

11600 Sherman Way, North Hollywood, California

Dear Mr. Oriola:

MWH Americas, Inc. (MWH), on behalf of Honeywell International Inc. (Honeywell), submitted a Soil and Interim Groundwater Remedial Action Plan (SIGRAP), dated July 30, 2004, for the Former Honeywell North Hollywood Site (Site) to the Regional Water Quality Control Board – Los Angeles Region (RWQCB). In a letter addressed to Mr. Benny DeHghi dated April 13, 2005, the RWQCB approved the SIGRAP with the requirement that an individual WDR permit be obtained for the Site. In a letter dated May 31, 2005, MWH submitted a WDR package to the RWQCB that included the WDR application, a check for \$5,668.00, and supplemental information.

During the latter part of 2005, Site-specific pilot testing was conducted in accordance with the approved SIGRAP. As discussed in the SIGRAP, the results of the testing provide additional design basis information for the remediation design. Therefore, this letter is submitted to amend Honeywell's WDR application to include the information presented herein.

INTRODUCTION

To obtain critical Site-specific remediation design information, the SIGRAP proposed conducting pilot studies. As part of these pilot studies, MWH conducted soil sampling, a soil reductant demand test, groundwater treatment and settleability tests, and an infiltration test. Based on results from these tests, an engineering analysis was conducted to finalize the system process design. A brief summary of the protocols and procedures followed during the pilot studies is presented below, as well as the resulting recommendations.

SOIL INVESTIGATION

Soil sampling was conducted in the source area of the Site to obtain representative soil samples impacted with hexavalent chromium for a soil reductant demand test. Four borings, TS-1, TS-2, TS-3, and TS-4 were drilled on September 14, 2005 by BC² Environmental Corp. of Fullerton, California (BC²). Locations are shown on Figure 1.

Underground Service Alert (USA) was notified before the start of drilling activities; however, since USA does not clear utilities on private property, utility clearances were conducted by Spectrum Geophysics of Burbank, California (Spectrum). Final soil boring locations were selected based on utility clearances. Utility clearances are presented in Attachment A. No permits were needed for the soil borings.

Four soil borings were advanced using a hollow-stem auger drill rig equipped with 8-inch-outside diameter, continuous-flight, hollow-stem augers. Soil samples were collected at 5-foot intervals to approximately 55 feet below ground surface (bgs). Soil samples were collected using a modified California split spoon sampler containing three, 2-inch-diameter by 6-inch-long stainless steel sample retainers. The sample retainers were removed from the sampler immediately upon retrieval, sealed with Teflon[®] film and plastic end caps, labeled, entered into chain-of-custody protocol, placed in an ice-chilled cooler, and picked up by a courier and delivered to Columbia Analytical Services, Inc. in Canoga Park, California (Columbia).

Soil samples were analyzed for the following:

- Arsenic, iron, and manganese using United States Environmental Protection Agency (EPA) Method 6010,
- · Hexavalent chromium using EPA Method 7199,
- Sulfate using EPA Method 9056,
- Sulfide using SW 9034, and
- Total organic carbon (TOC) using the Walkley Black method.

Lab results are summarized in Table 1 and provided in Attachment B.

Soil from cuttings and other sample retainers not sent to Columbia underwent soil classification and geologic logging, in accordance with the Unified Soil Classification System (USCS) as presented in American Society for Testing and Materials (ASTM) Standard D2488, and classification by color using a Munsell Color Chart. All soil borings were backfilled with bentonite slurry, then capped at the surface with asphalt to match the existing surface grade. Geologic boring logs for soil borings are presented in Attachment C. A cross section is presented as Figure 2.

Mr. Dixon Oriola -3- March 27, 2006

Non-dedicated drilling and sampling equipment used during field sampling were decontaminated between borings and sample intervals to minimize cross-contamination potential. Augers were steam cleaned between boring locations. Reusable sampling equipment was decontaminated by brushing with Alconox solution, rinsing with tap water, and final rinsing with deionized water.

Investigative-derived waste (decontamination water and soil cuttings) was contained in Department of Transportation-approved, labeled, 55-gallon steel drums. The drums were temporarily stored in a paved area, on-site. Waste was removed and properly disposed of after certified laboratory analytical results were provided to the waste hauler.

GROUNDWATER SAMPLING AND TESTING

Site groundwater was collected from two wells for bench-scale scoping tests. One 5-gallon groundwater sample was collected from well GW-15 (known to be impacted with hexavalent chromium) on September 1, 2005 by Blaintech, Inc. of Carson, California (Blaintech) during routine quarterly sampling activities, to select the most effective dosing rates of calcium polysulfide for treatment of Site groundwater impacted with hexavalent chromium. One 5-gallon groundwater sample was collected from GW-6 (known to be non-detect for hexavalent chromium) on October 7, 2005 by Blaintech to use for creating a soil slurry for the soil reductant demand test.

Each groundwater sample was collected in a 5-gallon plastic cube using a 2-inch diameter submersible Grundfos® Redi-Flo II® pump. The pump was equipped with a check valve to prevent backflow into the well. The pump was placed 3 feet below the top of the water column, to collect groundwater from the uppermost portion of the formation. Purging activities were not conducted prior to the sample collection of GW-6, and no sampling parameters were noted except the depth to groundwater. Standard sampling protocol was followed for GW-15, providing sampling parameters including temperature, conductivity, pH and dissolved oxygen. After the sample collection, the sample was labeled, placed in an ice-chilled insulated cooler and transported under a chain-of-custody protocol to MWH Applied Research Development (ARD) Laboratory located in Monrovia, California.

Once received by the ARD Laboratory, groundwater samples were transported under chain-of-custody protocol to Del-Mar Analytical of Irvine, California (Del-Mar) and analyzed for the following:

- Arsenic, ferric iron, and manganese using EPA Method 6010,
- Hexavalent chromium using EPA Method 7199,
- Sulfate using EPA Method 9056,
- Sulfide using SW 9034, and
- TOC using Walkley Black.

Lab results are summarized in Table 2 and provided in Attachment D (GW-6).

BENCH-SCALE TESTING

The soil samples collected on September 14, 2005 and the groundwater sample collected from GW-6 on October 7, 2005, were used to determine the concentration of dissolved chromium in soil, to assess the soil reductant demand, and to measure the pH and oxidation/reduction potential (ORP) of soil slurry samples. The groundwater collected on September 15, 2005 from GW-15, which contains one of the highest concentrations of hexavalent chromium in groundwater at the Site, was used for a chemical precipitation treatment settleability test.

Soil Reductant Demand Testing

Concentrations of dissolved hexavalent chromium in interstitial fluids in the moist soil were determined in the ARD Laboratory with a HACH field test kit on September 15, 2005. Each sample was prepared using one part soil to three parts deionized (DI) water (total DI water used was 3 milliliters [ml]). The results are presented in Table 3.

Soils that contained a high amount of hexavalent chromium (as determined by the dissolved chromium test) were selected and combined together. A portion of the soil mix was set aside as a control soil mix. A control soil slurry was then prepared by using the remaining soil mix and Site groundwater collected from GW-6, a non-impacted well. Once thoroughly mixed, soil was settled out enabling the liquid to be decanted off. The liquid was filtered with a 0.45 micron filter and placed in a 500-ml polyethylene laboratory container. This liquid sample became the control slurry liquid.

The control soil slurry was divided into six sub-samples. One sub-sample was set aside. The others were dosed with 0.1%, 0.5%, 1.0%, 5.0%, and 10% concentrations of calcium polysulfide. Measurements of slurry pH and ORP were made to provide data on the required reagent dose required to achieve generation of reduced conditions in soil. Measurements were repeated on an hourly basis for 4 hours to determine long-term trends. Slurry pH and ORP results are presented in Table 4.

Upon completion of the test, soil was settled out of the 0.5% and 5.0% calcium polysulfide slurry to enable the liquid to be decanted off. The liquid was filtered with a 0.45 micron filter and two, 500-ml laboratory samples of 0.5% calcium polysulfide and 5.0% calcium polysulfide liquid were prepared. The liquid and the remaining soil slurry that was treated with 0.5% and 5.0% calcium polysulfide were submitted to Del-Mar under standard chain-of-custody protocol and analyzed for the following:

- Arsenic, ferric iron, and manganese using EPA Method 6010B,
- Hexavalent chromium using EPA Method 7199,
- Sulfate, nitrate using EPA Method 300.0,
- Sulfide using EPA Method 376.2 Modified.

Laboratory results are summarized in Table 5 and presented in Attachment D.

Settleability Test

A settleability test was performed by MWH on September 15, 2005 in the ARD Laboratory to determine the most appropriate dosing rate for treatment of groundwater impacted with hexavalent chromium. Water used for the settleability tests was obtained from GW-15, which contains one of the highest concentrations of hexavalent chromium in groundwater at the Site.

The impacted groundwater was distributed into five, 1-liter Imhoff Cones and dosed with calcium polysulfide at rates of 0.5%, 1.0%, 2.5%, 5.0%, and 10% to determine the settling rate of the solids. Initial ORP was noted and color and flocculation were documented on an approximate 15-minute interval for approximately 5 hours to document long-term trends of the settling solids. An observation table is provided as Table 6. A photographic log is provided as Attachment E.

Upon completion of the test, final ORP and pH were noted. A 200-ml sample of each liquid was prepared and submitted to Columbia for analysis under chain-of-custody protocol. Liquid samples were analyzed for the following:

- Dissolved arsenic, iron, and manganese using EPA Method 6020, and
- Hexavalent chromium using EPA Method 7199.

Laboratory results are summarized in Table 7 and presented in Attachment F.

INFILTRATION TEST

MWH conducted a 24-hour infiltration test on November 16-17, 2005, in accordance with the approved SIGRAP to determine the infiltration rate of native Site soils and gather field data to help design the full-scale remediation system for reduction of hexavalent chromium in soil at the Site.

A 10-foot by 10-foot by 4-foot deep area was excavated in the southeast corner of the Kaiser Property (Figure 3). The walls of the excavation area were covered with plastic sheeting to prevent the lateral leakage of water. Two 3-inch diameter, 4-foot long standpipes were constructed of Schedule 40 polyvinyl chloride (PVC) and were installed in opposite corners (northeast and southwest corners) and were used to measure water level readings during the test. The manifold was constructed of 4-inch, Schedule 40 PVC and placed on the bottom of the excavation. Approximately 2 feet of pea gravel was placed in the excavation area. A schematic of the infiltration test set-up is shown on Figure 4.

Potable water from a fire hydrant located approximately 240 feet north of the excavation area on the Kaiser facility was used for this infiltration test. Water was routed through a 2.5-inch diameter, national standard fire hose to the excavation area. At the test area, this hose was transitioned to 2-inch diameter Schedule 40 PVC. A gate valve was installed upstream of the high volume turbine flow totalizer to accurately adjust the flow rate. A ball valve was also installed downstream of the totalizer prior to the manifold piping that runs into the excavation area.

The test was designed to determined the steady-state infiltration rate required to maintain a water level 2 feet below grade surface (specifically, to maintain a water level just at the surface of the pea gravel in the excavation). Throughout the 24-hour test, field readings, including water levels at the two standpipes and the meter totalizers at the fire hydrant and test area, were collected and recorded. The water infiltration test started at an average of 28.5 gallons per minute (gpm) and was increased from there. Figure 5 shows the infiltration flow rate over the 24-hour testing period. Based upon the results of the test, a steady-state infiltration rate of 40 gpm was sustained over the 100 square-foot area.

EX-SITU CHROMIUM GROUNDWATER TREATMENT ALTERNATIVES

As described in the approved SIGRAP, MWH believes that the most effective and lowest cost remedial approach for Site remediation is *in-situ* chemical reduction of the hexavalent chromium to effectively insoluble trivalent chromium. Chemical precipitation and filtration involves the addition of chemicals to reduce and precipitate hexavalent chromium to trivalent chromium and is the original conceptual process MWH described in the SIGRAP. As stated in the SIGRAP, primary vadose and saturated zone remediation would be accomplished with calcium polysulfide injection through a source area infiltration basin. However, as part of the remediation effort, groundwater will be extracted and treated above ground prior to being dosed with calcium polysulfide and infiltrated through the basin. This groundwater extraction and treatment is likely to be the most complex and costly component of the remedial process; therefore, during the initial design stages, MWH has been focusing on the most cost-effective alternative for *ex-situ* groundwater treatment.

The SIGRAP describes treatment of the extracted groundwater using calcium polysulfide. However, results of the treatability study indicated that while only a very low dose of calcium polysulfide is needed to reduce hexavalent chromium in influent groundwater, a minimum dosage of 2.5% calcium polysulfide (by volume), to possibly as high as 5% calcium polysulfide (by volume), would be required to efficiently precipitate out colloidal solids. At the expected extraction flow rate of the system, contaminant mass loading, resulting equipment size and chemical usage requirements, and space limitations, it became evident that such a system may not best address all Site-specific health, safety, and odor concerns or that it may not be the most implementable or cost-effective technology for this site.

Therefore, MWH initiated an evaluation into alternatives for ex-situ treatment of the extracted water prior to dosing with calcium polysulfide and infiltration to the basin in the source area. Electrochemical precipitation, reverse osmosis, and ion exchange were evaluated and a brief summary of this evaluation of alternatives is presented below.

Electrochemical Precipitation

Electrochemical precipitation is used in industry to pre-treat wastewater; however, the initial capital costs are high (likely more than \$1 million initial capital cost) and as pre-treatment, the process has difficulty reducing hexavalent chromium concentrations to less than 100 micrograms per liter (μ g/L), requiring additional treatment with a secondary process for our application. In addition, the systems are large and operationally intensive. Relatively few design and manufacturing firms are available. Several that were contacted were either no longer in the electrochemical business or were unwilling to provide a quote without retainers, significant Site-specific data, and/or Site groundwater for testing. For these reasons, electrochemical precipitation was not investigated further.

Reverse Osmosis

Reverse osmosis is capable of achieving non-detectable chromium concentrations in the effluent water. However, after discussions with several contacts knowledgeable with the process, it was determined that reverse osmosis would provide little benefit for this particular application because nearly one-fourth of the flow is waste to flush the then-higher concentration hexavalent chromium brine from the units. This reduces the volume of water requiring treatment; but the chromium mass remains the same, requiring a secondary system with associated capital and operating costs. The result is the overall cost per gallon treated would be higher than the other individual technologies by themselves and the system footprint would be larger with more equipment, increasing the risk of malfunction and associated repair costs. This technology was not investigated further.

Ion Exchange

Ion exchange is similar to a house-hold water softener; however, because hexavalent chromium (CrO₂⁻² or HCrO₄⁻¹ in water) is an anion, an anion exchange resin is used. Chloride anions (Cl⁻) are replaced by hexavalent chromium. Appearance and operation are similar to a granular activated carbon (GAC) system, with at least two units in a lead/lag configuration. Once the lead unit resin is fully "loaded" or "spent," it is taken off-line for regeneration. This is indicated by detectable or elevated hexavalent chromium concentrations in the lead unit effluent. The unit can be regenerated on- or off-site using a highly concentrated saline solution. Effluent concentrations from the lag unit are typically non-detect for hexavalent chromium. Unlike other systems, the regeneration rate and resulting brine production and disposal (the primary operating costs) are directly proportional to hexavalent chromium and sulfate concentrations. Sulfate is the primary anion competing with hexavalent chromium for resin sorption sites. This results in very low operating costs if influent concentrations are low and proportionately higher costs for

higher concentration influent streams. Resin loading is also proportional to the pH, with maximum loading for many resins being achieved at a pH of approximately 4.5; therefore, pH adjustment may be conducted. If lowered, the pH would then be increased to 7.0, using sodium hydroxide, prior to reinjection. To prolong resin life, prefiltration with media or cartridge filters is also common. The prefiltration and pressure vessels simplify insertion of lead and lag GAC vessels downstream of the resin vessels for VOC removal prior to reinjection.

The primary drawback to using ion exchange at this Site is that another anion, sulfate, will compete for and utilize sorption sites on the resin. More than 70 milligrams per liter (mg/L) of sulfate are present in Site groundwater, compared to 2 mg/L of hexavalent chromium. The resin utilization is not one for one because hexavalent chromium sorbs more strongly to the resin than sulfate and there are other minor anions that interplay; therefore, the interaction on the column is complex and difficult to predict without column testing. Field modifications, such as a third vessel can be used to permit elevated effluent concentrations from the first vessel. This can help increase hexavalent chromium loading of the first vessel even if sulfate concentrations are elevated. One of the possible calcium polysulfide reaction products is sulfate. The *in-situ* processes that result in sulfate production and conversion back to sulfide are complex and beyond the scope of this evaluation; therefore, changes in sulfate concentrations over time, although likely manageable, are an inherent risk associated with this technology.

RESULTS AND CONCLUSIONS

The following section discusses the results of the pilot tests described above and the conclusions that can be drawn.

- Boring logs to total depth indicate the lithology in the area where soil samples were collected consists primarily of sand (Attachment C, Figure 2).
- The soil analytical data (Table 1) demonstrate that there has been vertical migration of hexavalent chromium in interstitial moisture to the explored depth of 60 feet bgs. Such hexavalent chromium would be expected to continue to be mobile, as moisture percolates downward through the soil, as demonstrated by the soil slurry tests (Table 3). Soil boring TS-4 demonstrates an inverse relation between hexavalent chromium and TOC (Table 1), consistent with the ability of TOC to reduce and attenuate hexavalent chromium (Palmer and Puls, 1994). The soil contains low concentrations of arsenic, but high natural concentrations of iron, most of which is likely in the ferric state.
- Low dose rates of calcium polysulfide (as low as 0.1%, Table 4) are capable of generating negative ORP values, which can reduce hexavalent chromium to the trivalent form. Unlike what has been seen at some other sites, the calcium polysulfide does not reduce the nitrate present in the groundwater (Table 5), but does convert low-solubility ferric iron to the mobile ferrous form, which is also an effective reductant of hexavalent chromium.

Mr. Dixon Oriola -9- March 27, 2006

• Percolation of a solution of calcium polysulfide through the vadose zone would displace, under plug-flow conditions, a portion of the mobile hexavalent chromium into the underlying, impacted groundwater (which is the primary reason a groundwater extraction well will be installed through the infiltration basin), but would effectively immobilize and reduce the residual vadose-zone chromium to the trivalent form. A dose rate of 1 to 3% calcium polysulfide is sufficient to achieve such reduction in soil. The percolation would convert some of the ferric iron to the mobile ferrous form, together with manganese present in the ferric hydroxide soil deposits. The ferrous ions would then react with and reduce hexavalent chromium, thereby serving as a long-term reductant in the vadose zone.

- As noted on Table 6 and shown in Attachment E, reaction began immediately upon addition of calcium polysulfide to the impacted groundwater, even at the low dose of 0.1% calcium polysulfide. In fact, the water samples analyzed upon completion of the settleability test (Table 7) all had non-detectable concentrations of hexavalent chromium at all calcium polysulfide dosage rates. However, the solids are not settled out of the dosed water after 5 hours until a calcium polysulfide rate of greater than 2.5%.
- Results of the infiltration test indicated that native Site soils will be able to maintain and deliver adequate reductant solution during full-scale remediation efforts.

While calcium polysulfide has been shown to be effective for initial treatment of contaminated groundwater, experience at other sites with greater than 2.5% calcium polysulfide reductant solution has demonstrated that such treatment results in a super-saturated calcium carbonate solution and resultant plugging of surface treatment systems and injection wells, increasing operation and maintenance significantly. In addition, the expected extraction flow rates at this Site would require very large equipment and large volumes of calcium polysulfide, resulting in high costs.

RECOMMENDATION

The pilot studies described above have provided additional Site-specific information critical to efficient and cost-effective remediation system design. The overall treatment process, as described in the approved SIGRAP, has not changed. However, instead of using chemical precipitation for treatment of *ex-situ* groundwater, an off-the-shelf ion exchange treatment system will be used. Once treated above ground, the water will be dosed with calcium polysulfide and infiltrated to the subsurface through a basin at the source area, as described in the approved SIGRAP.

CLOSING

MWH, on behalf of Honeywell, respectfully requests that this letter serve as an amendment to Honeywell's WDR application. If you have any questions or would like additional information, please feel free to contact Mr. Richard Thomasser at (707) 227-0407 or Ms. Lisa Hall at (714) 646-2001.

Sincerely,

cc:

MWH Americas, Inc.

Lisa A. Hall, P.E. Principal Engineer

Mr. Benny DeHghi, Honeywell

Mr. Alex Lapostol

Attachments: Figures

Tables

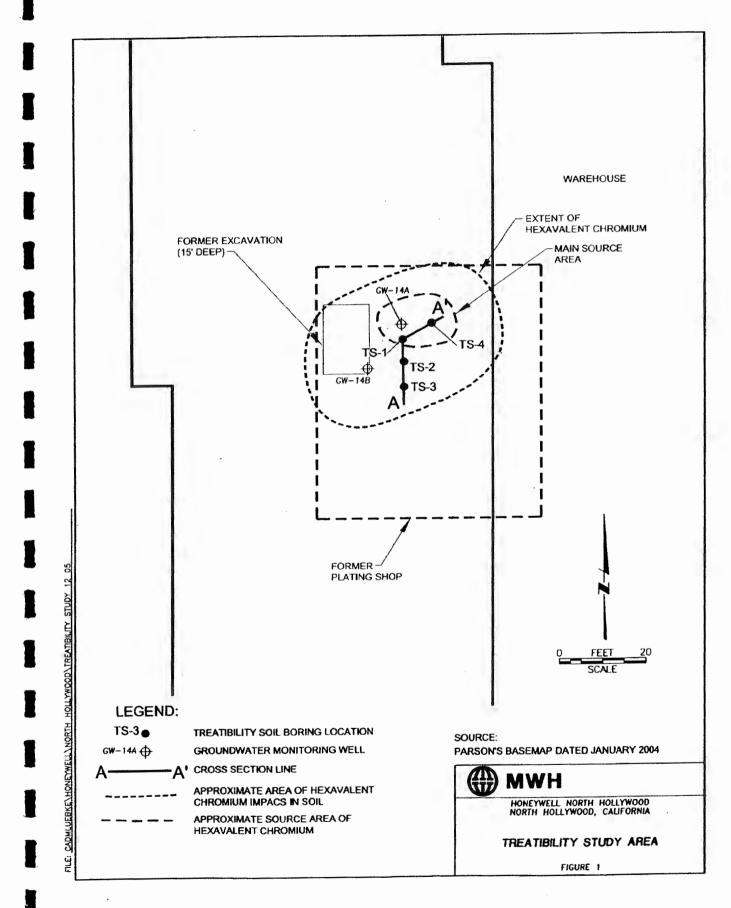
Attachment A - Utility Clearance

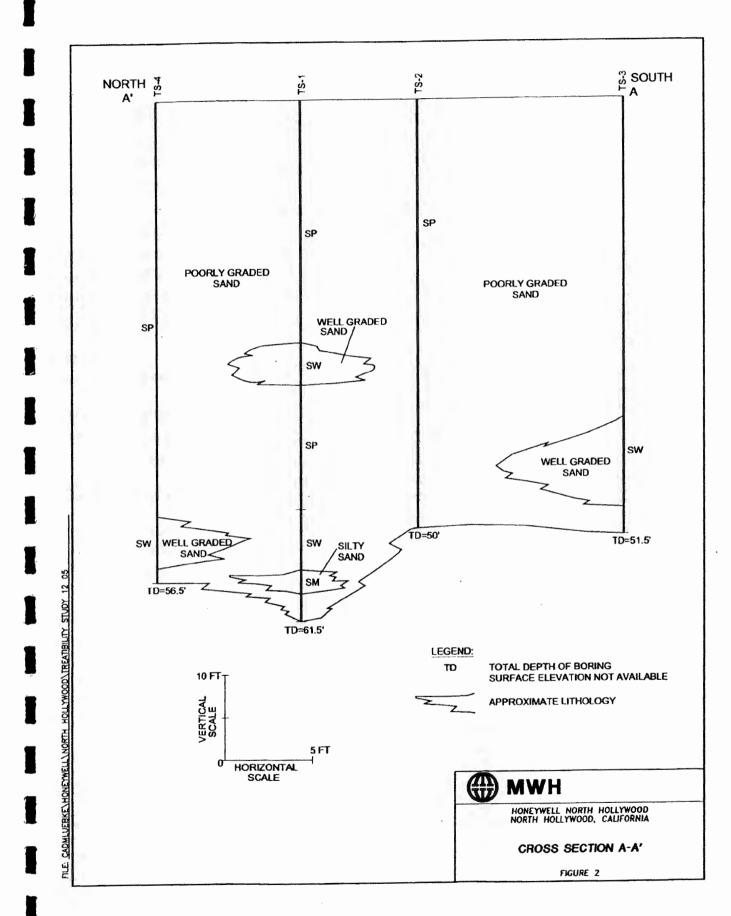
Attachment B - Analytical Results from Soil Sampling

Attachment C - Boring Logs

Attachment D - Analytical Results from Soil Reductant Demand Test

Richard M. Thomasser, P.G.


Project Manager


Attachment E - Photographic Log

Attachment F - Analytical Results from Settleability Test

USOCO1/Project/Honeywell/North Hollywood/Permitting/WDR Permit Appl Amendment/L_RWQCB_WDR Amend_March 2006.doc

FIGURES

MWH MONTGOMERY WATSON HARZA

HONEYWELL NORTH HOLLYWOOD SITE 11600 SHERMAN WAY NORTH HOLLYWOOD, CALIFORNIA

SCHEMATIC FOR INFILTRATION TEST SET-UP FIGURE 4

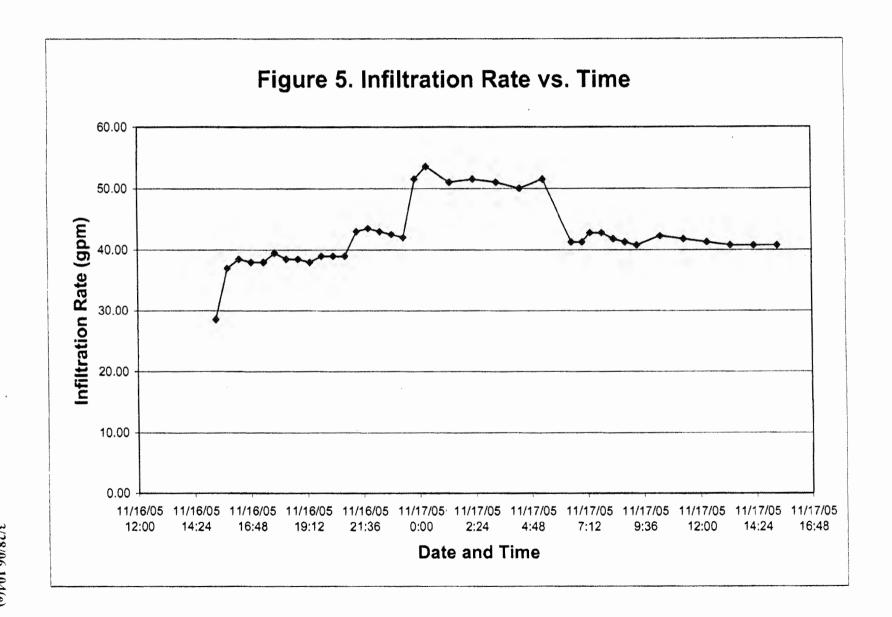


TABLE 1

SOIL ANALYTICAL DATA

TREATABLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

						mg/kg			
Boring Location	Sample ID	Sample Depth (feet bgs)	Arsenic EPA Method 6010B	Hexavalent Chromlum EPA Method 7199	Iron EPA Method 6010B	Manganese EPA Method 6010B	Sulfate EPA Method 9056	Sulfide SW9034	Total Organic Carbon Walkley Black
	TS-1-20	24.0 - 24.5	8.1 J	5.9	11,400	138	27	<90	799 J
	TS-1-25	25.5 - 26.0	<8	38	12,300	176	34	<90	<250
	TS-1-30	30.5 - 31.0	<8	15	9,100	112	28	<90	<250
	TS-1-35	36.0 - 36.5	<8	14	9,230	125	22	<90	<250
TS-1	TS-1-40	41.0 - 41.5	<8	20	6,780	95	10 J	<90	<250
	TS-1-45	46.0 - 46.5	<8	13	6,780	83	7 J	<90	<250
	TS-1-50	51.0 - 51.5	<8	26	10,900	182	25	<90	320 J
	TS-1-55	· · 56.0 - 56.5	<8	15	18,200	240	6 J	<90	480 J
	TS-1-60	61.0 - 61.5	<8	8.6	12,200	149	6 J	<90	320 J
	TS-2-20	21.0 - 21.5	<8	6.6	7,900	98	54	<90	639 J
	TS-2-25	26.0 - 26.5	<8	15	8,640	112	61	<90	<250
	TS-2-30	31.0 - 31.5	<8	11	15,000	149	51	<90	639 J
TS-2	TS-2-35	36.0 - 36.5	<8	120	10,200	150	41	<90	<250
	TS-2-40	41.0 - 41.5	<8	170	9.870	129	130	<90	<250
	TS-2-45	46.0 - 46.5	<8	49	7,380	100	63	<90	<250
	TS-3-20	21.0 - 21.5	<8	34	10,200	128	84	<90	320 J
	TS-3-25	26.0 - 26.5	9.3 J	140	9.640	131	75	<90	<250
	TS-3-30	31.0 - 31.5	<u>9.3 J</u>	190	6,580	94	63	<90	<250
TS-3	TS-3-35	36.0 - 36.5	<8	93	8,230	104	39	<90	320 J
15-3	TS-3-40	41.0 - 41.5	<8	130	10,300	149	92	<90	320 J
	TS-3-45	46.0 - 46.5	<8	170	7,190	95	52	<90	<250
	TS-3-50	51.0 - 51.5	<8	22	7,970	116	10 J	<90	<250
	TS-4-20	21.0 - 21.5	8.2 J	1.3	14,200	176	200	<90	963 J
	TS-4-25	26.0 - 26.5	<8	0.6	12,900	158	59	<90	1,280 J
	TS-4-30	31.0 - 31.5	<8	85	12,400	172	140	<90	642 J
TS-4	TS-4-35	36.0 - 36.5	<8	3.6	15,100	195	160	<90	1,770 J
15-4	TS-4-40	41.0 - 41.5	<8	3.5	14,800	180	170	<90	1,440 J
	TS-4-45	46.0 - 46.5	<8	19	15,200	187	120	<90	3,530
	TS-4-50	51.0 - 51.5	<8	230	7,620	93	77	<90	321 J
	TS-4-55	56.0 - 56.5	<8	130	9,610	123	69	<90	2,570

Samples were collected on September 14, 2005

EPA - U.S. Environmental Protection Agency

feet bgs - Feet below ground surface

J - Estimated concentration. The result is less than the PQL but greater than the MDL.

mg/kg - Milligrams per kilogram

< - Less than listed method detection limit (MDL)

GROUNDWATER ANALYTICAL DATA

TREATABLITY STUDY

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

				,		mg/L			
Sample ID	Sample Date	Sample Depth (feet bgs)	Arsenic EPA Method 6010B	Rexavalent Chromlum EPA Method 7199	Ferric Irou EPA Method 6010B	Manganese EPA Method 6010B	Nitrate EPA Method 300.0	Sulfate EPA Method 300.0	Sulfide EPA Method 376.2
GW-6	10/11/05	263.84	<0.002	<0.002	<0.08	0.0027	47	<i>7</i> 3	<0.10
GW-15	09/01/05	255.68	<0.005	0.82	NA	NA	NA	NA	NA

Note

GW-6 was sampled on 10/11/05 and GW-15 on 9/1/05

EPA - U.S. Environmental Protection Agency

feet bgs - Feet below ground surface

mg/L - miligrams per liter

NA - not analyzed

< - Less than listed method detection famit (MDL)

TABLE 3

DISSOLVED CHROMIUM BY HACH TEST KIT TREATABLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

	mg/L							
Sample Depth (feet bgs)	TS-1	TS-2	TS-3	TS-4				
20	0.57	0	0	0				
25	0	0.37	>1.5	0				
30	>1.5	0.25	>1.5	0				
35	>1.5	>1.5	>1.5	0				
40	>1.5	>1.5	>1.5	0				
45	0.38	>1.5	>1.5	0				
50	1.35	NS*	1.4	>1.5				
55	1.4	NS	NS*	0.2				
60	1.5	NS	NS	NS*				

Notes:

Hach test kit has maximum detection of 1.5 mg/L

bgs - below ground surface

mg/L - milligrams per liter

NS - not sampled

*Refusal was encountered at 50 feet bgs, 55 feet bgs, and 60 feet bgs for

TS-2, TS-3, and TS-4, respectively.

PH AND ORP MEASUREMENTS

TREATABLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Sample ID / dose	рH	ORP	pН	ORP	pН	ORP	рĦ	ORP	pH	ORP
1	at 0 hr		at 1 hr		at 2 hr		at 3 hr		at 4 hr	
0% CaSx	7.45	125	7.5	125	7.60	85	7.70	70	7.80	55
0.1 % CaSx	8.42	-360	8.25	-345	8.57	-283	8.57	-265	8.58	-241
0.5% CaSx	9.07	-450	9.11	-455	9.16	-453	9.16	-455	9.16	-455
1.0% CaSx	9.27	-465	9.30	-467	9.32	-466	9.34	-466	9.34	-467
5.0 % CaSx	9.95	-490	10.01	-488	10.1	-490	10.1	-490	10.2	-492
10% CaSx	10.36	-508	10.37	-508	10.38	-507	10.40	-507	10.45	-507
Control Slurry	7.44	57	NM	NM	NM	NM	NM	NM	NM	NM

Notes

CaSx - Calcium Polysulfide

hr - how

NM · not measured

ORP - oxidation reduction potential

LIQUID AND SOIL SLURRY ANALYTICAL DATA

TREATABLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

	mg/L										
Matrix : Liquid	Chromium VI EPA Method 7199	Nitrate-NO3 EPA Method 300.0	Sulfate EPA Method 300,0	Sulfide EPA Method 376.2	Ferric Iron EPA Method 6020	Manganese EPA Method 6020	Arsenic EPA Method 6020				
Groundwater 6	<0.002	47	73	<0.10	<0.08	0.0027	<0.002				
0% CaSx Control	51	51	130	<0.10	<0.08	0.044	<0.004				
9.5% CaSx	<0.2	47	130	110	<0.08	0.0034	<0.002				
5.0% CaSx	<2.0	<100	370	720	<0.4	0.043	<0.020				

				mg/kg			
Matrix : Soil	Chromlum VJ EPA Method 7199	Nitrate-NO3 EPA Method 300.0	Sulfate EPA Method 300.0	Suifide EPA Method 376.2	Ferric Iron EPA Method 6020	Manganese EPA Method 6020	Arsenic EPA Method 6020
Mixed Soil	83	9.5	NA	NA	7,100	NA	NA
0% CaSx Control	12	11	33	<l< th=""><th>5,100</th><th>74</th><th>0.71</th></l<>	5,100	74	0.71
0.5% CaSx	<0.2	7.8	37	<1	4,900	78	0.58
5.0% CaSx	<0.2	11	47	71	4,300	72	0.88

Notes: CaSx · Calcium Polysulfide mg/kg · milligrams per kilogram mg/L · milligrams per liter NA - not analyzed

< - not detected above the laboratory detection limits

SETTLEABILITY NOTES TREATABLITY STUDY

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

Time	Dose %	Observations
	0.5%	Yellow
Total Dans	1.0%	Yellow, quick floc
Initial Dose	2.5%	Yellow-orange
10:00	5.0%	Yellow-orange
	10.0%	Orange
	0.5%	0 mL- No Floc
	1.0%	1.3 mL Floc
10:30	2.5%	Floc forming, but no layer
	5.0%	Floc forming, but no layer
	10.0%	Floc forming, layer @ 10 mL
	0.5%	0
	1.0%	· 1 mL
10:45	2.5%	13 mL, very loose
	5.0%	25 mL
	10.0%	50 mL
	0.5%	0- cloudy yellow
	1.0%	0.5 mL- yellow, sticks to cone
11:00	2.5%	1 mL, solution orange, cloudy
	5.0%	1.5 mL, solution orange, clear
	10.0%	2.5 mL, solution orange, top 80% cloudy
	0.5%	0, cloudy yellow
	1.0%	0.5 mL, cloudy yellow
11:15	2.5%	0.7 mL, cloudy orange
	5.0%	1 mL, solution orange, clear
	10.0%	1.5 mL, solution orange, top cloudy
	0.5%	0, becoming less yellow
	1.0%	0.5 mL, cloudy yellow
11:30	2.5%	0.7, cloudy orange
	5.0%	1 mL, orange, clear
	10.0%	1.4 mL, orange, clear, cloudy top but clearing
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloud
	1.0%	0.35 mL cloudy yellow
11:45	2.5%	0.7 mL cloudy orange, clearing slightly
4.	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear

SETTLEABILITY NOTES TREATABLITY STUDY

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

Time	Dose %	Observations
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloud
	1.0%	0.35 mL cloudy yellow
12:00	2.5%	0.7 mL cloudy orange, opaque
	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloud
	1.0%	0.35 mL cloudy yellow
12:15	2.5%	0.7 mL cloudy orange, opaque
	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloudy
	1.0%	0.3 mL cloudy yellow
12:30	2.5%	0.7 mL cloudy orange, opaque
	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloudy
	1.0%	0.3 mL cloudy yellow
12:45	2.5%	0.7 mL cloudy orange, opaque
	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloudy
	1.0%	0.3 mL cloudy yellow
13:00	2.5%	0.7 mL cloudy orange, opaque
	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloudy
	1.0%	0.3 mL cloudy yellow
13:15	2.5%	0.7 mL cloudy orange, opaque
	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloudy
	1.0%	0.3 mL cloudy yellow
13:30	2.5%	0.7 mL cloudy orange, opaque
	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloudy
	1.0%	0.3 mL cloudy yellow
13:45	2.5%	0.7 mL cloudy orange, opaque
	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear

SETTLEABILITY NOTES TREATABLITY STUDY

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

Time	Dose %	Observations
	0.5%	0, 0.1 mL clear area at bottom, less yellow, cloudy
	1.0%	0.3 mL cloudy yellow
14:00	2.5%	0.7 mL cloudy orange, opaque
	5.0%	0.9 mL orange, clear
	10.0%	1.4 mL, orange, clear
	0.5%	0, no change
	1.0%	0.3 mL, no change
14:15	2.5%	0.7 mL, no change, slightly clearing
	5.0%	0.9 mL, no change
	10.0%	1.4 mL, no change
	0.5%	0, no change
	1.0%	0.3 mL, no change
14:30	2.5%	0.7 mL, clear orange
	5.0%	0.9 mL, no change
	10.0%	1.4 mL, no change
	0.5%	0, no change
	1.0%	0.3 mL, no change
14:45	2.5%	0.7 mL, no change
	5.0%	0.9 mL, no change
	10.0%	1.4 mL, no change
	0.5%	0, no change
	1.0%	0.3 mL, no change
15:00	2.5%	0.7 mL, no change
	5.0%	0.9 mL, no change
	10.0%	1.4 mL, no change

Notes: mL = millifiters Floc = flocculation

TABLE 7

SETTLEABILITY WATER ANALYTICAL DATA TREATABLITY STUDY

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

			m	g/L	
Sample ID	Sample Date	Arsenic (dissolved) EPA Method 6010B	Hexavalent Chromium EPA Method 7199	Iron (dissolved) EPA Method 6010B	Manganese (dissolved) EPA Method 6010B
Raw	09/15/05	< 0.05	0.76	0.03 J	< 0.002
0.5% CaSx	09/15/05	< 0.05	< 0.002	<0.02	0.006 J
1.0% CaSx	09/15/05	< 0.05	< 0.002	<0.02	< 0.002
2.5% CaSx	09/15/05	<50	< 0.002	<0.02	0.003 J
5.0% CaSx	09/15/05	0.16 F1A/J	< 0.002	<0.02	0.04 J
10% CaSx	09/15/05	< 0.05	< 0.002	< 0.02	<0.002

Notes:

CaSx - Calcium Polysulfide

FIA - The MRL is elevated because of matrix interferences requiring sample dilution

- J estimated concentration
- < Less than listed method detection limit (MDL)

ATTACHMENT A UTILITY CLEARANCE

0509141R
Public Storage
11600 Sherman Wy
No Hollywood CA.
MWH Americas. HOADA 1"=10" 01.1494 6W143 0 EV. DWP LJ. ELECTRIC = profosed Boring

Sterman ligt

ATTACHMENT B ANALYTICAL RESULTS FROM SOIL SAMPLING

October 11, 2005

Michael Flaugher MWH 3050 Saturn St., Suite 205 Brea, CA 92821

RE: Honeywell - North Hollywood, CA/Project #1890933.0401

Dear Michael:

Enclosed are the results of the samples submitted to our laboratory on September 14, 2005. The samples were sent out for partial analysis to our Redding facility. Please find their report (#DF758) attached. For your reference, these analyses have been assigned our service request number L0501641.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report. Your report contains III pages.

Columbia Analytical Services is certified for environmental analyses by the California Department of Health Services (certificate number: 1296A); NELAP (certificate number: 02115CA); Los Angeles County Laboratory ID (No. 10151); and Arizona Department of Health Services (License number: AZ0136 and AZ0544).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

ne Juderen

Sue Anderson Project Chemist

SA

1

Columbia Analytical Services, Inc.

Acronyms

	•
8015M	California DHS LUFT Method
ASTM	American Society for Testing and Materials
BOD	Biochemical Oxygen Demand
BTEX	Benzene/Toluene/Ethylbenzene/Xylenes
CAM	California Assessment Metals
CAS Number	Chemical Abstract Service Registry Number
CFC	Calorofluorocarbon
COD	Chemical Oxygen Demand
CRDŁ	Contract Required Detection Limit
D	Detected; result must be greater than zero.
DL	Detected; result must be greater than the detection limit.
DLCS	Duplicate Laboratory Control Sample
DMS	Duplicate Matrix Spike
DOH or DHS	Department of Health Services
ELAP	Environmental Laboratory Accreditation Program
EPA	U.S. Environmental Protection Agency
CC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
IC	Ion Chromatography
1CB	Initial Calibration Blank sample
ICP	Inductively Coupled Plasma atomic emission spectrometry
ICV	Initial Calibration Verification sample
LCS	Laboratory Control Sample
LUFT	Leaking Underground Fuel Tank
M	Modified
MBAS	Methylene Blue Active Substances
MDL . MRL	Method Detection Limit
MS	Method Reporting Limit Matrix Spike
MTBE	Methyl-tert - Butyl Ether
NA NA	Not Applicable
NC	Not Calculated
ND	None Detected at or above the Method Reporting/Detection Limit (MRL/MDL)
NTU	Nephelometric Turbidity Units
ppb	Parts Per Billion
ppm	Parts Per Million
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance/Quality Control .
RCRA	Resource Conservation and Recovery Act
RPD	Relative Percent Difference
SIM	Selected Ion Monitoring
SM	Standard Methods for the Examination of Water and Wastewater 18th Ed., 1992.
STLC	Solubility Threshold Limit Concentration
sw	Test Methods for Evaluating Solid Waste. Physical/Chemical MethodsSW-846,
	Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB.
TCLP	Toxicity Characteristics Leaching Procedure
TDS	Total Dissolved Solids
TPH	Total Petroleum Hydrocarbons
TRPH	Total Recoverable Petroleum Hydrocarbons
TSS	Total Suspended Solids
TTLC	Total Threshold Limit Concentration
VOA	Volatile Organie Analyte(s)
	Qualifiers
U	Undetected at or above MDL/MRL (PQL).
j	Estimated concentration. Analyte detected above MDL but below MRL (PQL).
В	Hit above MRL (PQL) also found in Method Blank.
E	Analyse concentration above high point of ICAL.
D	Result from dilution.
X	See case narrative.

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

MWH

Service Request No.: L0501641

Project:

Honeywell - North Hollywood, CA/1890933.0401 Date Received:

9/14/05

Sample Matrix:

Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS) and Sample Duplicate (DUP).

Sample Receipt

The samples were received for analysis at Columbia Analytical Services on 9/14/05. No discrepancies were noted upon initial sample inspection. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored at 4°C upon receipt at the laboratory.

Total Metals

All anomalies have been flagged and addressed in the metals Footnote Summary page.

Hexavalent Chromium by EPA Method 7199

The upper control criterion was exceeded in Duplicate Matrix Spike TS-1-30 (L0501641-003DMS). The matrix spike recovery and the associated Laboratory Control Samples were acceptable, which indicated the analytical batch was in control.

The accuracy of the spike recovery for samples TS-3-20 (L0501641-016MS/DMS) was reduced since the analyte concentration in the sample was disproportionate to the spike level. The RPD was outside of acceptance due to the heterogeneous nature of the matrix. The method control samples were acceptable; therefore, the data was approved.

Sulfate by EPA Method 9056

The Method Blanks, L050926-MB and L050927-MB, contained a trace hits of Sulfate. The Method Blank is prepared using baked sand, which was suspected of causing the trace level hits and is independent from the samples. The non-extracted Method Blank ran during the sequence was non-detect for all analytes down to the MDL, which indicated the hits were not due to the extraction water. Therefore, the sample data has not been affected.

re Chulesh 3 Date 10/11/05

3/28/06 104(e)

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:	Montgomery Watson Americas, Incorpor	rated Se	ervice Request:	L0501641	
Project No.:	1890933.0401				
Project Name:	Honeywell- North Hollywood, VA				
	Sample No.	Lab Sample ID.			
	TS-1-20	L0501641-001			
	TS-1-20D	L0501641-001D			
•	TS-1-20S	L0501641-001S			
	TS-1-20SD	L0501641-001SD		-	
	TS-1-25	L0501641-002			
	TS-1-30	L0501641-003			
	TS-1-35	L0501641-004			
	TS-1-40	L0501641-005			
	TS-1-45	L0501641-006			
	TS-1-50	L0501641-007			٠.
	TS-1-55	L0501641-008			•
	TS-1-60	L0501641-009			
	TS-2-20	L0501641-010			
	TS-2-25	L0501641-011			
	TS-2-30	L0501641-012			
	TS-2-35	L0501641-013			
	TS-2-40	L0501641-014			
	TS-2-45	L0501641-015			
Were ICP interelement corrections applied?			Yes/No	YES	
Were ICP backer	ound corrections applied?		Yes/No	YES	
If yes-were raw data generated before		•			
application of background corrections?		•	Yes/No	NO	
Comments:					
-					
than the condition	data package is in compliance with the terms and considerable above. Release of the data contained in this en nuthorized by the Laboratory Manager or the Man	s hardcopy data package and in	the computer-re	adable data :	for other submitted
Signature:	Defuller	Date:	ofulos		-
	COVER PAGE	4 IN			

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:	Montgomery Watson Americas, Incorpor	ateu Servic	e Request:	F0301041
Project No.:	1890933.0401			
Project Name:	Honeywell- North Hollywood, VA			
	Sample No.	Lab Sample ID.		
	TS-3-20	L0501641-016		
	TS-3-25	L0501641-017		
	TS-3-30	L0501641-018		
	TS-3-35	L0501641-019		
	TS-3-40	L0501641-020		
	TS-3-40D	L0501641-020D		
	TS-3-40S	L0501641-020S		
	TS-3-40SD	L0501641-020SD		
	TS-3-45	L0501641-021		
	TS-3-50	L0501641-022		
	TS-4-20	L0501641-023	-	
	TS-4-25	L0501641-024		
	TS-4-30	L0501641-025		
	TS-4-35	L0501641-026		
	TS-4-40	L0501641-027		
	TS-4-45	L0501641-028		
	TS-4-50	L0501641-029		
	TS-4-55	L0501641-030		
re ICP backgro	ound corrections applied?		Yes/No	YES
	raw data generated before	•		
•	of background corrections?		Yes/No	NO
nments:				
the conditions	ata package is in compliance with the terms and cond detailed above. Release of the data contained in this	hardcopy data package and in the o	omputer-rea	idable data subi
iskeile nas dee	n authorized by the Laboratory Manager or the Mana	ager's designee, as vertied by the 10	e Ruwing signs	turc.
	ælm.	10 /10		
nature:	Mulle	Date:		

INORGANIC ANALYSIS DATA SHEET

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units:

mg/Kg

Basis: WET

Sample Name: TS-1-20

Lab Code: L0501641-001

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	8.1	J
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	11400	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	138	

% Solids:

100.0

Client:

Montgomery Watson America, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell - North Hollywood,CA

Date Received:

09/14/05 mg/Kg

Matrix:

son

Sample Name: TS-1-25

Units:

WET Basis:

Lab Code: L0501641-002

Analyte		Analysis Method	PQL	MDL	Dil	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/11/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	12300	
Manganese	Total	6010B	1.0	0.4	- 1	09/28/05	10/3/05	176	

100.0

INORGANIC ANALYSIS DATA SHEET

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell-North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units:

mg/Kg

WET Basis:

Sample Name: TS-1-30

Lab Code: L0501641-003

Analyte	-	Analysis Method	PQL	MDL	Dil	Date Digested	Date Analyzed	Result	· Q	
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	מא	_	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	9100		
Manganese	Total	6010B	1.0	0.4	I	09/28/05	10/3/05	, 112		

% Solids:

100.0

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Date Collected: 09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received: 09/14/05

Matrix:

SOIL

Units: mg/Kg

Basis: WET

Sample Name: TS-1-35

Lab Code: L0501641-004

Analyte		Analysis Method	PQL	MDL	DiL	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	9230	
Manganesc	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	125	

% Solids:

100.0

-1-INORGANIC ANALYSIS DATA SHEET

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project Ne.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units:

mg/Kg

WET Basis:

Sample Name: TS-1-40

Lab Code: L0501641-005

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Anulyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	6780	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	9,5.	

% Solids:

100.0

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units:

mg/Kg

Basis: WET

Sample Name: TS-1-45

Lab Code: L0501641-006

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q .
Arsenic	Total	601 0B	10	8.0	1.	09/28/05	10/3/05	ND	
lron	Total	6010B	20	6.0	. 1	09/28/05	10/3/05	6780	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	83	

% Solids:

100.0

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05 09/14/05

Project Name:

Honeywell-North Hollywood, VA

Date Received:

mg/Kg WET

Matrix:

SOIL

Units: Basis:

Sample Name: TS-1-50

Lab Code: L0501641-007

Analyte	·	Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	10900	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	182	

% Solids:

100.0

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

 \mathbf{son}

Units:

mg/Kg Basis: WET

Sample Name: TS-1-55

Lab Code: L0501641-008

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	18200	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	240	

% Solids:

100.0

-1-INORGANIC ANALYSIS DATA SHEET

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05 mg/Kg

Matrix:

SOIL

Units:

WET Basis:

Sample Name: TS-1-60

Lab Code: L0501641-009

Analyte		Analysis Method	PQL	MDL	Dit	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	i	09/28/05	10/3/05	12200	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	149	

% Solids:

100.0

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No .:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units:

mg/Kg WET Basis:

Sample Name: TS-2-20

Lab Code: L0501641-010

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	7900	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	98	

% Solids:

100.0

INORGANIC ANALYSIS DATA SHEET

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05 mg/Kg

Matrix:

SOIL

Units:

Basis: WET

Sample Name: TS-2-25

Lab Code: L0501641-011

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	1
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	8640	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	112	

% Solids:

100.0

Comments:

16

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell-North Hollywood, VA

Date Received:

09/14/05 mg/Kg

Matrix:

son

Units:

Basis: WET

Sample Name: TS-2-30

Lab Code: L0501641-012

. Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	15000	
Manganese	· Total	6010B	1.0	0.4	1	09/28/05	10/3/05	149	

% Solids:

100.0

-1-INORGANIC ANALYSIS DATA SHEET

Client:

Montgomery Watson America, Incorporated

Service Request:

L0501641

Project Na.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell - North Hollywood, CA

Date Received:

09/14/05

Matrix:

SOIL

Units:

mg/Kg

Basis:

WET

Sample Name: TS-2-35

Lab Code: L0501641-013

Analyte		Analysis Method	PQL	MDL	DiL	Date Digested	Date Analyzed	Result	Q	
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/11/05	ND	Ī	
Iron	· Total	6010B	20	6.0	1	09/28/05	10/3/05	10200		
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	150		

% Solids:

100.0

Client:

Montgomery Watson America, Incorporated

Service Request: L0501641

Project No .:

1890933.0401

Date Collected: 09/14/05

Project Name:

Honeywell - North Hollywood, CA

Date Received: 09/14/05

Matrix:

SOIL

Units: mg/Kg

Basis: WET

Sample Name: TS-2-40

Lab Code: L0501641-014

Analyte		Analysis Method	PQL	MDL	DiL	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/11/05	ND	
Iron	Total	6010B	20	6.0	I	09/28/05	10/3/05	9870	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	129	

% Solids:

100.0

Comments:

13

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No .:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell-North Hollywood, VA

Date Received:

09/14/05

Matrix:

son

Units:

mg/Kg

Basis:

WET

Sample Name: TS-2-45

Lab Code: L0501641-015

Analyte		Analysis Method	PQL	MDL	DiL	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	7380	
Manganese	Total	6010 B	1.0	0.4	1	09/28/05	10/3/05	100	

% Solids:

100.0

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell-North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units:

mg/Kg

Basis: WET

Sample Name: TS-3-20

Lab Code: L0501641-016

Analyte		Analysis Method	PQL	MDL	Dil	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	10200	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	128	

% Solids:

100.0

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933,0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

son

Units: mg/Kg

Basis: WET

Sample Name: TS-3-25

Lab Code: L0501641-017

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q	
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	9.3	J	
Iron	Total	6010B	20	6.0	1	09/28/05	. 10/3/95	9640		
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	131		

% Solids:

100.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project Na:

1890933.0401

Date Collected: 09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received: 09/14/05

Matrix:

SOIL

Units: mg/Kg

WET Basis:

Sample Name: TS-3-30

Lab Code: L0501641-018

Analyte		Analysis Method	- PQL	MDL	Dil	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	10/3/05	6580	
Manganese	Tota)	6010B	1.0	0.4	1	09/28/05	10/3/05	94	

% Solids:

100.0

-1-INORGANIC ANALYSIS DATA SHEET

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No ::

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units:

mg/Kg

Basis: WET.

Sample Name: TS-3-35

Lab Code: L0501641-019

Analyte		Analysis Method	PQL	MDL.	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	10/3/05	ND	
lron .	Total	6010B	20	6.0	1	09/28/05	10/3/05	8230	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	104	

% Solids:

100.0

Client:

Montgomery Watson America, Incorporated

Service Request:

L0501641

Project No .:

1890933.0401

Date Collected:

09/14/05 09/14/05

Project Name:

Honeywell - North Hollywood, CA

Date Received:

Units: mg/Kg

Basis:

WET

Matrix:

SOIL

Sample Name: TS-3-40

Lab Code: L0501641-020

Analyte		Analysis Method	POL	MDL	Dil.	Date Digested	Date Analyzed	Result	0
Arsenic	Total		10	8.0	1	09/28/05	10/11/05	ND	Y
Iron	Total	6010B	20	6.0	1	09/28/05	9/30/05	10300	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	149	

% Solids:

100.0

Comments:

25

- **j** -INORGANIC ANALYSIS DATA SHEET

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units: mg/Kg Basis: WET

Sample Name: TS-3-45

Lab Code: L0501641-021

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6018B	10	8.0	1	09/28/05	9/30/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	9/30/05	7190	
Mangonese	Total	60 10B	1.0	0.4	1	09/28/05	9/30/05	95	

% Solids:

100.0

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933,0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05 mg/Kg

Matrix:

SOIL

Units;

Basis: WET

Sample Name: TS-3-50

Lab Code: L0501641-022

Analyte		Analysis Method	PQL	MDL	Díl.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	9/30/05	ND	
Iron	Total	6010B	. 20	6.0	1	09/28/05	9/30/05	7970	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	116	

% Solids:

100.0

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Date Collected: 09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received: 09/14/05

Matrix:

son

Units: mg/Kg

> WET Basis:

Sample Name: TS-4-20

Lab Code: L0501641-023

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	9/30/05	8.2	J
Iron	Total	-6010B	20	6.0	1	09/28/05	9/30/05	14200	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	176	

% Solids:

100.0

Comments:

28

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

ceived: 69/14/05 Únits: mg/Kg

Matrix:

SOIL

Basis: WET

Lab Code: L0501641-024

Sample Name: TS-4-25

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	9/30/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	9/30/05	12900	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	158	

% Solids:

100.0

Comments:

29

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933,0401

Date Collected:

09/14/65

Project Name:

Honeywell-North Hollywood, VA

Date Received:

09/14/03

Matrix:

SOIL

Units:

mg/Kg

Basis: WET

Sample Name: TS-4-30

Lab Code: L0501641-025

Analyte		Analysis Method	PQL	MDL	Dit	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	9/30/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05	9/30/05	12400	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	172	

% Solids:

100.0

Comments:

30

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units: Basis:

mg/Kg WET

COID

Sample Name: TS-4-35

Lab Code: L0501641-026

Analyte		Analysis Method	PQL	MDL	Dìl.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	9/30/05	ND	1
Iron	Total	6010B	20	6.0	ŀ	09/28/05	9/30/05	15100 -	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	. 195	

% Solids:

100.0

Comments:

31

Client:

Montgomery Watson America, Incorporated

Service Request:

L0501641

Project Na.:

1890933.0401

Date Collected:

69/14/05

Project Name:

Honeywell - North Hollywood, CA

Date Received:

09/14/05

Matrix:

son

Units: Basis:

mg/Kg WET

Sample Name: TS-4-40

Lab Code: L0501641-027

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	I	09/28/05	10/11/05	ND	
lron	Total	6010B	20	6.0	1	09/28/05	9/30/05	14800	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	180	
Sodium	Total	6010B	50	20	. 1	09/28/05	10/11/05	249	

% Solids:

100.0

Comments:

32

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

09/14/05

Matrix:

SOIL

Units:

mg/Kg

WET Basis:

Sample Name: TS-4-45

Lah Code: L0501641-028

Analyte		Analysis Method	PQL	MDL	DiL	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	9/30/05	ND	
Iron	Total	· 6010B	20	6.0	1	09/28/05	9/30/05	15200	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	187	

% Solids:

100.0

Comments:

33

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No :

1890933.0401

Date Coffected:

09/14/05 09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received:

mg/Kg

Matrix:

SOIL

Units: Basis:

WET

Sample Name: TS-4-50

Lab Code: L0501641-029

Analyte		Analysis Method	PQL	MDL	Dšl.	Date Digested	Date Analyzed	Result	Q	
Arsenic	Total	6910B	10	8.0	1	09/28/05	9/38/05	ND		
Iron	Total	6010B	20	6.0]	09/28/05	9/30/05	7620		
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	93		

% Solids:

100,0

Comments:

34

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Date Collected: 09/14/05

Project Name:

Honeywell- North Hollywood, VA

Date Received: 09/14/05

Matrix:

SOIL

Units: mg/Kg

Basis: WET

Sample Name: TS-4-55

Lab Code: 1.0501641-030

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzeil	Result	Q
Arsenic	Total	6010B	10	8.0	1	09/28/05	9/30/05	ND	
Iron	Total	6010B	20	6.0	1	09/28/05 -	9/30/05	9610	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	123	

% Solids:

100.0

Comments:

35

Client:

Montgomery Watson America, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Date Collected:

Project Name:

Honeywell - North Hollywood,CA

Date Received:

N/A N/A

Matrix:

SOIL

Units:

mg/Kg

Basis: WET

Sample Name: Method Blank

Lab Code: MB050928S-1

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10.0	8.0	1	09/28/05	10/11/05	ND	1
Iron	Total	6010B	20.0	6.0	1	09/28/05	10/3/05	ND	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	10/3/05	ND	

% Solids:

100.0

Comments:

36

Client:

Montgomery Watson Americas, Incorporated

Service Request:

L0501641

Project No.:

1890933.0401

Date Collected:

N/A

Project Name:

Honeywell-North Hollywood, VA

Date Received:

N/A Units: mg/Kg

Matrix:

son

Basis: WET

Sample Name: Method Blank

Lab Code: MB050928S-2

Analyte		Analysis Method	PQL	MDL	Dil.	Date Digested	Date Analyzed	Result	Q
Arsenic	Total	6010B	10.0	8.0	1	09/28/05	9/30/05	ND	
Iron	Total	6010B	20	6	1	09/28/05	9/30/05	ND	
Manganese	Total	6010B	1.0	0.4	1	09/28/05	9/30/05	ND	

% Solids:

100.0

Comments:

37

Analytical Report

MATRIX SPIKE/DUPLICATE MATRIX SPIKE SUMMARY

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Units: mg/Kg

Project Name:

Honeywell- North Hollywood, VA

Basis: WET

Matrix:

son

% Solids:

100.0

Sample Name: TS-1-20SD

Lab Code: L0501641-001SD

	Prep			Spike l	Level	Sample	Spike	Result	Percent	Recovery	% Rec Acceptance	Result
Analyte	Method	Method	PQL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Notes
Arsenic	EPA 3050	6010B	10.0	100	100	8.1	92.9	97.4	84.8	89.3	75 - 125	
Iron	EPA 3050	6010B	20	500	500	11394	12346	12423	NC	NC	75 - 125	M7
Manganese	EPA 3050	6010B	1.0	50.0	50.0	138.5	194.6	194.8	112	113	75 - 125	

Analytical Report MATRIX SPIKE/DUPLICATE MATRIX SPIKE SUMMARY

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Units: mg/Kg

Project Name:

Honeywell- North Hollywood, VA

Basis: WET

Matrix:

SOIL

% Solids:

100.0

Sample Name: TS-3-40SD

Lab Code: L0501641-020SD

	Prep			Spike l	Level	Sample	Spike	Result	Percent	Recovery	% Rec Acceptance	Result
Analyte	Method	Method	PQL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Notes
Arsenic	EPA 3050	6010B	10.0	100	100	ND	108.6	104.0	108.6	104	75 - 125	
Iron	EPA 3050	6010B	20.0	500	500	10265.3	10046.5	9998.8	NC	NC	75 - 125	M7
Manganese	EPA 3050	6010B	1.0	50	50	149.4	193.3	199.1	88	99	75 - 125	

-6-DUPLICATES

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Units: mg/Kg

Project Name:

Honeywell-North Hollywood, VA

Basis: WET

Matrix:

SOIL

% Solids: 100.0

Sample Name: TS-1-20D

Lab Code: L0501641-001D

Analyte	Control Limit	Sample (S)		С	Duplicate (D)		С	RPD	Q	Method
Arsenic	0-20		8.1	J	-	8.0	U			6010B
Iron	0-20	1	1393.7		15	876.7		32.9	*	6010B
Manganese	0-20		138.5			161.3		15.2		6010B

-6-**DUPLICATES**

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Units: mg/Kg

Project Name:

Honeywell- North Hollywood, VA

Basis: WET

Matrix:

SOIL

% Solids: 100.0

Sample Name: TS-1-20SD

Lab Code: L0501641-001SD

Analyte	Control Limit	Sample (S)	C	Duplicate (D)	С	RPD	Q	Method
Arsenic	0-20		92.9	97.4		4.7		60±0B
Iron	0-20	12	2340	12423		0.7		60±0B
Manganese	0-20	1	94.6	194.8		0.1		6010B

-6-DUPLICATES

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Units: mg/Kg

Project Name:

Honeywell- North Hollywood, VA

Basis: WET

Matrix:

SOIL

% Solids: 100.0

Sample Name: TS-3-40D

Lab Code: L0501641-020D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	C	RPD	Q	Method
Arsenic	0-20	8.0	U	8.	0 U			6010B
Iron	0-20	10265.3		9846.	4	4.2		6010B
Manganese	0-20	149.4	Γ	142.	5	4.7		6010B

- 6 -DUPLICATES

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Units: mg/Kg

Project Name:

Honeywell- North Hollywood, VA

Basis: WET

Matrix:

SOIL

% Solids: 100.0

Sample Name: TS-3-40SD

Lab Code: L0501641-020SD

Analyte	Control Limit	Sample (S)	C	Duplicate (D)		С	RPD	Q	Method
Arsenic	0-20	1	08.6		104.0		4.3		6010B
Iron	0-20	100	46.5		9998.8		0.5		6010B
Manganese	0-20		93.3		199.1		3.0		6010B

-7-LABORATORY CONTROL SAMPLE

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933,0401

Project Name:

Honeywell-North Hollywood, VA

		•		%		Acceptance		Analytical	
Anatyte	Units	True Value	Result	C Recovery	Qual	Limits	Date	Time	Method
Sample ID:	LCS0509	28S-1							
Arsenic	mg/Kg	100.0	102.0	102		75.0 - 114.0	10/03/05	15:27	6010B
Iron	mg/Kg	500.0	483.3	97		75.0 ~ 125.0	10/03/05	15:27	6010B
Manganese	mg/Kg	50.0	48.1	96		75.0 - 125.0	10/03/05	15:27	6010B

-7 -LABORATORY CONTROL SAMPLE

Client:

Montgomery Watson Americas, Incorporated

Service Request: L0501641

Project No.:

1890933.0401

Project Name:

Honeywell- North Hollywood, VA

	Anaiyte	Units	True Value	Result .	С	% Recovery	Qual	Acceptance Limits	Date	Analytical Time	Method
-	Sample ID:	LCS0509	28S-2								
	Arsenic	mg/Kg	100	103		103		75.0 - 114.0	09/30/05	13:56	6010B
	Iron	mg/Kg	500	512		102		75.0 - 125.0	09/30/05	13:56	6010B
	Manganese	mg/Kg	50	51		102		75.0 - 125.0	09/30/05	13:56	6010B
									11. 11		0

Columbia Analytical Services

Footnote Summary

Client:

Montgomery Watson Americas, Incorpora

Service Request: L0501641

Project No.:

1890933,0401

Project Name:

Honcywell- North Hollywoo

			An	alytical				
Sample ID	Client ID		Date	Tin	ne Run Numbe	er Batch	Туре	Parameter
Footnote:	7]	•	RPD out	•	e limits. The l	LCS was ac	ceptable; therefore, data was
L0501641-001D	TS-1-20D		10/03/05	15:57	1003052	050928S-1	DUP	lron
Footnote:	J]	Description:	Estimate	ed concentration.	The result is l	ess than th	e PQL but greater than the MDL
L0501641-001	TS-1-20		10/03/05	15:32	1003052	050928S-1	SAM	Arsenic
L0501641-017	TS-3-25		10/03/05	17:47	1003052	0509285-1	SAM	Arsenic
L0501641-023	TS-4-20		09/30/05	14:55	9300501	050928S-2	SAM	Arsenic
Footnote:	M.7]			ulated due to rel he LCS was accep	- 49		i of sample analyte conquared to the s approved.
L0501641-001S	TS-1-20S		10/03/05	15:37	1003052	050928S-1	MS	Iron.
L0501641-001SD	TS-1-20SD		10/03/05	15:42	1003052	050928S-1	MSD	Iron
L0501641-020S	TS-3-40S		09/30/05	14:06	93 00 501	050928S-2	MS	Iron
L0501641-020SD	TS-3-40SD		09/30/05	14:11	9300501	050928S-2	MSD	Iron

Analytical Report

Client:

MWH

Project:

Honeywell - North Hollywood, CA/1890933.0401 Soil Sample Matrix:

Service Request: L0501641 Date Collected: 9/14/05

Units: mg/Kg (ppm)

Date Received: 9/14/05

Chromium, Hexavalent

Prep Method:

EPA 3060A

7199

Analysis Method:

Basis: Wet

Test Notes:

Sample Name	Lab Code	PQL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TŚ-1-20	L0501641-001	0.4	0.09	1	9/20/05	9/22/05	5.9	
TS-1-25	L0501641-002	2	0.5	5	9/20/05	9/22/05	38	
TS-1-30	L0501641-003	0.8	0.18	2	9/20/05	9/22/05	15	
TS-1-35	L0501641-004	0.4	0.09	1	9/20/05	9/22/05	14	
TS-1-40	L0501641-005	2	0.5	5	9/20/05	9/22/05	20	
TS-1-45	L0501641-006	0.4	0.09	l	9/20/05	9/22/05	13	
TS-1-50	L0501641-007	2	0.5	5	9/20/05	9/22/05	26	
TS-1-55	L0501641-008	0.4	0.09	1	9/20/05	9/22/05	15	
TS-1-60	L0501641-009	0.4	0.09	1	9/20/05	9/22/05	8.6	
TS-2-20	L0501641-010	0.4	0.09	1	9/20/05	9/22/05	6.6	
TS-2-25	L0501641-011	0.4	0.09	1	9/20/05	9/23/05	15	
TS-2-30	L0501641-012	0.4	0.09	1	9/20/05	9/23/05	11	
TS-2-35	L0501641-013	8	1.8	20	9/20/05	9/23/05	120	
TS-2-40	L0501641-014	8	1.8	20	9/20/05	9/23/05	170	
TS-2-45	L0501641-015	4 .	0.9	10	9/20/05	9/23/05	49	
Method Blank	L050920-MB	0.4	0.09	1	9/20/05	9/22/05	ND	

LA/020597p

L0501641WET.NK3 - Sample 10/7/05

Ene Juders Date: 10/7/05

47

Page No.:

QA/QC Report

Client:

MWH

Project: LCS Matrix: Honeywell - North Hollywood, CA/1890933.0401

Soil

Service Request: L0501641

Date Collected: NA

Date Received: NA Date Extracted: 9/20/05

Date Analyzed: 9/22/05

Laboratory Control Sample/Duplicate Laboratory Control Sample Summary. Chromium, Hexavalent

Sample Name:

Duplicate Lab Control Sample L050920-LCS L050920-DLCS Units: mg/Kg (ppm)

Basis: Wet

· Lab Code: Test Notes:

Analyte

Percent Recovery

97

CAS Relative Acceptance Percent Result LCS DLCS LCS DLCS LCS DLCS Limits Difference Notes

Chromium, Hexavalent

EPA 3060A

Prep

Method

7199

Analysis

Method

True Value

3.82

Result

96

80-120

2

DLCS/020597p

L0501641WET.NK3 - DLCS 10/7/05

The Onders

Page No.:

3/28/06 104(e) 0291

QA/QC Report

Chent:

MWH

Service Request: L0501641

Project: Sample Matrix:

Honeywell - North Hollywood, CA/1890933.0401
: Soil

Date Collected: 9/14/05 Date Received: 9/14/05

Date Extracted: 9/20/05
Date Analyzed: 9/22/05

Matrix Spike/Duplicate Matrix Spike Summary Chromium, Hexavalent

Sample Name:

TS-1-30

L0501641-003MS

L0501641-003DMS

Units: mg/Kg (ppm)

Basis: Wet

Lab Code: Test Notes:

Darage Daggery

											CAS	Relative	
	Prep	Analysis		Spike	Level	Sample	Spike	Resuit			Acceptance	Percent	Result
Analyte	Method	Method	PQL	MS	DMS	Result	MŞ	DMS	MS	DMS	Limits	Difference	Notes
P													
Chromium, Hexavalent	EPA 3060A	7199	0.8	4.00	4.00	15.5	21.2	20.5	142	125	. 75-125	3	MIA

MIA

MS outside of acceptance limits. The LCS was acceptable; therefore, data was approved.

Approved By:

Date:

L050(64) WET.NK3 - DMS 10/7/05

49

Page No.:

QA/QC Report

Client:

MWH

Project:

Honeywell - North Hollywood, CA/1890933.0401

Sample Matrix: Soil

Service Request: L0501641

Date Collected: 9/14/05

Date Received: 9/14/05

Date Extracted: 9/20/05 Date Analyzed: 9/22/05

Duplicate Summary Chromium, Hexavalent

Sample Name:

TS-1-30

Lab Code:

L0501641-003DUP

Units: mg/Kg (ppm)

Basis: Wet

Test Notes:

Analyte	Prep Method	Analysis Method	PQL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Chronium, Hexavalent	EPA 3060A	7199	0.8	15.5	15.6	15.6	<1	

DUP/020597p

L0501641WET.NK3 - DUP 10/7/05

50

Page No.:

3/28/06 104(e) 0293

Analytical Report

Client:

Service Request: L0501641

Date Collected: 9/14/05

Project: Sample Matrix: Honeywell - North Hollywood, CA/1890933.0401 Soil

Date Received: 9/14/05

Chromium, Hexavalent

Prep Method:

EPA 3060A

Analysis Method:

7199

Units: mg/Kg (ppm) Basis: Wet

Test Notes:

Sample Name	Lab Code	PQL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TS-3-20	L0501641-016	1.6	0.4	4	9/26/05	9/27/05	34	
TS-3-25	L0501641-017	8	1.8	20	9/26/05	9/28/05	140	
TS-3-30	L0501641-018	8	1.8	20	9/26/05	9/28/05	190	
TS-3-35	L0501641-019	8	1.8	20	9/26/05	9/28/05	93	
TS-3-40	L0501641-020	8	1.8	20	9/26/05	9/28/05	130	
TS-3-45	L0501641-021	8	1.8	20	9/26/05	9/28/05	170	
TS-3-50	L0501641-022	0.8	0.18	2	9/26/05	9/28/05	22	
TS-4-20	L0501641-023	0.4	0.09	1	9/26/05	9/27/05	1.3	
TS-4-25	L0501641-024	0.4	0.09	1	9/26/05	9/27/05	0.6	
TS-4-30	L0501641-025	4	0.9	10	9/26/05	9/28/05	85	
TS-4-35	L0501641-026	0.4	0.09	1	9/26/05	9/27/05	3.6	
TS-4-40	L0501641-027	0.4	0.09	1	9/26/05	9/27/05	3.5	
TS-4-45	L0501641-028	0.4	0.09	1	9/26/05	9/27/05	19	
TS-4-50	L0501641-029	8	1.8	20	9/26/05	9/28/05	230	
TS-4-55	L0501641-030	8	1.8	20	9/26/05	9/28/05	130	
Method Blank	L050926-MB	0.4	0.09	1	9/26/05	9/27/05	ND	

1A/020597p

Ene Julerso Date: 10,

51

Page No:

L0501641WET.NK4 - Sample 10/7/05

QA/QC Report

Client:

MWH

Project:

Honeywell - North Hollywood, CA/1890933.0401

LCS Matrix:

Soil

Service Request: L0501641

Date Collected: NA

Date Received: NA

Date Extracted: 9/26/05

Date Analyzed: 9/27/05

Laboratory Control Sample/Duplicate Laboratory Control Sample Summary Chromium, Hexavalent

Sample Name:

Duplicate Lab Control Sample

Units: mg/Kg (ppm)

Basis: Wet

Lab Code: Test Notes:

Analyte

Percent Recovery

CAS Relative Acceptance Percent Result Limits Difference Notes

Prep

Method

L050926-DLCS

Analysis

Method

Result

LCS DLCS LCS DLCS LCS DLCS

Chromium, Hexavaler

EPA 3060A

L050926-LCS

7199

4.00

True Value

4.00 4.23 106

109

80-120

3

52

Approved By: DLCS/020597p

L0501641WET.NK4 - DLCS 10/7/05

3/28/06 104(e) 0295

QA/QC Report

Client:

MWH

Service Request: L0501641

Project:

Honeywell - North Hollywood, CA/1890933.0401

Date Collected: 9/14/05

Sample Matrix:

Date Received: 9/14/05 Date Extracted: 9/26/05

Date Analyzed: 9/27/05

Matrix Spike/Duplicate Matrix Spike Summary Chromium, Hexavalent

Sample Name:

TS-3-20

Units: mg/Kg (ppm)

Lab Code:

L0501641-016MS

L0501641-016DMS

Basis: Wet

Test Notes:

Percent Recovery

											CAS	Relative	
	Prep	Analysis		Spike	Level	Sample	Spike	Result			Acceptance	Percent	Result
Analyte	Method	Method	PQL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Chromium, Hexavalent	EPA 3060A	7199	1.6	4.00	4.00	34.4	41.6	65.9	180	788	75-125	45	M3A/M4B

МЗА

The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is

disproportionate to spike level. The method control sample recovery was acceptable.

M4B

RPD outside of acceptance limits. The most probable cause of this anomaly is a heterogeneous sample matrix.

The LCS was acceptable; therefore, data was approved.

Approved By:

DMS#020597p

53

Page Na :

QA/QC Report

Client:

MWH

Project:

Honeywell - North Hollywood, CA/1890933.0401

Sample Matrix: Soil

Service Request: L0501641

Date Collected: 9/14/05 Date Received: 9/14/05

Date Extracted: 9/26/05 Date Analyzed: 9/27/05

Duplicate Summary Chromium, Hexavalent

Sample Name:

TS-3-20

Lab Code:

L0501641-016DUP

Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

Duplicate Relative Percent Analysis Sample Sample Result Prep Average Difference Result Notes Method Method Result Analyte PQL 2 Chromium, Hexavalent EPA 3060A 7199 1.6 34.4 33.7 34.1

Approved By:

L0501641WET.NK4 - DUP 10/7/05

54

Page No.:

Analytical Report

Client: Project: MWH

Honeywell - North Hollywood, CA/1890933.0401

Service Request: L0501641 Date Collected: 9/14/05

Sample Matrix:

Soil

Date Received: 9/14/05

Sulfate

Prep Method:

METHOD

Units: mg/Kg (ppm) Basis: Wet

Analysis Method:

9056

Test Notes:

Αl

Sample Name	Lab Code	PQL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
						•		
TS-1-20	L0501641-001	20	1	1	9/26/05	9/27/05	27	
TS-1-25	L0501641-002	20	1	1	9/26/05	9/27/05	34	
TS-1-30	L0501641-003	20	1	1	9/26/05	9/27/05	28	
TS-1-35	L0501641-004	20	1	1	9/26/05	9/27/05	22	
TS-1-40	L0501641-005	20	1	1	9/26/05	9/27/05	10	J
TS-1-45	L0501641-006	20	1	1	9/26/05	9/27/05	7	J
TS-1-50	L0501641-007	20	1	1	9/26/05	9/27/05	25	
TS-1-55	L0501641-008	20	1	1	9/26/05	9/27/05	.6	. 1
TS-1-60	L0501641-009	20	1	1	9/26/05	9/27/05	6	, J
TS-2-20	L0501641-010	20	1	1	9/26/05	9/27/05	54	
Method Blank	L050926-MB	20	1	1	9/26/05	9/27/05	3	J

Αl

Sample preparation: 1:10 (weight:volume) deionized water extraction.

Queleron

Estimated concentration. The result is less than the PQL but greater than the MDL.

IA/020597p

L0501641WET.NKL - Sample 10/6/05

55

QA/QC Report

Client:

MWH

Project:

Honeywell - North Hollywood, CA/1890933.0401

LCS Matrix:

Soil

Service Request: L0501641

Date Collected: NA Date Received: NA

Date Extracted: 9/26/05

Date Analyzed: 9/27/05

Laboratory Control Sample Summary

Sulfate

True

Value

100

Sample Name: Lab Code:

Lab Control Sample

L050926-LCS

Units: mg/Kg (ppm)

Basis: Wet

Test Notes:

CAS

Percent

Recovery Acceptance

Limits

Result

Analyte Sulfate

METHOD

Prep

Method

9056

Analysis

Method

109

Result

109

Percent

Recovery

Notes

86-110

Approved By: LCS/020597p

L0501641WET.NK1 - LCS 10/6/05

56

3/28/06 104(e) 0299

QA/QC Report

Client:

MWH

Service Request: L0501641

Project:

Honeywell - North Hollywood, CA/1890933.0401

Date Collected: 9/14/05

Sample Matrix:

Soil

Date Received: 9/14/05 Date Extracted: 9/26/05 Date Analyzed: 9/27/05

Matrix Spike/Duplicate Matrix Spike Summary

Sulfate

Sample Name:

TS-1-25

Units: mg/Kg (ppm)

Lab Code: Test Notes:

L0501641-002DMS L0501641-002MS

Basis: Wet

											CAS	Relative	
	Prep	Analysis		Spike	Level	Sample	Spike	Result			Acceptance	Percent	Result
Analyte	Method	Method	PQL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Sulfat e	METHOD	9056	20	100	100	33.8	131	131	97	97	83-119	<1	
ourate.	1.1011100	, , ,				0.010						=	

Approved By:

57

L0501641WET.NK1 - DMS 104005

Page No:

QA/QC Report

Client:

MWH

Service Request: L0501641

Project:

Honeywell - North Hollywood, CA/1890933.0401

Date Collected: 9/14/05 Date Received: 9/14/05

Sample Matrix: Soil

Date Extracted: 9/26/05

Date Analyzed: 9/27/05

Duplicate Summary Sulfate

. Sample Name:

TS-1-25

Lab Code:

L0501641-002DUP

Units: mg/Kg (ppm)

Basis: Wet

Test Notes:

Analyte	· .	Prep Method	Analysis Method	PQL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Sulfate		METHOD ·	9056	20	33.8	33.1	33.5	2	

DUP/020597p

LOSGIGATWET.NKT - DUP TOWNS

58

Page No.:

Analytical Report

Client: Project: MWH

Honeywell - North Hollywood, CA/1890933.0401

Service Request: L0501641 Date Collected: 9/14/05

Sample Matrix:

Soil

Date Received: 9/14/05

Sulfate

Prep Method:

METHOD

Units: mg/Kg (ppm)

Analysis Method:

9056

Basis: Wet

Result

Test Notes:

Αl

Sample Name	Lab Code	PQL	MDL	Dilution Factor	Date Extracted	Date Analyz
TS-2-25	L0501641-011	20	1	1	9/27/05	9/27/05

Sample Name	Lab Code	PQL	MDL	Factor	Extracted	Analyzed	Result	Notes
TS-2-25	L0501641-011	20	1	1	9/27/05	9/27/05	61	
TS-2-30	L0501641-012	20	1	1	9/27/05	9/27/05	51	
TS-2-35	L0501641-013	20	1	ŀ	9/27/05	9/27/05	41	
TS-2-40	L0501641-014	20	1	1	9/27/05	9/27/05	130	
TS-2-45	L0501641-015	20	1	1	9/27/05	9/27/05	63	
TS-3-20	L0501641-016	20	1	1	9/27/05	9/27/05	84	
TS-3-25	L0501641-017	20	1	1	9/27/05	9/27/05	75	
TS-3-30	L0501641-018	20	1	!	9/27/05	9/27/05	63	
TS-3-35	L0501641-019	20	1	l	9/27/05	9/27/05	39	
TS-3-40	L0501641-020	20	1	1	9/27/05	9/27/05	92	
TS-3-45	L0501641-021	20	1	1	9/27/05	9/27/05	52	
TS-3-50	L0501641-022	20	1	ì	9/27/05	9/27/05	10	j
TS-4-20	L0501641-023	20	. 1	1	9/27/05	9/27/05	200	
TS-4-25	L0501641-024	20	1	1	9/27/05	9/27/05	59	
TS-4-30	L0501641-025	20	1	1	9/27/05	9/27/05	140	
TS-4-35	L0501641-026	20	7.3	l	9/27/05	9/27/05	160	
TS-4-40	L0501641-027	20	1	1	9/27/05	9/27/05	170	
TS-4-45	L0501641-028	20	l	1	9/27/05	9/27/05	120	
·TS-4-50	L0501641-029	20	1	1	9/27/05	9/27/05	77	
TS-4-55	L0501641-030	20	1	1	9/27/05	9/27/05	69	
Method Blank	L050927-MB	20	1	1	9/27/05	9/27/05	3	

AI

Sample preparation: 1:10 (weight:volume) deionized water extraction.

Estimated concentration. The result is less than the PQL but greater than the MDL.

Approved By: 1 AA020597p

L0501641WET.NK2 - Sample 10/6/05

Page No.:

QA/QC Report

Client:

MWH

Honeywell - North Hollywood, CA/1890933.0401

Service Request: L0501641

Project: LCS Matrix:

Soil

Date Collected: NA

Date Received: NA Date Extracted: 9/27/05

Date Analyzed: 9/27/05

Laboratory Control Sample Summary

Sulfate

Sample Name: Lab Code:

Lab Control Sample

L050927-LCS

Units: mg/Kg (ppm)

Basis: Wet

· Test Notes:

CAS Percent Recovery

Acceptance Prep Analysis True Percent Result Method Analyte Method Value Result Limits Notes Recovery

Sulfate

METHOD

9056

100

104

104

86-110

Approved By: LCS/020597p

L0501641WET.NK2 - LCS 10/6/05

60

QA/QC Report

Client:

MWH

Honeywell - North Hollywood, CA/1890933.0401

Service Request: L0501641

Project:

Date Received: 9/14/05

Date Collected: 9/14/05

Sample Matrix:

Soil

Date Extracted: 9/27/05 Date Analyzed: 9/27/05

Matrix Spike/Duplicate Matrix Spike Summary

Sulfate

Sample Name:

TS-3-40

L0501641-020MS

L0501641-020DMS

Units: mg/Kg (ppm)

Basis: Wet

Lab Code: Test Notes:

Percent Recovery

CAS Relative Spike Result Acceptance Percent Result Prep Analysis Spike Level Sample MS DMS Difference Notes DMS MS DMS Limits Method MS Result Analyte Method 100 100 91.7 192 191 100 83-119 <1 METHOD 9056

61

L0501641WET.NX2 - DMS 10/6/05

Page No.:

QA/QC Report

Client: Project:

Sample Matrix:

MWH

Soil

Honeywell - North Hollywood, CA/1890933.0401

Service Request: L0501641 Date Collected: 9/14/05

Date Received: 9/14/05

Date Extracted: 9/27/05 Date Analyzed: 9/27/05

Matrix Spike/Duplicate Matrix Spike Summary

Sulfate

Sample Name:

TS-3-45

Lab Code:

L0501641-021MS

L0501641-021DMS

Units: mg/Kg (ppm)

Basis: Wet

Test Notes:

Percent Recovery

											CAS	Relative	
	Prep	Analysis		Spike	Level	Sample	Spike !	Result			Acceptance	Percent	Result
Analyte	Method	Method	PQL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
-									٠.				
Sulfate	METHOD	9056	20	100	100	51.8	151	152	99	100	83-119	<1	

Approved By:

DMS/020597p

62

L0501641WET.NX2 - DMS (2) 10/6/05

QA/QC Report

Client:

MWH

Project:

Honeywell - North Hollywood, CA/1890933.0401

Sample Matrix: Soil

Service Request: L0501641

Date Collected: 9/14/05 Date Received: 9/14/05 Date Extracted: 9/27/05

Date Analyzed: 9/27/05

Duplicate Summary Sulfate

Sample Name:

TS-3-40

Lab Code:

L0501641-020DUP

Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

Duplicate Relative Prep Sample Percent Analysis Sample Result Result Average Difference Notes Method PQL Result Method Analyte Sulfate METHOD 9056 20 91.7 91.2 91.5 <1

Approved By:

L0501641WET.NKZ - DUP 10/6/05

63

Page No.:

3/28/06 104(e) 0306

10501641

			Honeywell Chain Of Custody / Analysis Request											coc.	37070-	2E00								
			Privileged &	Confident	Ja 12 Militar				Site Na	Die:	NOR	тнко	LLY										No.	
			EDD To:						Locatio	on of S	Ite.	Honey	well -	North 1	follyw	ood, C	allforn	a Proj	EC.				CAS	v
ame, co , adu	resu)					7			THE STATE OF	Prese	rynlive											NSW SKORE	See 7 Proper	0000 100
er/Michael f	laucher				401		10			0	-	_	0	0-	0	0	0	0	0 0	- D	0			的與
Suite 205, Br	ea, CA 9287	31	Standard -	Principal Copy.			10			3	30	6	72					-				ije: le		· ·
		234-3307		uthorized for						4	200	8	ř			į		İ						
		39-3397	- NOONS						£ 155	0	اعت	PA 3	7 4			-								
2	17.41		I week.						San P	3	33	Đ	(E	Ξ		ĺ						75/1/51V		
Benny L	erigna		Next Day .						18		34	Ā	90	꽃				ļ				inaintain		
Same	le Ideniiño	ation	Sample Date	Sample Time	Sample Type			e or Cons	House of the Park	Hex.C	I ROAJ.M	200	SULF	DC (
Start Depth	&nd Depth								Unlis	algo.	me/L	ngt	me/L	1/80	T/Or	ug/L	ug/L.	ug/L.				i de mo		
		13-1-20	9.14.05	0921		Soic					V	V	~	/								/	da sheka Lina	.1
		TS-1-25	9.14.05	0924		Solu				V	1	~	/	~								2		
		T5-1-30	9.14.05	0927		Soir				2	V	V	ζ.	/								3	1-	
		15-1-35	9.14.05	0931		Soil				1	~	~	~	1								×		
		13-1-40	9.14.05	0934		SOIL				1	امرز	V	~	1								5		
		TS-1-45	9,14.05	0939		Soil				سرد	~	~	>	1								6		
		TS-1-50	9.14.05	0942		Soil			Ш	⁄ر	/	V	~	~								7		
	1	TS-1-55	9.14.05	0945		Soil				1/2	1	V	<u> </u>											
		TS-1-60	9.14.05	0951		Soil				V	1	V	<u>~</u>	~								9		
		15-2-20	9.1405	1109		Suc				4	2	٧	~	~		ļ						10	1000	
		T5-2-25	9.14.05	1112		Soil				~	~	4	-	~								11		
<u> </u>		15-2-30	9.14.05	11 (6		Solc				اسا	1	V	>			_ 1				<u> </u>		12		4
uz: A N	DRY	AUALYSIS		-																				
	à.																							
/			апу МУ	VK			1_					прапу				Conditi	Qn			Cast	ndy Sea	ls Intaci		
am	٠	Date/Time	9.14.05	- 16/4	MC					Dale/T			9-1	105°	_		<u> </u>							
1			any CAD	· · · · ·	Received	4:1						npany	Ç	45	\rightarrow					Cust	ody Seal	is intact		
1		Date/Time	9145	1770	h.	$\mathbf{A} \mathbf{X}$				Date/T	ime		ali	11/2	~~	Cooler	Temp.		3					
	Suite 205, 56 mwhglobal co ir (7) (4) 646-20 Benny D Some Start Depth (ft)	mwhgtobal com (1714) 646-2007 / (7) 4) Benny Delighi Sample Identific Start And Depth (ft) (ft)	Suite 205, Frea. CA 9282 muhapiobal com (7/14) 646-2007 / (7/14) 936-3397 Tot Michael Flaugher Benny DeHight Sample Identification Start	### Berry Delight Sample IDD To: ### Sample IDD IDD IDD IDD IDD IDD IDD IDD IDD ID	### Printered & Congany ### Company Printered & Congany Prin	### BID TO: #### Sampler: CNA CAPTE ###################################	### Privilegal & Condide ### Condide ### Condide #### Condide #### Condide ###################################	### Privileged & Consideration Privileged &	### Sample Sample	Privilegal & Condition	Privale Scale Control Site Name Decation of State Decation Decation of State Decation of Sta	Privipagi & Gondo Busis Sile Name Nor	Privipal Confidential Confide	Principle (20 and 1921) Sample Sa	Priorycal & Condition Site Name: NORTHROLLY	Size No. and/resa Somple Somple	Size No. Address Some No. No.	Profite Sample Sample	Pricing and Signature Sample Samp	Size Name: Northeriol Nor	Size Name: NORTHHOLLY North Hollwood California Project	## Honeywell Chain of Custody / Analysis Request Principal & Gondender Sile Name NorthHoley	### Company Color Control of Custody / Analysis Request Principal 26 Optional Material Species Specie	Size Name: NORTHHOLLY 100 10

				Honeywell Chain Of Custody / Analysis Request										500 600 600 600 600 600 600 600 600 600	OR ONL	37070.pe35							
	* Walter 10			Printeged,	Confident	lal - lat le			S	ite Na	me:	NORT	нно	LLY							Logi	Proj a	
d				EDD To:					1	ocatio	n of 51	te:	Honey	nvel) -	North He	ollywood	, Califo	raia Pro	ojec .			開發	CA3
ent Contact: (nam-				Sampler	CNA	ncan	nw			到的	_	valive	0		0				0 . 0	Tol	o Tobis	Talkin Sec	(SEE 1 HOOD 33 C
hard Thomasser/ /H	Michael Fla	naper		PO#	1890935 C	40:		10	-		0	الد	-	0	-	-	-	-	V 1. 1/	-		深情识	的一种
O Saturn Street, Sal			1	Standard .							3	30	6	5						1 1	222	SINCH AND	A SULTANIA DE LA COLOR DE LA C
hael.flaugher@mw tuct Phone/Cell: (7			16-3397	Rush Charges A 2 weeks -	nipolited lov	•			200		€	ACENT (SOIOS)	8	276	- 1					1 1			
dcops Report To:	Michael Fl	nigher		7							~(e	PAR	(em 3000)	(EFA 3			1			1			25
ake To:	Benny Del	lghi		- i week					0.00	S S	אונושם) מקימים	33	10000	a) :	13	1					7719	ntal nod	A
		-		Next Day -					-		3	35	The last	JOL	3						C	AE514	
				Sample	Sample	Sample		Sample Purpose	Cant.	1	Hek. Ch	1600	Surre	SULFIDE	DC(415.1)						5154		
	Sample	Identifics End	ition	Date	Time	Тург		Pur pone		2010	-		V)	yı.	657	100	9 (5.3)	3.2	-	1			
Location ID	Depth (ft)	Depth (ft)	Fleld Sample ID							inits	mg/l.	S	- North	N	No.	T/S/L	MP/L	No.		1		Alapa	
TS-2			TS-2-35	9.14.05	1119		SOIL				~	1	1	V	1						/	3	
15.2			TS-2-40	9.14.05	1127		Soic				ارز	V	4	~	4						1	4	i.e.
35-2			15-2-45	9,14.05	1129		Soic				ز	اس	1	1	<u> </u>		-				/	5	7
15-3			15-3-20	9.14.05	1223		Soil				سما	~	4	U	1						1	6	
T5-3			TS-3-25.	9.14.05	1228		Solu				v	· 1	V	6	4						1	7	Va., 1, .,
15-3			T9-3-30	9,14.05	123	<u> </u>	Soic				1	~	<u></u>	<u>اسا</u>	~						1	18	
TS-3			T5-3-35	9.14.05	1239		Sole				1	~	~	~	4						11	19	eta (
T5-3			T5-3-40	9,14.05	1243		Soic				'رن	سرز '	_	<u>~</u>	4						12	0	6.3
15-3			75-3-45	9,14,05	1247	<u> </u>	SOIL				مر	/	1	V	/		}					//	
TS-3			TS-3-50	9.14.05	1254		Soir				1		<u>~</u>	V	/							22	4
T5-4			TS-4-20	9,14.05	1451		Suc				مرز	1	1	<u></u>	4		į					73	
45-4			TS-4-25	9.14.05	1454		SUL	0.			1		1	V			1					24	
ecial Instructions:	₩ NO	Dey	AVACYSIS		*																		
inquished by			Сотра			11/ 11	1	_				os Cor	ripany				dition			Cusloo	dy Sens Int	act	<u> </u>
	son		Date/Time	9.14-05	1718		Max				Date/T				18		oler Terr	φ. <u>.</u>			do Carlo de		1
inquished by		-	Comp	101		Hecenord	- C	VI			Date C		npany		45		odition		or-	Custos	dy Senis int	201	L
Kalmir	one, 1 = H		Dale/Time	9140	5 173C	\$ 17N	JM.	\sim	7		Date/T	1 tipe		19/1	4107	Coc	oier Ten	ıp.	3				

3/28/06 104(e)

10501641

				Honeywell Chain Of Custody / Analysis Request										22	o, A	37070-	\$ F.o.g							
				Privileged &	Confident	阿拉拉斯	1		Site	Name	NOR	тнно	LLY								1025	设设有机	33	Mary are so to
/C				EDD To:					Loc	atlan of	Site:	Honey	well -	North H	llywo	nd, Call	forni	Projec			140	Jω	CAS	
lent Contact: (nam chard Thomasaer/ WH ISO Seturn Street, Su	vichael Fla	noper		Sampler: PO# Analysis Turn Standard -	1890935 .c		Tu)	10		0	-	0	2) 0	0	0.	0 0	9 1	0 0	0	0	0			
chael.flaugher@mw ninci Phone/Call: (7 redcopy Report Tu	14) 646-200 Michael Fi	7 / (714) 9 nugher	36-3397	Resh Chargos / 2 weeks -	kutharized for -					TOWN (C'FN 714)	LEFA LOIDE	Em	(BPA 1762)	(1)								inteline		
alce To:	Benny Del			Sample	Sample Time	Sample Type			of Corn.	Hex. Orto	ICOS, MANTER	NUTHE	Partho	DC(415.1					Į.		T. 1.2.		(
Location fD	Sample Start Depth (f1)	End Depth (R)	Fleid Sample ID	Date	Citae	2.2			unit Uali		100	mg/l.	mg/L.	Š	76	ag)C	Man	ngr.					Number	
TS-4			TS-4-30	9,1405	1456		Sac			V	1		4	1							12	5		
73-4			15-4-35	9,14-05	1457		SOIL			1	V	~	~	V								26		
95-4			15-4-40	9.54.05	1459		Soic			V	1	~	·/-	/								27	<u> </u>	
75-4			15-4-45	9.14.05	1502		SOIL			1	1	~	\				,					28		
TS-4			T5-4-50	9,14.05	1202		Sore			1	1		/	1			-				1	29	in the second	
T5-4			15-4-55	9.14.05	1507		Soil			V	/	/	\								1	30		
				2,14.65													-				(1) (1) (1) (1) (1) (1) (1) (1)		Trans.	
				•																	1	100		
																					¥2.			
																							h	
																							44.	
cial Instructions:	₩ NO	DRY	ZIZYJAUA		-											,								
Inquisped by		•	Compi	1			, , .			9 14	6 20	mpuny	MWH			ondillar				Custor	ly Seals I	ntact		
	wv		Date/Time	9,14.05	,	V~	\M <i>₹</i>			Date/	Time		[ب]	<u> 8</u>		ooler Te			-,					
Indulated by			Comps Date/Time	" CAS		Roccived b) LT		Date/		трану		25		ondition opier Te			1	Custoc	ly Scals li	ntagt	<u> </u>	
	lat		Ditt() line	KIMO	2 1,130	47YA	\mathcal{M}	$\frac{1}{\sqrt{2}}$		DAGE	TITHE		914	35		ooler (6	amp.		3_					

SAMPLE RECEIPT FORM

Service Request No: L050 64 Client: HONEY WELL
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X VPS Other Courier
Chain of Custody filled out accurately? Yes No (See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No (See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact?
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial # 0912 -TB-
Temperature of sample(s)/cooler °C Temp Blank? Y or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Appropriate Preservation? Yes No
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2- Ferrous Fe 24HR pH Odor Cr+6 48HR BOD ↓ Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s):
-1->-30=1-SOIL SLEEVE 1-1602 dr 1-402 dr Comments 1602 & 402 der provided m-leib.
COMMOND TO COL OCC PIONICE PIONICE.
·/
Initials, Date, Time LK 9/16/07 1318 13/28/06 104(6) 1318 13/28/06 104(6) 1318 13/28/06 104(6) 1318 13/28/06 104(6) 1

Ms. Sue Anderson CAS/Canoga Park 6925 Canoga Avenue Canoga Park, CA 91303-3102

Columbia Analytical Services Report
MWH Laboratories
DF050758/DF758
L0501641

October 4, 2005

Submitted by:

Douglas Burnett

Project Manager/Client Services

The test results provided in this data package meet the requirements of the NELAC Standards unless noted in the case narrative report.

This report contains a total of 50 pages.

NELAP Accredited

ACIL Seaf of Excellence Award

Current CAS Redding Accreditation Programs

Federal and National Programs

- U.S Air Force, Air Force Center for Environmental Excellence (AFCEE)
 Approved laboratory for Wastewater and Hazardous Waste
- U.S. Army Corps of Engineers MRD, HTRW Mandatory Center of Expertise Validated for Wastewater and Hazardous Waste
- Department of the Navy, Naval Facilities Engineering Service Center (NFESC)
 Approved laboratory for Wastewater and Hazardous Waste

State and Local Programs

- State of Arizona, Department of Health Services
 Approved laboratory for Hazardous Waste
 Lab ID# AZ0604
- State of Arkansas, Department of Environmental Quality
 Approved laboratory for Wastewater and Hazardous Waste
 Lab ID# None
- State of California, Department of Health Services, National Environmental Laboratory Accreditation Program (NELAP)

Approved laboratory for Drinking Water, Wastewater and Hazardous Waste Lab ID# 01105CA

- Los Angeles County Sanitation District Approved laboratory for Wastewater Lab ID# 10243
- State of Florida, Department of Health (NELAP)

Approved Environmental Testing Laboratory for Wastewater and Hazardous Waste Lab ID# E87203

• State of Kansas, Department of Health and Environment (NELAP)

Approved laboratory for Hazardous Waste Lab ID# E-10323

Lab ID# E-10323

- State of Massachusetts, Department of Environmental Protection Approved laboratory for Drinking Water, Wastewater Lab ID# M-CA025
- State of Oklahoma, Department of Environmental Quality
 Approved laboratory for General Water Quality/Sludge Testing
 Lab ID# 9952
- State of Oregon, Department of Human Resources, Health Division (ORELAP)
 Approved laboratory for Drinking Water, Wastewater, and Hazardous Waste
 Lab ID# CA200004
- State of Utah, Department of Health, Division of Laboratory Services (NELAP)
 Approved laboratory for Wastewater and Hazardous Waste
 Lab ID# OUAL1
- State of Washington, Department of Ecology, Environmental Laboratory Accreditation Program
 Approved laboratory for Wastewater and Hazardous Waste
 Lab ID# C037
- State of Wisconsin, Department of Ecology

Approved laboratory for Wastewater and Hazardous Waste Lab ID# 999767340

69

2

Inorganic Data Qualifiers Cations

C (Concentration) Qualifier:

- B -- The reported value obtained was less than the CRDL, but greater than or equal to the MDL/IDL.
- U The value was less than the MDL/IDL or was not detected.

Q Qualifier:

- E The reported value is estimate because of interference.
- M Duplicate injection precision was not met. (Two analyses of the sample did not agree).
- N Spiked sample recovery not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- Post digestion spike for Graphite Furnace AA analyses is out of control limits (85% 115%).
 while sample absorbance is less than 50% of spike absorbance.
- Duplicate analysis not within control limits.
- + Correlation coefficient for the MSA is less than 0.995.

M (Method) Qualifier:

- P ICP
- A Flame AA
- F Furnace AA
- CV Cold Vapor
- AV Automated Cold Vapor
- NR -- Analyte was not required
- C Manual spectrophotometric

RRL (Reliable Reporting Limit):

RRL - The reliable reporting limit was established to qualify analytical results for which no CRDL was Available, or did not apply. The RRL is a concentration approximately four times the Method Detection Limit (MDL).

Sample ID Cross-reference Table

			ld Sample; L(ternal Admin)		Control	Sample; M	IS = Mati	rix Spil	(e; MSD	= Matrix	Spike D	uplicate;
DF 758001	FS	TS-1-20	09/14/05		00.21	Cail						
DF758002	FS	TS-1-25	09/14/05									
DF758002	FS	TS-1-30	09/14/05								•	
DF758004	FS	TS - 1 - 35	09/14/05									
DF758005	FS	TS-1-40	09/14/05									
DF758096	FS	TS-1-45	09/14/05									
DF758007	FŠ	TS-1-50	09/14/05									
DF758008	FS	TS-1-55	09/14/05									
DF758009	FS	TS-1-60	09/14/05									
DF758010	ES	TS-2-20	09/14/05									
DF 758011	FS	TS-2-25	09/14/05									
DF758012	FS	TS · 2 - 30	09/14/05									
DF758013	FS	TS-2-35	09/14/05									
DF758014	FS	TS-2-40	09/14/05	09/14/05	11:27 9	Soil						
DF758015	FS	TS-2-45	09/14/05	09/14/05	11:29 9	Soil						
DF758016	FS	TS - 3 - 20	09/14/05	09/14/05	12:23 9	Soil						٠.
DF758017	FS	TS-3-25	09/14/05	09/14/05	12:28 9	Soil						
DF758018	FS	TS-3-30	09/14/05	09/14/05	12:31 9	Soil						
DF758019	FS	TS-3-35	09/14/05	09/14/05	12:39 9	Soil						
DF758020	FS	TS-3-40	09/14/05	09/14/05	12:43 9	Soil						
DF758021	FS	TS-3-45	09/14/05									
DF 758 022	FS	TS-3-50	09/14/05									
DF758023	FS	TS-4-20	09/14/05									
DF758024	FS	TS-4-25	09/14/05									
DF758025	FS	TS-4-30	09/14/05									
DF758026	FS	TS-4-35	09/14/05									
DF758027	FS	TS-4-40	09/14/05									
DF758028	FS	TS-4-45	09/14/05									
DF758029	-FS	TS-4-50	09/14/05									
DF758030	FS	TS -4-55	09/14/05	09/14/05	15:07 S	501 l						

The above lab sample ID's and cross reference information apply to samples as received by the laboratory. Modifiers to the lab sample ID may be added for internal tracking purposes. Any modified sample ID will be reflected in the appropriate case narrative only.

CASE NARRATIVE

Client:

CAS/Canoga Park

Service Request No.:

DF758

Project:

MWH Laboratories

Date Received:

9/14/05

Sample Matrix:

Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables.

Sample Receipt

Thirty soil samples were received for analysis at Columbia Analytical Services on 9/14/05. No discrepancies were noted upon initial sample inspection. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters (Methods TOC by Walkley-Black and 9030B/9034)

No anomalies associated with the analysis of these samples by the above-mentioned methods were observed.

Approved by:

72-

Date:

6

CHAIN OF CUSTODY DOCUMENTATION

Intra-Network Chain of Custody 6925 Canoga Avenue Canoga Park, CA 91303 · 818-587-5550 · FAX 818-587-5555

 CAS Contact: Sue Anderso 				
	CAS	Contact	Suc	Anderso

Project Name: Project Number: Honeywell - North Hollywood, CA

1890933.0401

Project Numberi Project Manager: Company:	1890933.0401 Michael Flaugher MWH								SULFIDE 9034	WB_TOC_T Walkley Black
Lab Code	Cilent Sample 1D	# of C	Cont,	Matrix	Samp Date	le Tlme	Date Received	Send To	SC	wB walk
L0501641-001	TS-1-20	1	1	Soil	09/1,4/05	0921	. 09/14/05	REDDING	п	П
L0501641-002	TS-1-25	2		Soil	09/14/05	0924	09/14/05	REDDING	II	11
L0501641-003	TS-1-30	3))	Soil	09/14/05	0927	09/14/05	REDDING	n	II
1.0501641-004	TS-1-35	4		Şail	09/14/05	0931	09/14/05	REDDING	п	II
L0501641-005	TS-1-40	.5		Soil	09/14/05	0934	09/14/05	REDDING	п	II
L0501641-006	TS-1-45	6	(Soil	09/14/05	0939	09/14/05	REDDING	п	п
L0501641-007	TS-1-50	7		Soil	09/14/05	0942	09/14/05	REDDING	II	п
1.0501641-008	TS-1-55	8		Soil	09/14/05	0945	.09/14/05	REDDING	u	II
1,0501641-009	TS-1-60	9		Soil	09/14/05	0951	09/14/05	REDDING	п	II
L0501641-010	TS-2-20	10		Soil	09/14/05	1109	09/14/05	REDDING	п	11
L0501641-011	TS-2-25		1	Soil	09/14/05	1112	09/14/05	REDDING	п	II
L0501641-012	TS-2-30	12	1	Soil	09/14/05	1116	09/14/05	REDDING	п	п
L0501641-013	TS-2-35	B	1	Soil	09/14/05	1119	09/14/05	REDDING	11	n

Special Instructions/Comments	Turnaround Requirements	Report Requirements	Invoice Information
	RUSH (Surcharges Apply)	1. Results Only	
•.	PLEASE CIRCLE WORK DAYS 1 2 3 4 5	II. Results + QC Summaries III. Results + QC and Calibration Summaries	PO# L0501641
	STANDARD	IV. Data Validation Report with Raw Data	
	Requested FAX Date:	PQL/MDL/// Y	Bill to
	Requested Report Date: 10/07/05	EDD Y Honeywell EIM	

Relinquished	By:	كنكأ
∞		

1830 Received By:

Airbill Number:

3/28/06 104(e) 0318

Intra-Network Chain of Custody 6925 Canoga Avenue · Canoga Park, CA 91303 · 818-587-5550 · FAX 818-587-5555

CAS Contact:	Sue Anderson

Project Name:

Honeywell - North Hollywood, CA

Project Number: Project Manager: 1890933.0401 Michael Flaugher

Company:

MWH

B_TOC_T Ikley Black ULFIDE 9034

				Samp	le	Date		SI	Walk
Lnb Code	Client Sample 1D	# of Cont.	Matrix	Date	Time	Received	Send To		
L0501641-014	TS-2-40	14	Soil	09/14/05	1127	09/14/05	REDDING	u	II
L0501641-015	TS-2-45	15	Soil	. 09/14/05	1129	09/14/05	REDDING	п	II
L0501641-016	TS-3-20	16	Soil	09/14/05	1223	09/14/05	REDDING	II	и
L0501641-017	TS-3-25	1311	Soil	09/14/05	1228	09/14/05	REDDING	п	n
1.0501641-018	TS-3-30	18	Soil	09/14/05	1231	09/14/05	REDDING	11	11
L0501641-019	TS-3-35	19 1	Soil	09/14/05	1239	09/14/05	REDDING	п	п
1.0501641-020	TS-3-40	20 NSMSh	Soil	09/14/05	1243	09/14/05	REDDING	II	II
L0501641-021	TS-3-45	201	Soil	09/14/05	1247	09/14/05	REDDING	II	п
1.0500091-022	TS-3-50	22 1	Soil	09/14/05	1254	09/14/05	REDDING	Π	u
L0501641-023	TS-4-20	23 1	Soil	09/14/05	1451	09/14/05	REDDING	ш	п
L0501641-024	TS-4-25	24 1	Soil	09/14/05	1454	09/14/05	REDDING	II.	п
1.0501641-025	TS-4-30	25 1	Soil	09/14/05	1456	09/14/05	REDDING	II	п
[.0501641-026	TS-4-35	26 1	Soil	09/14/05	1457	09/14/05	REDDING	п	11

Special Instructions/Comments	Turnaround Regulrements	Report Requirements	Involce Information
	RUSH (Surcharges Apply)	1. Results Only	
	PLEASE CIRCLE WORK DAYS	II. Results + QC Summaries	PO#
al	1 2 3 4 5	III. Results + QC and Calibration Summaries	L0501641
	STANDARD	IV. Data Validation Report with Raw Data	
	Requested FAX Date:	PQLMDUJ Y	Bill to
	Requested Report Date: 10/07/05	EDD - Y Honeywell EIM	

_						
Relinquished By:	Kb	9/16/05	1830	Received By:		 Airbill Number:

Intra-Network Chain of Custody 6925 Canoga Avenue · Canoga Park, CA 91303 · 818-587-5550 · FAX 818-587-5555

1502

1505

09/14/05

09/14/05

CAS Contact: Sue Anderson

Project Name:

Honeywell - North Hollywood, CA

of Cont.

Project Sumbers Project Manager: 1890933.0401 Michael Flatigher

Client Sample ID

Company:

Lab Code

1.0501641-027

L0501641-028

1.0501641-029

SULFIDE - 9034

MWH

TS-4-40

TS-4-45

TS-4-5()

WB_TOC_T Walkley Black SULFIDE 9034 Sample Date Received Send To Time 09/14/05 1459 09/14/05 REDDING 11 H

п

П

П

 \mathbf{II}

of the samples per project requirements.

of the samples per project requirements.

L0501641-016 Need to run MS/MSD & Sample Duplicate (1 per 20) on one

REDDING

REDDING

L0501641-030	18-4-35			Soil	09/14/05	1507	09/14/05	REDDING		II	П	
Test Comments												
SULFIDE - 9034		L0501641-001		/MSD & Sample Duplicate (1 per project requirements.	per 20) on one	SULFI	DE - 9034	I	.0501641-002			SD & Sample Duplicate (1 per 20) on one project requirements.
.SULFIDE- 9034		L0501641-003		MSD & Sample Duplicate (1 per project requirements.	per 20) on one	SULFII	DE - 9034	I	-0501641-004			SD & Sample Duplicate (1 per 20) on one project requirements.
SULFIDE - 9034		L0501641-005		/MSD & Sample Duplicate (1 per project requirements.	per 20) nn onc	SULFII	DE - 9034		.0501641-000			SD & Sample Duplicate (1 per 20) on one project requirements.
SULFIDE 9034		L0501641-007		/MSD & Sample Duplicate (1 per project requirements.	per 20) on one	SULFII	DE - 9034	1	.0501641-008			SD & Sample Duplicate (1 per 20) on one project requirements.
SULFIDE - 9034		L0501641-009		/MSD & Sample Duplicate (1 per project requirements.	per 20) on one	SULFII	DE - 9034		.0501641-016			SD & Sample Duplicate (1 per 20) on one project requirements.
SULFIDE - 9034		L0501641-01 t		/MSD & Sample Duplicate (1 per project requirements.	per 20) on one	SULFII	DE - 9034	1	.0501641-01:			SD & Sample Dupliente (1 per 20) on one project requirements.
SULFIDE - 9034		L0501641-013	Need to run MS	MSD & Sample Duplicate (1	per 20) on one	SULFI	DE - 9034	1	.0501641-01	4 Need to	run MS/M	ISD & Sample Duplicate (1 per 20) on one

Date

09/14/05

09/14/05

Matrix

Soil

Soil

Soil

of the samples per project requirements.

of the samples per project requirements.

L0501641-015 Need to run MS/MSD & Sample Duplicate (1 per 20) on one SULFIDE - 9034

Special Instructions/Comments	Turnaround Requirements	Report Requirements	Invoice Information
	RUSH (Surcharges Apply)	I. Results Only	
	PLEASE CIRCLE WORK DAYS	11. Results + QC Summaries	PO#
	1 2 ,3 4 5	III. Results + QC and Calibration Summaries	L0501641
	STANDARD	IV. Data Validation Report with Raw Data	
·	Requested FAX Date:	FOLMDLU Y	Bill to
·	Requested Report Date: 10/07/05	EDD Y Honeywell EIM	

Relinquished By	KU 9	16/05	1830
-		,	

Received By:

Airbill Number:

CAS Contact: Sue Anderson

Test Comments					
SULFIDE - 9034	L0501641-017	Need to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements.	SULFIDE - 9034	1.0501641-018	Need to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements.
SULFIDE - 9034	L0501641-019	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	SULFIDE - 9034	L0501641-020	Need to run MS/MSD & Sample Duplicate (1 per 20) on one
		of the samples per project requirements.			of the samples per project requirements
SULFIDE - 9034	1.0501641-021	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	SULFIDE - 9034	1.0501641-022	Need to run MS/MSD & Sample Duplicate (1 per 20) un one
SULFIDE - 9034	7.0501641.022	of the samples per project requirements.	SULFIDE - 9034	10001641 034	of the samples per project requirements. Need to run MS/MSD & Sample Duplicate (1 per 20) on one
20LFIDE - 9034	1.0501041-025	Need to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements.	SULFIDE - 9034	W301041-024	of the samples per project requirements.
SULFIDE - 9034	1.0501641-025	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	SULFIDE - 9034	1.0501641-026	Need to run MS/MSD & Sample Duplicate (1 per 20) on one
00111120-2024	2,,201041-023	of the samples per project requirements.	3021152 3034	20,3717711020	of the samples per project requirements.
SULFIDE - 9034	L0501641-027	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	SULFIDE - 9034	L0501641-028	Need to run MS/MSD & Sample Dupllente (1 per 20) on one
`.		of the samples per project requirements.			of the samples per project requirements
SULFIDE - 9034	L0501641-029	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	SULFIDE - 9034	L0501641-030	Need to run MS/MSD & Sample Duplicate (1 µer 20) on one
		of the samples per project requirements.			of the samples per project requirements.
WB_TOC_T - Walkley Bl	lack L0501641-001	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	WB_TOC_T - Walkley Black	L0501641-002	Need to run MS/MSD & Sample Duplicate (1 per 20) on one
WD TOC T Well-level	1.0001641.000	of the samples per project requirements.	WD TOO TO WELL DIST		of the samples per project requirements
WB_TOC_T - Walkley B	idek 1,0201041-003	Nocd to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements.	WB_TOC_T - Walkley Black	1.0501641-004	Need to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements.
WB_TOC_T - Walkley B	lack L0501641-005	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	WB_TOC_T - Walkley Black	1.0501641-006	Need to run MS/MSD & Sample Duplicate (1 per 20) nn one
		of the samples per project requirements.			of the samples per project requirements.
WB_TOC_T - Walkley Bi	ack L0501641-007	Need to rim MS/MSD & Sample Displicate (1 per 20) on one	WB_TOC_T - Walkley Black	1.0501641-008	Need to run MS/MSD & Sample Duplicate (1 per 20) on our
		of the samples per project requirements.			of the samples per project requirements.
WB_TOC_T - Walkley Bi	lack L0.501641-009	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	WB_TOC_T - Walkley Black	1.05016-11-010	Need to run MS/MSD & Sample Dupliente (1 per 20) on one
	, '	of the samples per project requirements.			of the samples per project requirements.
WB_TOC_T - Walkley BI	ack 1.0501641-011	Need to run MS/MSD & Sample Dutplicate (1 per 20) on one	WB_TOC_T - Walkley Black	L0501641-012	Need to run MS/MSD & Sample Duplicate (1 per 20) on one
WB_TOO T - Walkley B	look	of the samples per project requirements. Need to run MS/MSD & Sample Duplicate (1 per 20) on one	WB_TOC_T - Walkley Black	1.0501641.014	of the samples per project requirements. Need to run MS/MSD & Sample Duplicate (1 per 20) on one
WB_1000 t - Whikitey B	IACK 1203010414113	of the samples per project requirements.	WPTIOCTI - Walkies Black	1.0.001041-014	of the samples per project requirements.
WB_TOC_T - Welkley B	lack 1.0501641-015	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	WB_TOC_T - Walkley Black	L0501641-016	Need to run MS/MSD & Sample Duplicate (1 per 20) on one
		of the samples per project requirements.	,		of the samples per project requirements.
WB_TOC_T - Walkley B	lack L0501641-017	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	WB_TOC_T - Walkley Black	1,0501641-018	Need to run MS/MSD & Sample Duplicate (1 per 20) on one
		of the samples per project requirements.			of the samples per project requirements.
WB_TOC_T - Walkley B	lack L0501641-019	Need to run MS/MSD & Sample Duplicate (1 per 20) on one	WB_TOC_T · Walkley Black	L0501641-020	Need to run MS/MSD & Sample Duplicate (1 per 20) nu que
		of the samples per project requirements.		* * * * * * * * * * * * * * * * * * * *	of the samples per project requirements.
WB_TOC_T - Walkley B	lack L0501641-021	Need to run MS/MSD & Sample Duplicate (1 per.20) on one	WB_TOC_T - Walkley Black	L0501641-022	Need to run MS/MSD & Sample Digitionte (1 per 20) on one
		of the samples per project requirements.			of the samples per project requirements.

Special Instructions/Comments	Turnaround Requirements	Report Requirements	Invalce Information
	RUSH (Surcharges Apply)	I. Results Only	
	PLEASE CIRCLE WORK DAYS	II. Results + QC Summaries	PO#
	1 2 3 4 5	III. Results + QC and Calibration Summaries	L0501641
	STANDARD	iV. Data Validation Report with Raw Data	
*	Requested FAX Date:	POLMDL/J Y	Bill to
	Requested Report Date: 10/07/05	EDD Y Honeywell EIM	

0321	28/06 104(
	(e)

Airbill Number:

Intra-Network Chain of Custody

6925 Conoga Avenue • Canoga Park, CA 91303 • 818-587-5550 • FAX 818-587-5555

CAS Contact: Sue Anderson

Test Comments

WB_TOC_T - Walkley Black WB_TOC_T - Walkley Black

WB TOC T - Walkley Black

WB TOC T - Walkley Black

L0501641-023 Need to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements. L0501641-025 Need to run MS/MSD & Saniple Duplicate (1 per 20) on one

of the samples per project requirements. L0501641-027 Need to run MS/MSD & Sample Duplicate (1 per 20) on one

of the samples per project requirements. L0501641-029 Need to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements

WB_TOC_T - Walkley Black

WB_TOC_T · Walkley Black

WB_TOC_T - Walkley Black

WB TOC T . Walkley Black

L0501641-024 Need to run MS/MSD & Sample Duplicate (1 per 20) oit oile of the samples per project requirements.

L0501641-026 Need to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements.

L0501641-028 Need to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements.

L0501641-030 Need to run MS/MSD & Sample Duplicate (1 per 20) on one of the samples per project requirements.

79

Special Instructions/Comments Turnaround Requirements Report Requirements Involce Information I. Results Only RUSH (Surcharges Apply) PLEASE CIRCLE WORK DAYS II. Results + QC Summaries PO# 1 2 3 4 5 L0501641 III. Results + QC and Calibration Summaries _STANDARD IV. Data Valldation Report with Raw Data Bill to Requested FAX Date: PQL/MDL/J <u>Y</u> Requested Report Date: 10/07/05 _Y_ EDD Honeywell FIM

		1
Relinquished By:	\overline{C}	لمدلما
4		

Received By:

Airbill Number

3/28/06 104(e)

Rev. 8/18/2004/46:

Redding, CA 96003 Phone: (530) 244-5262 Fax #: (530) 244-4109

	COOLER RECEIPT FORM	V
Projec	t/Client: Mul A ()	Batch No.: DE 758
1.	Cnoler(s)/Sample(s) received on:	Shipped via:
	Shipping Bill #(s): [6] 21 3302 298 2992	# of Coolers/Packages
2.	Radiological Screening by:	Acceptable Rejected
3.	Custody scals on outside of cooler: If yes, where? Front Rear Lt Side Rt Side	YES NO N/A
	Seals intact:	YES (NO
	COOLER/SAMPLE PROCESS	ING .
4,	Sample Processing/Tagging by:	
5.	Cooler(s)/Sample(s) Temp's: 4.00 400 (or) Temp. Blank (If included):	
6.	Type of parking material (circle): Ice Bue Ice Bubble Wrap Bul Other:	oble Bags Zip Locks Webbing
7.	Custody papers properly filled out (ink, signed, dated, released, etc.)?	YES NO
8.	Containers arrived in good condition (not broken, leaking, etc.)?	(YES) NO
9.	Samples received with adequate holding time remaining to conduct analys	is? (TES) NO
10.	Container labels complete (i.e. analysis, preservation, date/time, etc.)?	THES NO
11.	Container labels and tags agree with custody papers?	CYES NO
12.	Correct types of containers used for the tests indicated?	(XES) NO
	a.) Adequate sample received? If not, note on Exception Report	TES NO
13.	Containers supplied by:	CAS (Other)
14.	Preserved containers received with the appropriate preservative?	YES NO MIA
	pH: (or) See pH log.	
15.	VOA viais free of air bubbles?	YES NO (NIA)
16.	Trip Blank preparation date:	CAS Other N/A
17.	Volatile Soil samples: Encores or Plugs in Visis	
	Freezer or GC/MS Date	Time: N/A

80

See Exception Report for discrepancies.

GENERAL CHEMISTRY

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Basis: Dry

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-1-20

Lab Code:

DF758-001

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	1	09/29/05 11:00	799	J -

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758 Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-1-25

Lab Code: Test Notes: DF758-002

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	1	09/22/05 12:00 09/29/05 11:00	90 250	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-1-30

Lab Code:

DF758-003

Test Notes:

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkiey Black	2000	250	1	09/29/05 11:00	250	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-1-35

Lab Code:

DF758-004

Test Notes:

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg	SW9034	200	90	1	09/22/05 12:00	90	U
	mg/Kg	Walkley Black	2000	250	1	09/29/05 11:00	250	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

Inorganic Parameters

Sample Name:

TS-1-40

SOIL

Lab Code:

DF758-005

Test Notes:

Basis: Dry

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	l	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	1	09/29/05 11:00	250	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-1-45

Lab Code:

DF758-006

Test Notes:

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	1	09/22/05 12:00 09/29/05 11:00	90 250	ប ប

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

Inorganic Parameters

Sample Name:

TS-1-50

SOIL

Lab Code:

DF758-007

Test Notes:

Basis: Dry

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	9 0	i	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	I	09/29/05 11:00	320	J

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758 Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-1-55

Lab Code:

DF758-008

Test Notes:

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	j L	09/22/05 12:00 09/29/05 11:00	90 480	IJ

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-1-60

SOIL

Lab Code:

DF758-009

Basis: Dry

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	i	09/29/05 11:00	320	J

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name: Lab Code:

TS-2-20

DF758-010

Basis: Dry

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg	SW9034	200	90)	09/22/05 12:00	90)
	mg/Kg	Walkley Black	2000	250	1 ·	09/29/05 11:00	639	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

Inorganic Parameters

Sample Name:

TS-2-25

SOIL

Lab Code: DF758-011

Test Notes:

Basis: Dry

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	ı	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	1	09/29/05 11:00	250	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Basis: Dry

Inorganic Parameters

Sample Name:

TS-2-30

Lab Code:

DF758-012

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	1	09/22/05 12:00 09/29/05 11:00	90 639	IJ

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix: SOIL Service Request: DF758

Date Collected: 09/14/05

Basis: Dry

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-2-35

Lab Code:

DF758-013

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	ı	09/29/05 11:00	250	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number :

LRD010000.XY

Sample Matrix: SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Basis: Dry

Inorganic Parameters

Sample Name:

TS-2-40

Lab Code:

DF758-014

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	1	09/22/05 12:00 09/29/05 11:00	90 250	U U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Basis: Dry

Inorganic Parameters

Sample Name:

TS-2-45

Lab Code:

DF758-015

Aпаlyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	- 1	09/29/05 11:00	250	IJ

Analytical Report

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Basis: Dry

Client:

MWH LAB

Project Name :

HONEYWELL-N.HOLLYWOD

Project Number:

LRD010000.XY

Sample Matrix:

Inorganic Parameters

Sample Name:

TS-3-20

SOIL

Lab Code:

Report By: C.Skillern

DF758-016

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	I	09/29/05 11:00	320	J

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-3-25

Lab Code: Test Notes: DF758-017

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	I	09/22/05 12:00	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	. 1	09/29/05 11:00	250	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: Sample Matrix: LRD010000.XY

SOIL

Service Request: DF758

Date Collected: 09/14/05 Date Received: 09/14/05

Inorganic Parameters

Sample Name :

TS-3-30

Lab Code : Test Notes : DF758-018

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg	SW9034	200	90	i	09/22/05 12:00	90	U
	mg/Kg	Walkley Black	2000	250	1	09/29/05 11:00	250	U

Analytical Report

Client:

MWH LAB

Project Name :

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-3-35

Lab Code:

DF758-019

Test Notes:

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	Ī	09/22/05 12:00	90	υ
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	1	09/29/05 11:00	320	J

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

Lab Code:

DF758-020

Test Notes:

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	1	09/22/05 12:00 09/29/05 11:00	90 320	U.

QA/QC Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

Date Received: 09/14/05

Date Collected: 09/14/05

Date Extracted: 09/20/05

Service Request: DF758

Date Analyzed: 09/22-29/05

Matrix Spike Summary Inorganic Parameters

Sample Name:

TS-3-40

SOIL

Lab Code:

DF758-020DMS

Test Notes:

Analyte	Units	Analysis Method	PQL	Spike Level	Sample Result		Percent Recovery		Result Notes
Sulfide, Total	mg/Kg	SW9034	200	900	0	870	97	70-130	1
Total Organic Carbon	mg/Kg	Walkley Black	2000	5000	320	6230	91	86-100	

QA/QC Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix :

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05 Date Extracted: 09/20/05

Date Analyzed: 09/22-29/05

Matrix Spike Summary Inorganic Parameters

Sample Name:

TS-3-40

Lab Code:

DF758-020MS

Test Notes:

Basis: Dry

CAS

Analyte	Units	Analysis Method	PQL	Spike Level	Sample Result	-	Percent Recovery	Percent Recovery Acceptance Limits	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	900	0	900	90	70-130	
Total Organic Carbon	mg/Kg	Walkley Black	2000	5000	320	6550	96	86-100	

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Basis: Dry

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-3-45

Lab Code:

DF758-021

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	i	09/23/05 11:30	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	1	09/29/05 14:30	250	U

Analytical Report

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-3-50

DF758-022

Lab Code: Test Notes:

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	1	09/23/05 11:30 09/29/05 14:30	90 250	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

Inorganic Parameters

Sample Name:

TS-4-20

SOIL

Lab Code:

DF758-023

Test Notes:

Basis: Dry

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/23/05 11:30	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	1	09/29/05 14:30	963	J

Analytical Report

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

Service Request: DF758 Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-4-25

SOIL

Lab Code:

DF758-024

Test Notes:

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	1	09/23/05 11:30 09/29/05 14:30	90 1280) U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-4-30

Lab Code: Test Notes: DF758-025

Basis: Dry

Result Analysis Dilution Date/Time Notes Analyzed Units Method PQL MDL **Factor** Result Analyte SW9034 200 90 09/23/05 11:30 90 U Sulfide, Total mg/Kg J Total Organic Carbon mg/Kg Walkley Black 2000 250 09/29/05 14:30 642

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix: SOIL Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Basis: Dry

Inorganic Parameters

Sample Name :

TS-4-35

Lab Code:

DF758-026

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg	SW9034	200	90	1	09/23/05 11:30	90	1
	mg/Kg	Walkley Black	2000	250	1	09/29/05 14:30	1770	U

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Basis: Dry

Inorganic Parameters

Sample Name:

TS-4-40

Lab Code:

DF758-027

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/23/05 11:30	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	1	09/29/05 14:30	1440	j

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY Sample Matrix :

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-4-45

Lab Code:

DF758-028

Test Notes:

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	1	09/23/05 11:30 09/29/05 14:30	90 3530	υ .

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-4-50

Lab Code:

DF758-029

Test Notes:

Analyté	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/23/05 11:30	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	ł	09/29/05 14:30	321	J

Analytical Report

Client :

MWH LAB

HONEYWELL-N.HOLLYWOD

Project Name:

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Inorganic Parameters

Sample Name:

TS-4-55

Lab Code:

DF758-030

Basis: Dry

Analyte	Units	Analysis Method	PQL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Sulfide, Total Total Organic Carbon	mg/Kg mg/Kg	SW9034 Walkley Black	200 2000	90 250	1	09/23/05 11:30 09/29/05 14:30	90 2570	U

QA/QC Report

Client:

MWH LAB

Project Name :

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix : SOIL Service Request: DF758

Date Collected: 09/14/05

Date Received: 09/14/05

Date Extracted: 09/20/05

Date Analyzed: 09/23-29/05

Matrix Spike Summary **Inorganic Parameters**

Sample Name:

TS-4-55

Lab Code:

DF758-030DMS

Test Notes:

Basis: Dry

Analyte	Units	Analysis Method	PQL	Spike Level	Sample Result	•		Percent Recovery Acceptance Limits	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	90 0	0	990	100	70-130	ļ
Total Organic Carbon	mg/Kg	Walkley Black	2000	5000	8190	8020	84	86-100	

QA/QC Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix:

SOIL

Service Request: DF758

Date Collected: 09/14/05 Date Received: 09/14/05

Date Extracted: 09/20/05 Date Analyzed: 09/23-29/05

Matrix Spike Summary Inorganic Parameters

Sample Name:

TS-4-55

Lab Code:

DF758-030MS

Test Notes:

Basis: Dry

Test Notes: Analyte	Units	Analysis Method	PQL	Spike Level	Sample Result	•	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Sulfide, Total	mg/Kg	SW9034	200	900	0	930	93	70-130	
Total Organic Carbon	mg/Kg	Walkley Black	2000	5000	2570	8190	86	86-100	

Analytical Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number: LRD010000.XY

Sample Matrix: SOIL Service Request: DF758

Date Collected: NA

Date Received: NA

Inorganic Parameters

Sample Name:

Method Blank

Lab Code:

DF758-MB

Test Notes:

Basis: Dry

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	PQL	MDL	Factor	Analyzed	Result	Notes
Sulfide, Total	mg/Kg	SW9034	200	90	1	09/22/05 12:00	90	U .
Sulfide, Total	mg/Kg	SW9034	200	90	ł	09/23/05 11:30	90	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	1	09/29/05 11:00	250	U
Total Organic Carbon	mg/Kg	Walkley Black	2000	250	1	09/29/05 14:30	250	U

QA/QC Report

Client:

MWH LAB

Project Name:

HONEYWELL-N.HOLLYWOD

Project Number:

LRD010000.XY

Sample Matrix:

SOIL

Service Request:

DF758

Date Collected:

NA NA

Date Received: Date Extracted :

09/20/05

Date Analyzed: 09/22-29/05

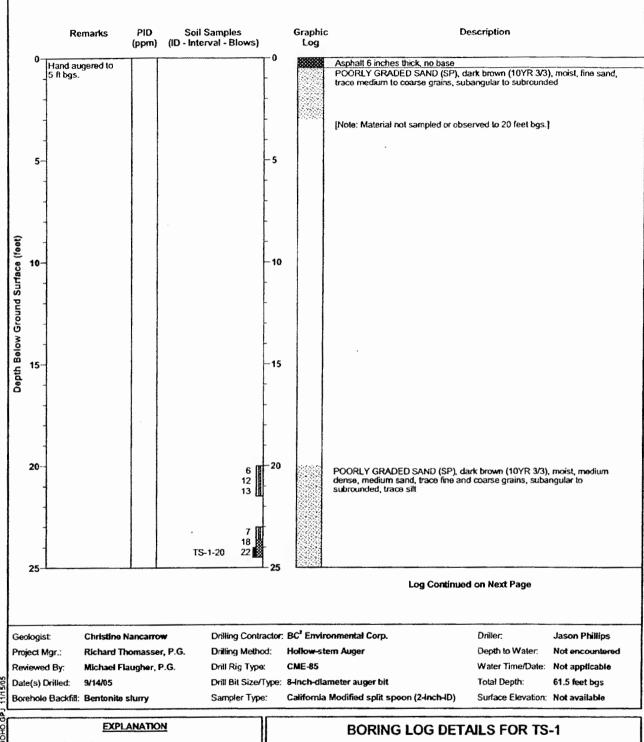
Laboratory Control Sample Summary Inorganic Parameters

Sample Name:

Laboratory Control Sample

Lab Code:

DF758-LCS


Test Notes:

Basis: Dry

CAS Percent Recovery Result Notes

Units	Analysis Method	True Value	Result	Percent Recovery	Acceptance	
mg/Kg	SW9034	900	1020	113	70-130	
mg/Kg	SW9034	900	870	97	70-130	
	Walkley Black	10000	9220	92	86-100	
mg/Kg	Walkley Black	10000	9260	93	86-100	
	mg/Kg mg/Kg mg/Kg	Units Method mg/Kg SW9034 mg/Kg SW9034 mg/Kg Walkley Black	Units Method True Value mg/Kg SW9034 900 mg/Kg SW9034 900 mg/Kg Walkley Black 10000	Units Method True Value Result mg/Kg SW9034 900 1020 mg/Kg SW9034 900 870 mg/Kg Walkley Black 10000 9220	Units Method True Value Result Recovery mg/Kg SW9034 900 1020 113 mg/Kg SW9034 900 870 97 mg/Kg Walkley Black 10000 9220 92	Units Method True Value Result Recovery Limits mg/Kg SW9034 900 1020 113 70-130 mg/Kg SW9034 900 870 97 70-130 mg/Kg Walkley Black 10000 9220 92 86-100

ATTACHMENT C BORING LOGS

Sample Symbols

☑ Water Level During Drilling

Sampled Interval

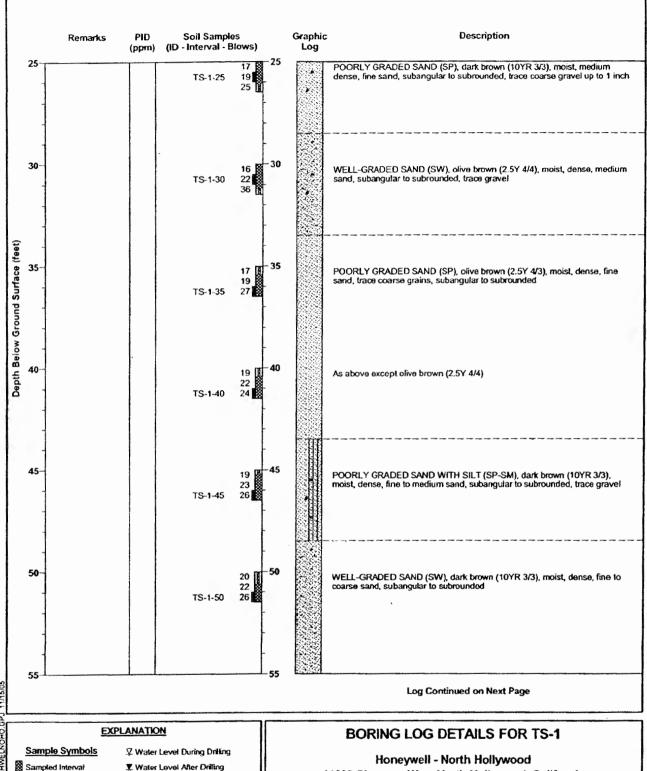
Water Level After Drilling

Location of Sample Sealed for Lab Analysis

Contacts

Location of Sample Held in Laboratory

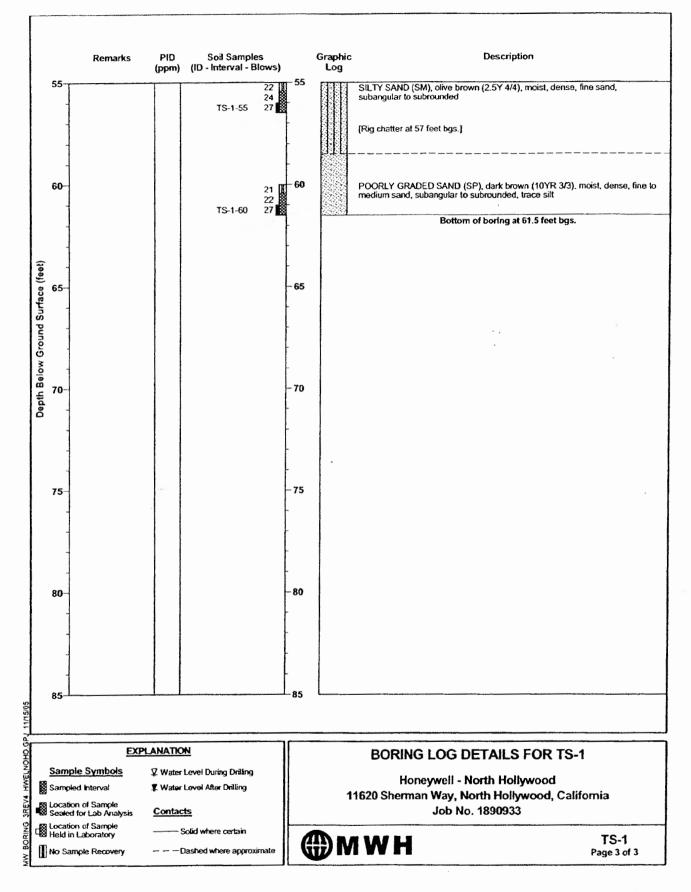
----- Solid where certain

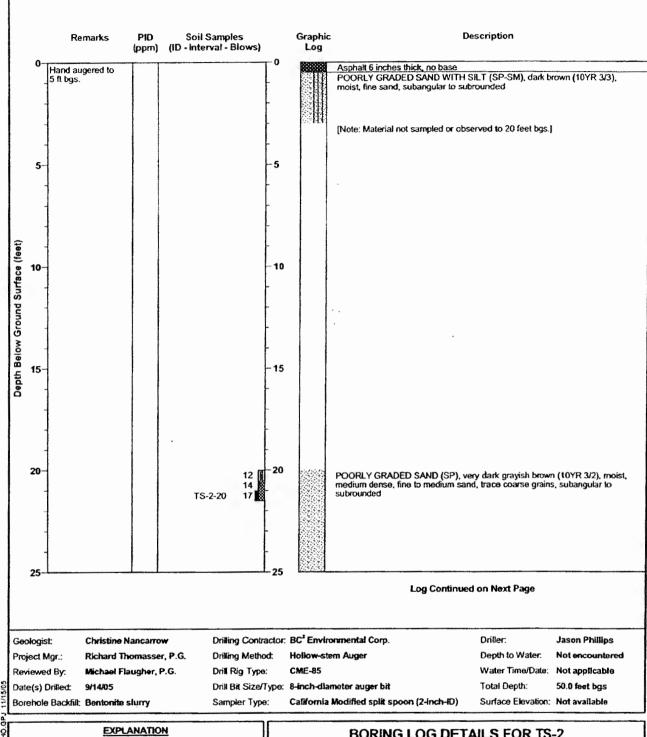

No Sample Recovery

--- Dashed where approximate

Honeywell - North Hollywood 11620 Sherman Way, North Hollywood, California Job No. 1890933

TS-1 Page 1 of 3




Sample Symbols Sample Intervat Sample Intervat Sample Intervat Water Level During Drilling Water Level After Drilling Contacts Location of Sample Held in Laboratory No Sample Recovery Sample Secured Where approximate

Honeywell - North Hollywood 11620 Sherman Way, North Hollywood, California Job No. 1890933

TS-1 Page 2 of 3

Sample Symbols

☑ Water Level During Drilling

Sampled Interval

▼. Water Level After Drilling

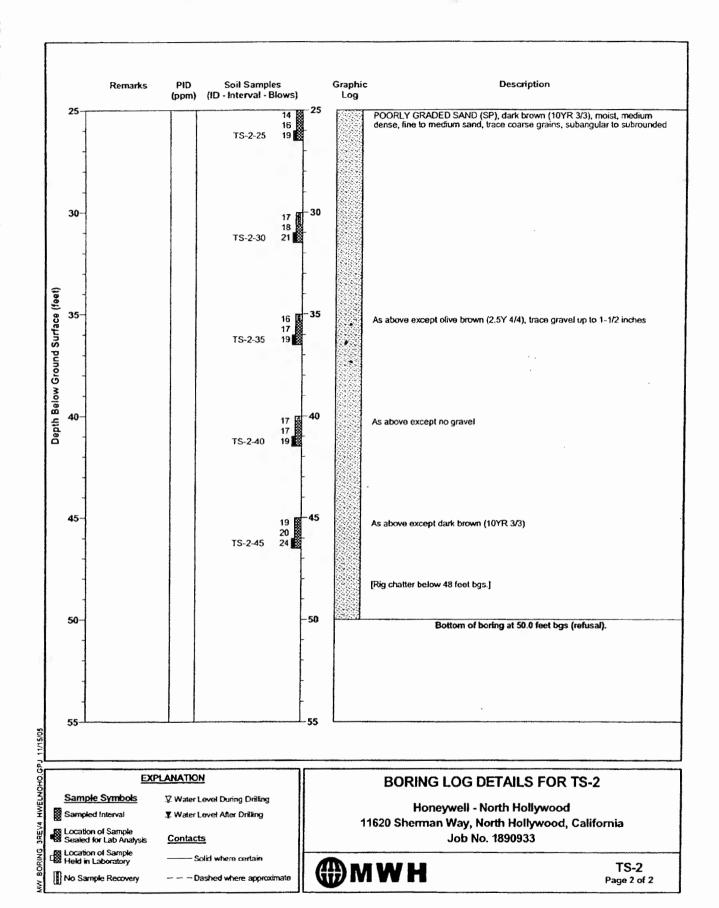
Location of Sample Sealed for Lab Analysis

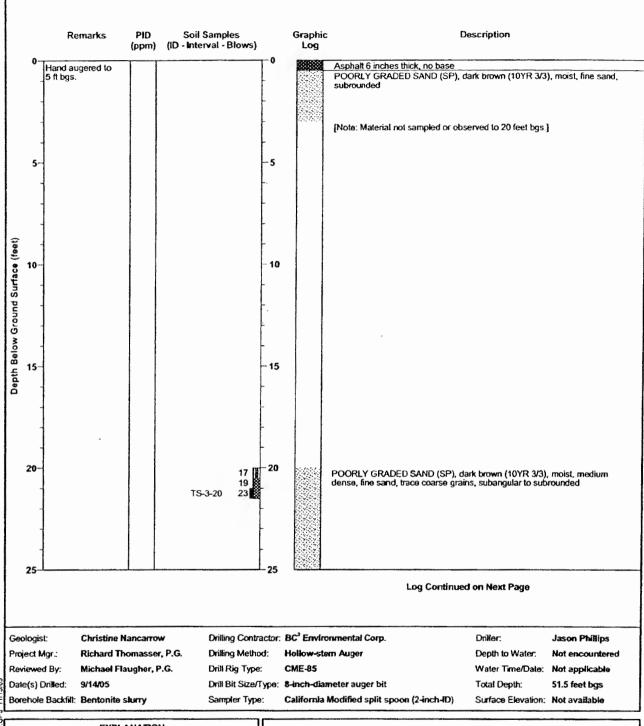
Contacts

Location of Sample Held in Laboratory

- Solid where certain

No Sample Recovery


— — Dashed where approximate


BORING LOG DETAILS FOR TS-2

Honeywell - North Hollywood 11620 Sherman Way, North Hollywood, California Job No. 1890933

TS-2 Page 1 of 2

EXPLANATION

Sample Symbols

☑ Water Level During Driffing

Sampled Interval

▼ Water Level After Drilling

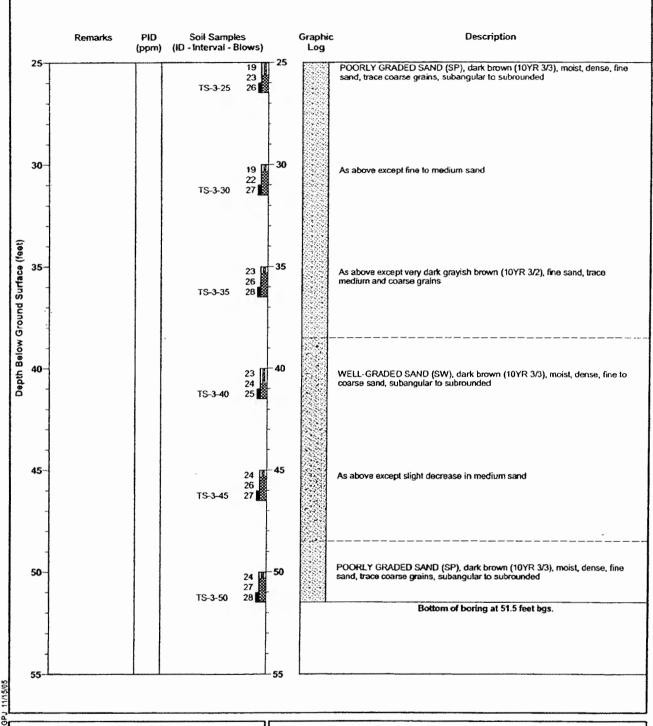
Location of Sample Sealed for Lab Analysis

Contacts

Location of Sample Held in Laboratory

----- Solid where certain

No Sample Recovery

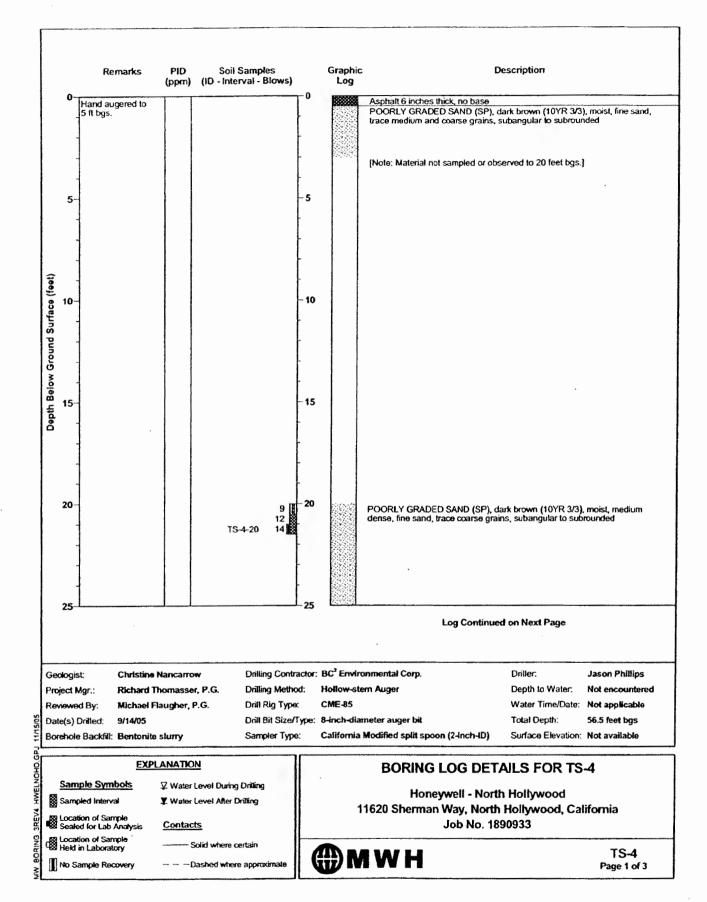

-- - Dashed where approximate

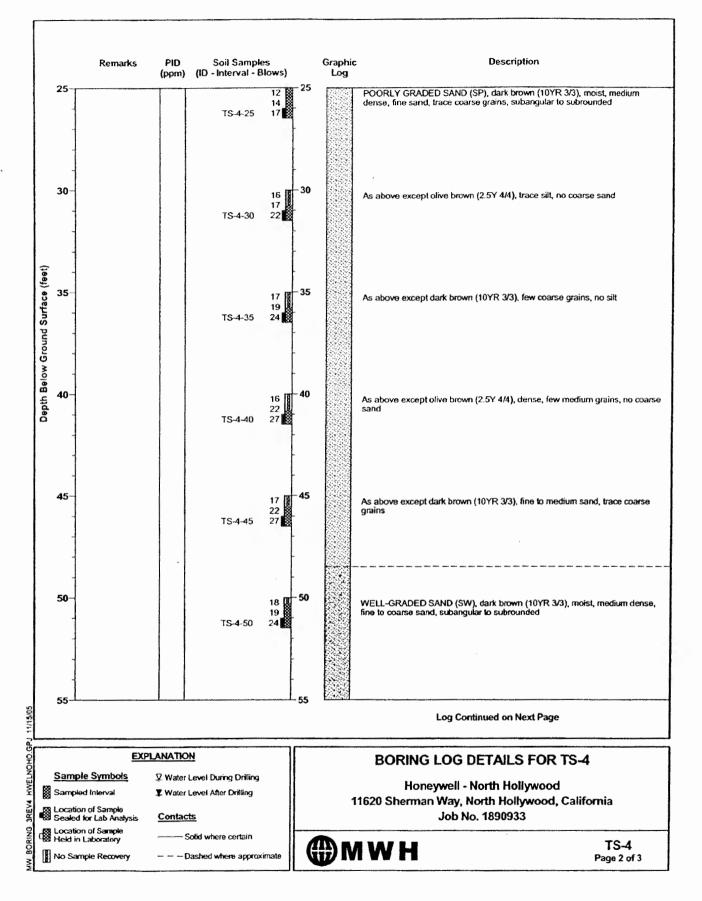
BORING LOG DETAILS FOR TS-3

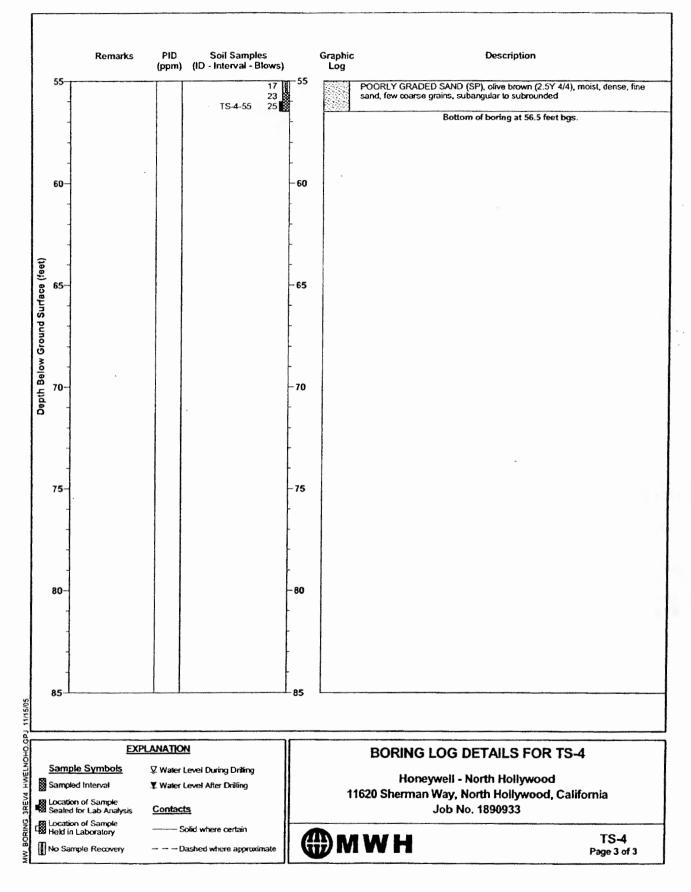
Honeywell - North Hollywood 11620 Sherman Way, North Hollywood, California Job No. 1890933

TS-3 Page 1 of 2

— — Dashed where approximate


No Sample Recovery


BORING LOG DETAILS FOR TS-3


Honeywell - North Hollywood 11620 Sherman Way, North Hollywood, California Job No. 1890933

TS-3 Page 2 of 2

ATTACHMENT D ANALYTICAL RESULTS FROM SOIL REDUCTANT DEMAND TEST

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92234 (909) 370-4667 FAX (909) 370-1016 9484 Chesapeake Dr., Suite 805, Sun Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 83044 (480) 785-0043 FAX (460) 785-0651 2520 E. Suinset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 796-3621

LABORATORY REPORT

Prepared For: MWH-Monrovia

Project: Honeywell North Hollywood

327 W. Maple Avenue Monrovia, CA 91016 Attention: Darren Giles

Sampled: 10/11/05 Received: 10/11/05

Issued: 11/03/05 19:12

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
IOJ0725-01	MIXED SOIL	Soil
1OJ0725-02	GROUNDWATER-6	Water
1OJ0725-03	0 CaSx CONTROL	Liquid
1OJ0725-04	0.5% CaSx	Liquid
1OJ0725-05	5.0% CaSx	Liquid
1OJ0725-06	0 CaSx CONTROL	Soil
1030725-07	0.5% CaSx	Soil
1OJ0725-08	5.0% CaSx	Soil

Reviewed By:

Del Mar Analytical, Irvine

Michell Harper

Michele Harper Project Manager

10J0725 < Page 1 of 14>

3/28/06 104(e) 0373

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-4064 9464 Chesipeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9669 9830 South 51st St., Seite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Monrovia
327 W. Maple Avenue
Monrovia, CA 91016
Attention: Darren Giles

Project ID: Honeywell North Hollywood

| Sampled: 10/11/05 | Report Number: 10J0725 | Received: 10/11/05

METALS Reporting Sample Dilution Data Analyte Method Batch Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IOJ0725-01 (MIXED SOIL - Soil) Reporting Units: mg/kg Ferric Iron Calculation 5112125 120 7100 10/12/2005 10/16/2005 Sample ID: 10J0725-02 (GROUNDWATER-6 - Water) Reporting Units: mg/l Ferric Iron Calculation 5J14067 0.080ND 10/14/2005 10/15/2005 Sample ID: IOJ0725-02 (GROUNDWATER-6 - Water) Reporting Units: ug/l EPA 6020 ND Arsenic 5114066 2.0 2 10/14/2005 10/19/2005 RL-4 EPA 6020 10/14/2005 10/19/2005 Manganese 5114066 2.0 2.7 Sample ID: IOJ0725-03 (0 CaSx CONTROL - Liquid) Reporting Units: mg/l Ferric Iron Calculation 5J14067 ND 10/14/2005 10/15/2005 0.080 Sample ID: IOJ0725-03 (0 CaSx CONTROL - Liquid) Reporting Units: ug/l EPA 6020 5J14066 Arsenic 4.0 ND 10/14/2005 10/19/2005 RL-1, RL-4 Manganese EPA 6020 5J14066 10/14/2005 10/19/2005 Sample ID: IOJ0725-04 (0.5% CaSx - Liquid) Reporting Units: mg/l Ferric Iron Calculation 5J14067 0.080ND 10/14/2005 10/15/2005 Sample ID: IOJ0725-04 (0.5% CaSx - Liquid) Reporting Units: ug/l EPA 6020 5J14066 2.0 ND 10/14/2005 10/19/2005 Arsenic 2 RL-4 EPA 6020 5J14066 Manganese 2.0 3.4 2 10/14/2005 10/19/2005 Sample ID: IOJ0725-05 (5.0% CaSx - Liquid) Reporting Units: mg/l Ferric Iron Calculation 5J14067 0.40 ND 10/14/2005 10/16/2005 Sample ID: IOJ0725-05 (5.0% CaSx - Liquid) Reporting Units: ug/l Arsenic EPA 6020 5J14066 20 ND 20 10/14/2005 10/19/2005 RL-1, RL-4 Manganese EPA 6020 5J14066 20 43 20 10/14/2005 10/19/2005

Del Mar Analytical, Irvine

Michele Harper Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 97614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dr., Suite A, Cokon, CA 92124 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 80 S. san Dego, CA 92123 (858) 505-8596 FAX (868) 505-9669 9830 South 51st St., Suite 8-170, Priornix, AZ 85044 (480) 785-0043 FAX (460) 785-0651 2520 E. Suitet Rd. #3, Las Vegas, NV 89120 1/207 798-3620 FAX (702) 798-3621

MWH-Monrovia

Project ID: Honeywell North Hollywood

327 W. Maple Avenue Monrovia, CA 91016 Attention: Darren Giles

Report Number: 10J0725

Sampled: 10/11/05

Received: 10/11/05

		MI	ETALS					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Audyte	Meinoa	Dates	EALL!	resun	1 20101	Directo	7102.7200	Quantities
Sample ID: 10J0725-06 (0 CaSx CON	TROL - Soil)							
Reporting Units: mg/kg								
Arsenic	EPA 6020	5J13083	0.50	0.71	1	10/13/2005	10/13/2005	
Ferric Iron	Calculation	5J12125	120	5100	1	10/12/2005	10/16/2005	
Manganese	EPA 6020	5J13083	0.50	74	1	10/13/2005	10/13/2005	
Sample ID: 10J0725-07 (0.5% CaSx -	Soil)							
Reporting Units: mg/kg								
Arsenic	EPA 6020	5J13083	0.50	0.58	1	10/13/2005	10/13/2005	
Ferric Iron	Calculation	5J12125	120	4900	1	10/12/2005	10/16/2005	
Manganese	EPA 6020	5J13083	0.50	78	1	10/13/2005	10/13/2005	
Sample ID: 10J0725-08 (5.0% CaSx -	Soil)							
Reporting Units: mg/kg								
Arsenic	EPA 6020	5J13083	0.50	0.88	1	10/13/2005	10/13/2005	
Ferric Iron	Calculation	5J12125	120	4300	1	10/12/2005	10/17/2005	
Manganese	EPA 6020	5J13083	0.50	72	1	10/13/2005	10/13/2005	

Del Mar Analytical, Irvine Michele Harper

Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley On., Suite A, Cokon, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Tro., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (68)85 505-9699 9830 South 514 St., Suite 8-120, Phoenix, AZ 85044 (460) 785-0043 FAX (400) 785-0851 2520 E. Suite 81 43, Lis Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Monrovia
327 W. Maple Avenue
Monrovia, CA 91016
Attention: Darren Giles

Project ID: Honeywell North Hollywood

Report Number: 10J0725

Sampled: 10/11/05 Received: 10/11/05

INORGANICS											
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IOJ0725-01 (MIXED SOIL - So	oil)										
Reporting Units: mg/kg											
Chromium VI	EPA 7199	5J18057	4.0	83	20		10/18/2005	M-HA			
Nitrate-NO3	EPA 300.0	5J13079	5.0	9.5	0.993	10/13/2005	10/13/2005				
Sample ID: IOJ0725-02 (GROUNDWATE)	R-6 - Water)										
Reporting Units: mg/l											
Chromium VI	EPA 7199	5 J12081	0.0020	ND	i		10/12/2005				
Nitrate-NO3	EPA 300.0	5J12059	1.0	47	2	10/12/2005	10/12/2005				
Sulfate	EPA 300.0	5J12059	1.0	73	2	10/12/2005	10/12/2005				
Sulfide	EPA 376.2	5J 14079	0.10	ND	1 '	10/14/2005	10/14/2005				
Sample ID: IOJ0725-03 (0 CaSx CONTRO	L - Liquid)										
Reporting Units: mg/l											
Chromium VI	EPA 7199	5J12081	2.0	51	1000		10/12/2005				
Nitrate-NO3	EPA 300.0	5J12059	1.0	51	2	10/12/2005	10/12/2005				
Sulfate	EPA 300.0	5J12059	2.5	130	5	10/12/2005	10/12/2005				
Sulfide	EPA 376.2	5J 14079	0.10	ND	1	10/14/2005	10/14/2005				
Sample ID: IOJ0725-04 (0.5% CaSx - Liqui	id)										
Reporting Units: mg/l											
Chromium VI	EPA 7199	5J 1208 I	0.20	ND	100	10/12/2005	10/12/2005	RL-1			
Nitrate-NO3	EPA 300.0	5J12059	10	47	20	10/12/2005	10/12/2005				
Sulfate	EPA 300.0	5J12059	10	130	20	10/12/2005	10/12/2005				
Sulfide	EPA 376.2	5J14079	50	110	500	10/14/2005	10/14/2005				
Sample ID: IOJ0725-05 (5.0% CaSx - Liqui	id)										
Reporting Units: mg/l											
Chromium VI	EPA 7199	5J12081	2.0	ND	1000	10/12/2005	10/12/2005	RL-I			
Nitrate-NO3	EPA 300.0	5J12059	100	ND	200	10/12/2005	10/12/2005				
Sulfate	EPA 300.0	5J12059	250	370	500	10/12/2005	10/12/2005				
Sulfide	EPA 376.2	5J14079	100	720	1000	10/14/2005	10/14/2005				
Sample ID: IOJ0725-06 (0 CaSx CONTRO)	L - Soil)										
Reporting Units: mg/kg											
Soluble Sulfide	EPA 376.2 Mod	5J14080	1.0	ND	ı	10/14/2005	10/14/2005	M2			
Chromium VI	EPA 7199	5J18057	2.0	12	10	10/17/2005	10/18/2005				
Nitrate-NO3	EPA 300.0	5J13079	5.0	11	1	10/13/2005	10/13/2005				
Sulfate	EPA 300.0	5J13079	5.0	33	1	10/13/2005	10/13/2005				

Del Mar Analytical, Irvine

Michele Harper Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOJ0725 < Page 4 of 14>

17461 Denan Ave., Suite 100, Irvane, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Or., Suite A., Cokon, CA 92234 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Drego, CA 92123 (858) 505-8596 FAX (858) 505-969 9830 South 51st Sc., Suite 8-120, Phoenix, AZ 85044 (460) 785-6041 FAX (480) 785-0851 2520 E. Suissel Rd. #3, Lai Vegas, NV 89120 (702) 798-3620 FAX (702) 796-3621

MWH-Monrovia 327 W. Maple Avenue Monrovia, CA 91016

Attention: Darren Giles

Project ID: Honeywell North Hollywood

Report Number: 10J0725

Sampled: 10/11/05 Received: 10/11/05

	INORGANICS												
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers					
Sample 1D: 10J0725-07 (0.5% CaSx - Soil)													
Reporting Units: mg/kg													
. Soluble Sulfide	EPA 376.2 Mod	5J14080	1.0	ND	ì	10/14/2005	10/14/2005						
Chromium VI	EPA 7199	5J18057	0.20	ND	1	10/17/2005	10/18/2005						
Nitrate-NO3	EPA 300.0	5J13079	5.0	7.8	0.998	10/13/2005	10/13/2005						
Sulfate	EPA 300.0	5J13079	5.0	37	0.998	10/13/2005	10/13/2005						
Sample ID: IOJ0725-08 (5.0% CaSx - Soil)													
Reporting Units: mg/kg													
Soluble Sulfide	EPA 376.2 Mod	5J14080	50	71	50	10/14/2005	10/14/2005						
Chromium VI	EPA 7199	5318057	0.20	ND	ì	10/17/2005	10/18/2005						
Nitrate-NO3	EPA 300.0	5J18066	0.50	11	0.998	10/18/2005	10/18/2005						
Sulfate	EPA 300.0	5J18066	0.50	47	0.998	10/18/2005	10/18/2005						

Del Mar Analytical, Irvine Michele Harper

Project Manager

17461 Derian Ave., Suke 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Sotte A, Colton, CA 92124 (909) 370-4667 FAX (909) 370-1046 9484 Chevapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st Sc., Suite 8-120, Phoenis, AZ 85044 (480) 785-0043 FAX (480) 785-0043 FAX (400) 785-0651 2520 E. Suisei Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Monrovia 327 W. Maple Avenue Monrovia, CA 91016 Attention: Darren Giles Project ID: Honeywell North Hollywood

Report Number: 10J0725

Sampled: 10/11/05 Received: 10/11/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Dute/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: GROUNDWATER-6 (IOJ0725-0	02) - Water				
EPA 300.0	2	10/11/2005 16:15	10/11/2005 18:30	10/12/2005 16:00	10/12/2005 19:06
EPA 7199	1	10/11/2005 16:15	10/11/2005 18:30	10/12/2005 12:00	10/12/2005 12:22
Sample ID: 0 CaSx CONTROL (IOJ0725-03) - Liquid				
EPA 300.0	2	10/11/2005 16:15	10/11/2005 18:30	10/12/2005 16:00	10/12/2005 16:00
EPA 7199	1	10/11/2005 16:15	10/11/2005 18:30	10/12/2005 12:00	10/12/2005 13:06
Sample ID: 0.5% CaSx (10J0725-04) - Liqui	d				
EPA 300.0	2	10/11/2005 16:15	10/11/2005 18:30	10/12/2005 16:00	10/12/2005 19:37
EPA.7199	1	10/11/2005 16:15	10/11/2005 18:30	10/12/2005 12:00	10/12/2005 13:29
Sample ID: 5.0% CaSx (10J0725-05) - Liqui	d				
EPA 300.0	2	10/11/2005 16:15	10/11/2005 18:30	10/12/2005 16:00	10/12/2005 20:07
EPA 7199	1	10/11/2005 16:15	10/11/2005 18:30	10/12/2005 12:00	10/12/2005 13:41

17461 Derian Ave., Suite 100, Innne, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dii, Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805-5 Sin Dego. CA 92123 (858) 505-8596 FAX (886) 505-9669 9830 South 51st St., Siite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (60) 785-0651 7570 E. Sunset Rd. #3, Lis Vegas, NV 89120 (70)) 798-3650 FAX (702) 798-3621

MWH-Monrovia 327 W. Maple Avenue Monrovia, CA 91016 Project ID: Honeywell North Hollywood

Sampled: 10/11/05

Attention: Darren Giles

Report Number: 10J0725

Received: 10/11/05

METHOD BLANK/QC DATA

METALS

	-		Reporting		Spike	Source		%REC		RPD	Data
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
	Batch: 5J12125 Extracted: 10/12/05										
	Blank Analyzed: 10/16/2005 (5J12125-Bl	LK1)									
ı	Ferric Iron	ND	120	mg/kg							
_	Batch: 5J13083 Extracted: 10/13/05										
	Blank Analyzed: 10/13/2005 (5J13083-BI	LK1)									
	Arsenic	ND	0.50	mg/kg							
_	Manganese	ND	0.50	mg/kg							
۱	LCS Analyzed: 10/13/2005 (5J13083-BS1)									
	Arsenic	45.5	0.50	mg/kg	50.0		91	80-120			
_	Manganese	47.3	0.50	mg/kg	50.0		95	80-120			
	Matrix Spike Analyzed: 10/13/2005 (5J13	9083-MSI)				Source: 10	DJ0725-06	5			
	Arsenic	42.1	0.50	mg/kg	50.0	0.71	83	75-125			
_	Manganese	122	0.50	mg/kg	50.0	74	96	75-125			
	Matrix Spike Dup Analyzed: 10/13/2005	(5J13083-M	SD1)		:	Source: IC)J0725-06	i			
	Arsenic	45.4	0.50	mg/kg	50.0	0.71	89	75-125	8	20	
_	Manganese	123	0.50	mg/kg	50.0	74	98	75-125	1	20	
	Batch: 5J14066 Extracted: 10/14/05										
_	Blank Analyzed: 10/18/2005 (5J14066-BI	.K1)									
	Arsenic	ND	1.0	ug/I							
	Manganese	ND	0.1	ug/I							
_											

Del Mar Analytical, Irvine

Michele Harper Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10J0725 < Page 7 of 14>

17461 Denais Ave., Suite 100, Irvine. CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9649 9830 South 51st St., Suite 8-170, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 C. Sonset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

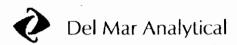
MWH-Monrovia
327 W. Maple Avenue
Monrovia, CA 91016
Attention: Darren Giles

Project ID: Honeywell North Hollywood

Report Number: 10J0725

Sampled: 10/11/05 Received: 10/11/05

METHOD BLANK/QC DATA


METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5J14066 Extracted: 10/14/05										
LCS Analyzed: 10/18/2005 (5314066-BS1)									M-NR1
Arsenic	81.0	1.0	ug∕I	80.0		101	80-120			
Manganese	82.3	1.0	ug/I	80.0		103	80-120			
LCS Dup Analyzed: 10/19/2005 (5J14066	-BSD1)									
Arsenic	81.2	1.0	ug∕l	80.0		102	80-120	0	20	
Manganese	80.5	1.0	ug/I	80.0		101	80-120	2	20	
Batch: 5J14067 Extracted: 10/14/05										
Blank Analyzed: 10/15/2005 (5J14067-BI	.K1)									
Ferric Iron	ND	0.040	mg∕l							

Del Mar Analytical, Irvine Michele Harper Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOJ0725 < Page 8 of 14>

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92124 (999) 370-4667 FAX (999) 370-1046 9464 Chesapeake Or., Suite 805, San Diego, CA 92123 (858) 505-8696 FAX (858) 505-9669 9830 Soulk 5181 SL, Suite 8-120, Phoenis, AZ 85044 (880) 785-0043 FAX (480) 785-0851 2520 E. Suinet Rd. #3, Las Vegas, NV 89120 (7021 798-3620 FAX (702) 798-3621

MWH-Monrovia

Project ID: Honeywell North Hollywood

327 W. Maple Avenue Monrovia, CA 91016 Attention: Darren Giles

Report Number: IOJ0725

Sampled: 10/11/05

Received: 10/11/05

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5J12059 Extracted: 10/12/05										
Blank Analyzed: 10/12/2005 (5J12059-BI	.K1)									
Nitrate-NO3	ND	0.50	mg/l							
Sulfate	ND	. 0.50	mg/l							
LCS Analyzed: 10/12/2005 (5J12059-BS1)	•								
Nitrate-NO3	5.18	0.50	mg/l	5.00		104	90-110			
Sulfate	10.3	0.50	mg/l	10.0		103	90-110			
Matrix Spike Analyzed: 10/12/2005 (5J12	(059-MS1)				Source: IC)J0724-0 1	ı			
Nitrate-NO3	80.7	5.0	mg/l	50.0	33	95	80-120			
Sulfate	584	5.0	mg/l	100	500	84	80-120			M-HA
Matrix Spike Dup Analyzed: 10/12/2005	(5J12059-MSI	D1)			Source: IC)J0724- 01	l			
Nitrate-NO3	81.4	5.0	mg/l	50.0	33	9 7	80-120	1	20	
Sulfate	571	5.0	mg/l	100	500	71	80-120	2	20	M-HA
Batch: 5J12081 Extracted: 10/12/05										
n	B.C.									
•	-	0.0000								
Chromium VI	ND	0.0020	mg/i							
LCS Analyzed: 10/12/2005 (5J12081-BS1)									
Chromium VI	0.0537	0,0020	mg/l	0.0500		107	90-110			
Matrix Spike Analyzed: 10/12/2005 (5J12	081-MS1)				Source: 10) J0 725-02	2			
Chromium VI	0.0542	0.0020	mg/l	0.0500	0 00043	108	80-115			
Matrix Spike Dup Analyzed: 10/12/2005	5J12081-MSI) 1)			Source: IC	J0725 -02	2			
Chromium VI	0.0527	0.0020	mg/l	0.0500	0.00043	105	80-115	3	15	
	Batch: 5J12059 Extracted: 10/12/05 Blank Analyzed: 10/12/2005 (5J12059-BI Nitrate-NO3 Sulfate LCS Analyzed: 10/12/2005 (5J12059-BS1 Nitrate-NO3 Sulfate Matrix Spike Analyzed: 10/12/2005 (5J12 Nitrate-NO3 Sulfate Matrix Spike Dup Analyzed: 10/12/2005 (Nitrate-NO3 Sulfate Batch: 5J12081 Extracted: 10/12/05 Blank Analyzed: 10/12/2005 (5J12081-BI Chromium VI LCS Analyzed: 10/12/2005 (5J12081-BS1 Chromium VI Matrix Spike Analyzed: 10/12/2005 (5J12	Blank Analyzed: 10/12/2005 (5J12059-BLK1) Nitrate-NO3 ND LCS Analyzed: 10/12/2005 (5J12059-BS1) Nitrate-NO3 5.18 Sulfate 10.3 Matrix Spike Analyzed: 10/12/2005 (5J12059-MS1) Nitrate-NO3 80.7 Sulfate 584 Matrix Spike Dup Analyzed: 10/12/2005 (5J12059-MS1) Nitrate-NO3 81.4 Sulfate 571 Batch: 5J12081 Extracted: 10/12/05 Blank Analyzed: 10/12/2005 (5J12081-BLK1) Chromium VI ND LCS Analyzed: 10/12/2005 (5J12081-BS1) Chromium VI 0.0537 Matrix Spike Analyzed: 10/12/2005 (5J12081-MS1) Chromium VI 0.0542 Matrix Spike Dup Analyzed: 10/12/2005 (5J12081-MS1) Chromium VI 0.0542 Matrix Spike Dup Analyzed: 10/12/2005 (5J12081-MS1)	Result Limit	Name	Result Limit Units Level	Result Limit Units Level Result Batch: SJ12059 Extracted: 10/12/05	Result Limit Units Level Result Machine Result Machine Ma	Namipate Result Limit Units Level Result VREC Limits	Result Limit Units Level Result Valuet Result Val	Analyte Result Limit Units Level Result %REC Limit RPD Limit Batch: SJ12059 Extracted: 10/12/05 SUlface ND 0.50 mg/l SUlface SUlface ND 0.50 mg/l SULFACE SULFACE

Del Mar Analytical, Irvine

Michele Harper Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10J0725 <Page 9 of 14>

17461 Derian Ave., Suite 100, Iovine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Ds., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, Sain Diego, CA 92123 (858) 305-8596 FAX (858) 505-9689 9830 South 51st Sc., Suite 8-120, Proenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suites Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3611

MWH-Monrovia

327 W. Maple Avenue Monrovia, CA 91016 Attention: Darren Giles Project ID: Honeywell North Hollywood

Report Number: 10J0725

Sampled: 10/11/05 Received: 10/11/05

METHOD BLANK/QC DATA

INORGANICS

- Analyte	Result	Reporting Limit	Units	Spike Level	Source Result		%REC		RPD Limit	Data Qualifiers
Batch: 5J13079 Extracted: 10/13/05										
Daten, 33130/7 Danacion, 10/12/02										
Blank Analyzed: 10/13/2005 (5J13079-Bl	,									1
Nitrate-NO3	ND	5.0	mg/kg							,
Sulfate	ND	5.0	mg/kg		٠.					
LCS Analyzed: 10/13/2005 (5J13079-BS)	i1)									ſ
Nitrate-NO3	52.5	5.0	mg/kg	50.0		105	90-110			,
Sulfate	105	5.0	mg/kg	100		105	90-110			
Matrix Spike Analyzed: 10/13/2005 (5J1)	13079-MS1)				Source: 1	1OJ0813-0)1			1
Nitrate-NO3	62.8	5.0	mg/kg	50.0	7.9	110	80-120			,
Sulfate	108	5.0	mg/kg	100	4.8	103	80-120			
Matrix Spike Dup Analyzed: 10/13/2005	5 (5J13079-M	ISD1)			Source: 1	10J0813-0	/1			1
Nitrate-NO3	61.3	5.0	mg/kg	49.8	7.9	107	80-120	2	20	
Sulfate	111	5.0	mg/kg	99.5	4.8	107	80-120	3	20	
Batch: 5J14079 Extracted: 10/14/05									•	1
Blank Analyzed: 10/14/2005 (5J14079-B)		2.10								
Sulfide	ND	0.10	mg/l							
LCS Analyzed: 10/14/2005 (5J14079-BS1	1)									
Sulfide	0.596	0.10	mg/I	0.620		96	80-t20			
Matrix Spike Analyzed: 10/14/2005 (5J14	(4079-MS1)				Source: I	ЮЈ0847-0	/1			
Sulfide	0.507	0.10	mg/I	0.620	0.025	78	70-130			
Matrix Spike Dup Analyzed: 10/14/2005	5 (5J14079-M	ISD1)			Source: I	IOJ0847-0)1			
Sulfide	0.558	0.10	mg/l	0.620	0.025	86	70-130	10	30	1

Del Mar Analytical, Irvine

Michele Harper Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10J0725 < Page 10 of 14>

17461 Dertar Ave., Suite 100, Invine. CA 92614. (949) 261-1027. FAX (949) 260-1297. 1014 E. Cocley Dr., Suite A. Culton, CA 92324. (999) 370-1667. FAX (999) 370-1046. 9484 Chesapeake Dr., Suite 805, San Dego. CA 92123. (1658) 595-5956. FAX (1658) 505-5669. 9830 South 51 u.S., Suite 8-120. Phoevis. AZ 85044. (4801 785-0043. FAX (480) 785-0851. 2520 E. Suisse Rd. #31, Jas Vegas, NV 89120. (702) 798-3502. FAX (702) 798-3621.

MWH-Monrovia 327 W. Maple Avenue Monrovia, CA 91016 Attention: Darren Giles Project ID: Honeywell North Hollywood

Report Number: 10J0725

Sampled: 10/11/05 Received: 10/11/05

METHOD BLANK/QC DATA

INORGANICS


			Reporting		Spike	Source		%REC		RPD	Data
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
	Batch: 5J14080 Extracted: 10/14/05										
_	Dist. 4 b. 10/14/2006 /5 114090 DI	V1)									
	Blank Analyzed: 10/14/2005 (5J14080-BL Soluble Sulfide	ND	1.0	mg/kg							
	Solible Suride	ND	1.0	mg/kg							
	LCS Analyzed: 10/14/2005 (5J14080-BS1))									
	Soluble Sulfide	5.96	1.0	mg/kg	6.20		96	80-120			
	Matrix Spike Analyzed: 10/14/2005 (5J14	080-MS1)				Source: 10	OJ0725-06	5			
_	Soluble Sulfide	4.48	1.0	mg/kg	6.20	0.45	65	70-130			M2
_				0 0							
	Matrix Spike Dup Analyzed: 10/14/2005 (•			Source: 10				20	
	Soluble Sulfide	4.40	1.0	mg/kg	6.20	0.45	64	70-130	2	30	M2
_	Batch: 5J18057 Extracted: 10/17/05										
	Blank Analyzed: 10/18/2005 (5J18057-BL	.K1)									
	Chromium VI	ND	0.20	mg/kg							
	LCS Analyzed: 10/18/2005 (5J18057-BS1))									
I	Chromium VI	4.37	0.20	mg/kg	5.00		87	65-110			
_	N	0.00					. x0525 A.				
_	Matrix Spike Analyzed: 10/18/2005 (5J18		• 0	0 .	6.00	Source: 10		55-110			M-HA
	Chromium VI	55.6	4.0	mg/kg	. 5.00	83	-548	33-110			M-FIA
•	Matrix Spike Dup Analyzed: 10/18/2005 (5J18057-M	SD1)			Source: 10	OJ0725-01	l			
	Chromium VI	40.1	4.0	mg/kg	5.00	83	-858	55-110	32	20	M-HA, R-3
	Batch: 5J18066 Extracted: 10/18/05										
	BRICE. SETONO EXTRACTED. 10/18/03										
	Blank Analyzed: 10/18/2005 (5J18066-BL	K1)									
	Nitrate-NO3	ND	0.50	mg/kg							
	Sulfate	ND	0.50	mg/kg							
_											

Del Mar Analytical, Irvine

Michele Harper Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10J0725 <Page 11 of 14>

17461 Detian Ave., Suite 100, Invine. CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Surie A. Colton. CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Sorie 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-170, Phoenic, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2510 E. Sunser Rd. #3, Lus Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Monrovia
327 W. Maple Avenue

Project ID: Honeywell North Hollywood

Sampled: 10/11/05

Monrovia, CA 91016 Attention: Darren Giles Report Number: IOJ0725

Received: 10/11/05

METHOD BLANK/QC DATA

INORGANICS

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5J18066 Extracted: 10/18/05										
LCS Analyzed: 10/18/2005 (5J18066-BS1)									
Nitrate-NO3	54.2	0.50	mg/kg	50.0		108	90-110			
Sulfate	108	0.50	m g∕k g	100		108	90-110			
Matrix Spike Analyzed: 10/18/2005 (5J18	066-MS1)				Source: I	OJ1039-01	ı			
Nitrate-NO3	54.1	0.50	m g∕k g	50.0	2.8	103	80-120			
Sulfate	136	0.50	m g/k g	100	33	103	80-120			
Matrix Spike Dup Analyzed: 10/18/2005	(5J18066-MS)	D1)			Source: I	D J1 039-01	ı			
Nitrate-NO3	55.2	0.50	mg/kg	49.8	2.8	105	80-120	2	20	
Sulfate	137	0.50	mg/kg	99.5	33	105	80-120	I	20	

Del Mar Analytical, Irvine Michele Harper Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical

10J0725 <Page 12 of 14>

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 TAX 1949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 TAX (858) 505-9689 9830 South 51st Sr., Suite 8-120, Prineria, AZ 85044 (480) 785-0043 TAX (480) 785-0851 2520 E. Sonset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Monrovia

Project ID: Honeywell North Hollywood

327 W. Maple Avenue Monrovia, CA 91016 Attention: Darren Giles

Report Number: IOJ0725

Sampled: 10/11/05

Received: 10/11/05

DATA QUALIFIERS AND DEFINITIONS

M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M-HA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate

R-3 The RPD exceeded the method control limit due to sample matrix effects.

RL-1 Reporting limit raised due to sample matrix effects.

RL-4 Reporting limit raised due to insufficient sample volume.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

Del Mar Analytical, Irvine Michele Harper Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10J0725 < Page 13 of 14>

3/28/06 104(e) 0385

17461 Derian Ave., Suite 100, Irome, CA 92614 (94912b1-1022 FAX (9491260-3297)
1014 E. Cooley Dr., Suite A. Colton, CA 92324 (9091370-4667 FAX (909) 370-1046
9484 Che-speake Dr., Suite 805, San Diego, CA 92123 (8581505-8596 FAX (8581505-9689)
9830 South 51st Sc., Suite 80-120, Priceniix, AZ 85044 (4801785-0043) FAX (4801785-0851
2520 E. Suinse Rd. #3, Las Vigas, NV 89120 (7021798-3620 FAX (7021798-3621)

MWH-Monrovia

Project ID: Honeywell North Hollywood

327 W. Maple Avenue Monrovia, CA 91016

Report Number: 10J0725

Sampled: 10/11/05

Received: 10/11/05

Attention: Darren Giles

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
Calculation	Soil	x	X
Calculation	Water	X	X
EPA 300.0	Soil	X	X
EPA 300.0	Water	X	X
EPA 376.2 Mod	Soil	N/A	N/A
EPA 376.2	Water	X	X
EPA 6010B-Diss	Soil	N/A	N/A
EPA 6010B-Diss	Water	X	X
EPA 6010B	Soil	X	X
EPA 6010B	Water	X	X
EPA 6020	Soil	X	X
EPA 6020	Water	X	X
EPA 7199	Soil	X	X
EPA 7199	Water	X	X
Preservation	Water	N/A	N/A

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Del Mar Analytical, Irvine Michele Harper Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

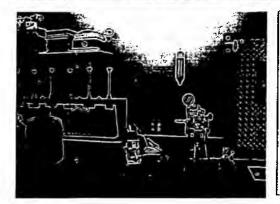
IOJ0725 < Page 14 of 14>

17461 Derson Ave., #100 Tryine, ICA 92614 (949) 281, 1022 FAX 1949) 286,0299 1014 E. Cooley Dr., Suife A. Collon, CA 92324 (909) 370,4687 FAX (909) 370, 1040 (1839) South Stat St., Suife B-12D, Phoenix, AZ 65044 (480) 786,004 FAX (480) 486 (985) 9872 2520 E. Sunset Rd, #3, Lax Vegas, 197,87140, 2022, 796,30,40 FAX, 1772, 778, 5624

A TEST AME			Υ	(CHAIN	OF CU	STO	DY F	ORM	1 -	IO,	107	125		Pa	ge <u>i</u>	ot
Client Name/Address:			Project	/PO Numb	bei.		1					Analysi	s Requir	ed			· · · · ·
MUH AFT 327 W MAPLE A	ينتاز		1-100	VEY W	15-6L_	′,	Ļ		1 1		i i						***************************************
MICHICALIA CA	are.	ناا	1	N. 4	anny	دريزين)	12	3	3.7				1	Ì	į		
	·		Phone	Number:		e45	155	1DCN	4	1 2	Щ	17,	1		i		
Sampler:	-		C2(1) 302	الت	845	17 6	i	۷.	: 3	#	7	1 12				
Sampler:			Fax No) 3G	7-3	593	1/8	4	NE.	MESAN	4	14	Z'				
Sample Description		Container Type	# of Cont.	Sampling Date	Sampling Time	Preservatives	7 × ×	XFEREN	MANGANE	₹ X	NITE ATE	CALFARE	SVHTDP	and the second		Special	instructions
MIXED SOIL	چنیدا ل	Type	1	ielu	415	-E-	X	X			X						
ERANDWATER - C	WIF	FRE	ı	10/11	4:15	·6-	×	×	×	×	×	×	×				
O CONSIX GENTRAL		POLY FOR	1	10/11	4:15	<i>a</i> -	X	×	×	X	>	×	X			×	
0.5% Ca5x	WTE		1	10/11	4115	<u> </u>	\times	82	\checkmark	\times	×	>	X				
5.0% asx	WIR	Fay	١	w/u	4:15	ست.	×	×	~	×	>	\sim	X				
Clask GNER	JAR	GKIL.	1	10/11	4:15	æ	×	\times	X	X	X	X	X				
0.5% CASX	سادي	TAR	1	10/11	4-15	-æ-	X	X	X	X	X	X	X				
5.0°/ CaSx	Sali	THE	l	10/11	4:15	-67	X	\times	\times	7	X	X	X				
											,						
					(니	164	\$ UL	FID	E	con	<u>ت</u>						
1.1																	
Relinquished By:	. /	Oate/Tim	e:		Received	₽ <i>⁄</i>	1	_	Date/T					ound Time		eck)	· · · · · · · · · · · · · · · · · · ·
Land	10/11		5.	00 (Jan/	By:	MAI		/0/// Date /1	105		700	same o	ау		72 hours	
Relinquished B		Date/Tim		وحمرحج	Accived.	ву:						3		rs		5 days	
Heynquished By:		Date/Tim		050	Received	in Lab BV:	===		Date	111/05 time:	18	30		rs		normal	
						سنند				•						on ice <u> </u>	٠٠,

Note: By relinquishing samples to Del Mar Analytical, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

3/28/06 104(e) 0387


ATTACHMENT E PHOTOGRAPHIC LOG

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

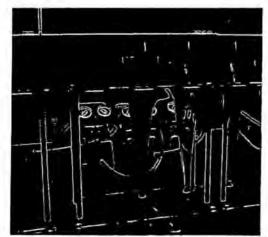

11600 Sherman Way, North Hollywood, California

Photo 1

A view of the ARD Lab

Taken at 9:58 am

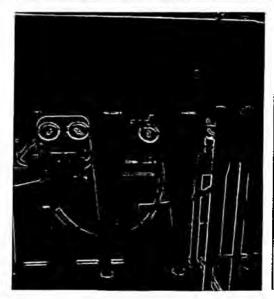


Photo 2

Taken at 10:01:30

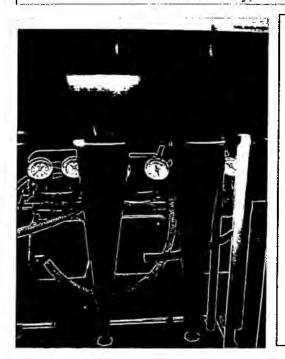
0.5% CaSx added to Cone 1.

Initial reaction-cloudy yellow.

Photo 3

Taken at 10:01:44

1.0% CaSx being added to Cone 2.


Initial reaction-clear yellow.

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Photo 4

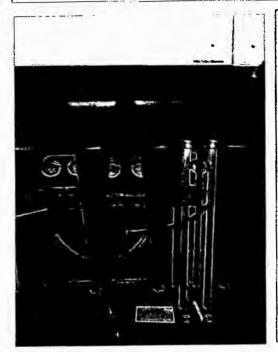
Taken at 10:02

1.0% CaSx completed added to Cone 2.

Photo 5

Taken at 10:02:42

The reactions of 0.5% and 1.0% CaSx at 45 seconds.


After 1 minute quick flocculation in 1.0% CaSx.

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California



Photo 6

Taken at 10:03:28

2.0% CaSx added to Cone 3.

Initial reaction- cloudy yellow-orange in color.

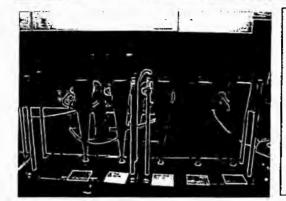
Photo 7

Taken at 10:04:18

5.0% CaSx added to Cone 4.

Initial reaction- cloudy orange in color.

Taken at 10:06:14


Reactions of 0.5%, 1.0%, 2.0%, and 5.0% CaSx.

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

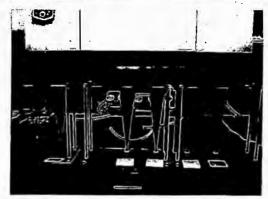


Photo 9

Taken at 10:08

A view of all 5 cones after adding 10.0% CaSx to Cone 5.

Initial reaction-cloudy orange in color.

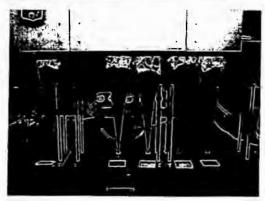


Photo 10

Taken at 10:13

Lab personnel noticed that Cone 5 containing 10% CaSx, as shown in Photo 9, had a leak; a new 10% cone started on the left.

Dose %	0.5	1.0	2.5	5.0	10.0
Initial	-440	-458	-475	-494	-520
ORP					

Photo 11

Taken at 10:22:46

22 minutes into the test.

The reactions of all five treatments of CaSx.

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Photo 12

30 minutes into the test.

Taken at 10:30:04

Visible precip settling in 0.5 % CaSx.

Photo 13

30 minutes into the test.

Taken at 10:32:20

Reactions of 0.5, 1.0, 2.0 and 5.0% CaSx.

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Photo 14

Taken at 10:32:30

Although blurry, visible precip settling on the sides of the cones in 1.0 and 2.0% CaSx at approximately 30 minutes into the test.

Photo 15

40 minutes into the test.

Taken at 10:42:18

Reactions of .5, 1.0, 2.0 and 5.0% CaSx.

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

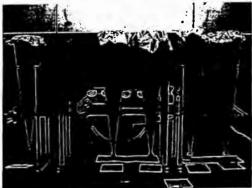


Photo 16

40 minutes into the test.

Taken at 10:42:20

10.0% CaSx cone. Note the layering.

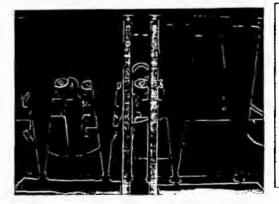


Photo 17

50 minutes into the test

Taken at 10:52:18

Reactions of cones as shown of 10.0, 0.5, 1.0, 2.0, and 5.0% CaSx. Visible layering in 10.0% CaSx.

Photo 18

I hr 10 minutes into the test

Taken at 11:12:08

Reactions of 0.5, 1.0, 2.0, and 5.0% CaSx. Note the precip level change in 5.0% CaSx from 40, 50 to 70 minutes into the test

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

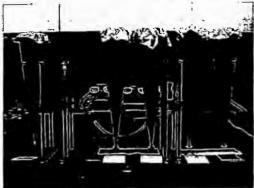


Photo 19

I hr 10 minutes into the test

Taken at 11:12:20.

Note the precip level change over time from Photo 16 @ 40 minutes to current.

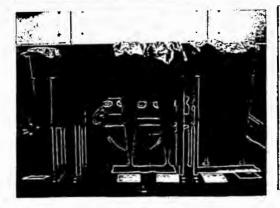


Photo 20

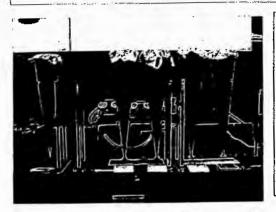
I hr 50 minutes into the test

Taken at 11:51:50.

Reactions of all cones.

Photo 21

1 hr 50 minutes into the test


Taken at 11:51:50

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Photo 22

2 hrs 15 min into the test

Taken at 12:16:02

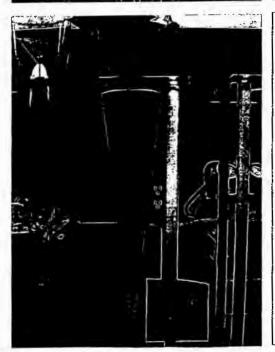


Photo 23

2 hrs 30 minutes into the test

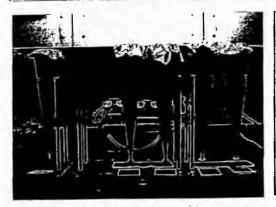
Taken at 12:32:20.

Reactions of 0.5, 1.0, 2.0, and 5.0% CaSx.

Photo 24

2 hrs 30 minutes into the test

Taken at 12:32:40.


Reaction of 10.0% CaSx.

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Photo 25

2 hrs 45 min into the test

Taken at 12:45:44

Photo 26

3 hrs into the test

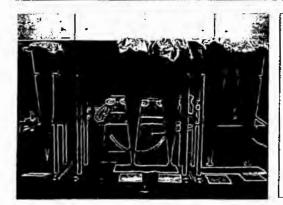
Taken at 12:58:34.

Reactions of 0.5, 1.0, 2.0, and 5.0% CaSx.

Photo 27

3 hrs into the test

Taken at 12:58:46.


Reaction of 10.0% CaSx.

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site


11600 Sherman Way, North Hollywood, California

Photo 28

3 hrs 15 min into the test

Taken at 13:13:28

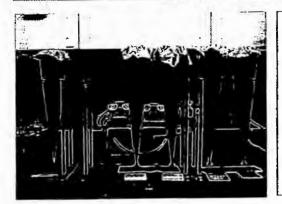
Photo 29

3 hrs 30 min into the test

Taken at 13:30:10

Photo 30

3 hrs 45 min into the test


Taken at 13:47:06

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Photo 31

4 hrs into the test

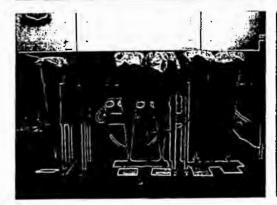

Taken at 13.59:16

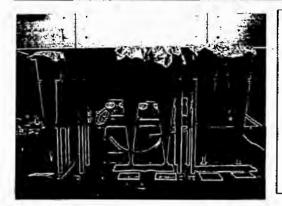
Photo 32

4 hrs 15 min into the test

Taken at 14:22:46

Photo 33

4 hrs 30 min into the test


Taken at 14:37:50

SETTLEABILITY PHOTOGRAPHIC LOG

TREATIBLITY STUDY

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Photo 34

4 hrs 45 min into the test

Taken at 14:42:40

Photo 35

5 hrs into the test; test terminated.

Taken at 14:58:20

At 15:17

Dose %	0.5	1.0	2.5	5.0	10.0
PH	8.7	9.0	9.5	9.9	10.5
Initial ORP	-440	-458	-475	-49 4	-520

ATTACHMENT F ANALYTICAL RESULTS FROM SETTLEABILITY TEST

October 5, 2005

Chris Nancarrow MWH Americas, Inc. 3050 Saturn St., Suite 205 Brea, CA 92821

RE: Honeywell - North Hollywood, CA/Project #1890933.0401

Dear Chris:

Enclosed are the results of the samples submitted to our laboratory on September 19, 2005. For your reference, these analyses have been assigned our service request number L0501654.

Columbia Analytical Services is certified for environmental analyses by the California Department of Health Services (certificate number: 1296A); NELAP (certificate number: 02115CA); Los Angeles County Laboratory ID (No. 10151); and Arizona Department of Health Services (License number: AZ0136 and AZ0544).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Julest

Sue Anderson Project Chemist

SA

3/28/06 104(e) 0403

Columbia Analytical Services, Inc.

Acronyms

8015	М	California DHS LUFT Method
AST	И	American Society for Testing and Materials
BOD		Biochemical Oxygen Demand
BTE		Benzene/Toluene/Ethylbenzene/Xylenes
CAM		California Assessment Metals
	Number	Chemical Abstract Service Registry Number
CFC		Chlorofluorocarbon
COD		Chemical Oxygen Demand
CRD	L	Contract Required Detection Limit
D Dl.		Detected; result must be greater than zero.
· DLC:	e	Detected; result must be greater than the detection limit.
DMS	-	Duplicate Laboratory Control Sample Duplicate Matrix Spike
	or DHS	Department of Health Services
ELAI		Environmental Laboratory Accreditation Program
EPA		U.S. Environmental Protection Agency
GC		Gas Chromatography
GC/N	48	Gas Chromatography/Mass Spectrometry
IC		Ion Chromatography
ICB		Initial Calibration Blank sample
ICP		Inductively Coupled Plasma atomic emission spectrometry
ICV		Initial Calibration Verification sample
LCS		Laboratory Control Sample
LUFT	Γ	Leaking Underground Fuel Tank
M		Modified
MBA	S	Methylene Blue Active Substances
MDL	,	Method Detection Limit
MRL	,	Method Reporting Limit
MS		Matrix Spike
MTB	E	Methyl tert - Butyl Ether
NA		Not Applicable
NC		Not Calculated
ND		None Detected at or above the Method Reporting/Detection Limit (MRL/MDL)
NTU		Nephelometric Turbidity Units
ppb		Parts Per Billion Parts Per Million
ppm PQL		Practical Quantitation Limit
QA/Q	C I	Quality Assurance/Quality Control
RCR	•	Resource Conservation and Recovery Act
RPD	•	Relative Percent Difference
SIM		Selected Ion Monitoring
SM		Standard Methods for the Examination of Water and Wastewater 18th Ed., 1992.
STLC	2	Solubility Threshold Limit Concentration
SW		Test Methods for Evaluating Solid Waste, Physical/Chemical MethodsSW-846,
		Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB.
TCL	P	Toxicity Characteristics Leaching Procedure
TDS		Total Dissolved Solids
TPH		Total Petroleum Hydrocarbons
TRPI	1	Total Recoverable Petroleum Hydrocarbons
TSS	_	Total Suspended Solids
TTL	2	Total Threshold Limit Concentration
VOA		Volatile Organic Analyte(s)
		Qualifiers
IJ		Undetected at or above MDL/MRL (PQL).
j		Estimated concentration. Analyte detected above MDL but below MRL (PQL).
В		Hit above MRL (PQL) also found in Method Blank.
E		Analyte concentration above high point of ICAL.
D		Result from dilution.
X		See case narrative.

Client:

MWH Ameicas, Inc.

Service Request No.: L0501654

Project:

Honeywell - North Hollywood, CA/1890933.0401 Date Received:

9/19/05

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS) and Sample Duplicate (DUP).

Sample Receipt

The samples were received for analysis at Columbia Analytical Services on 9/19/05. Any discrepancies were noted upon initial sample inspection and recorded on the Cooler Receipt and Exception Reports included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. The metals samples were filtered and preserved in the lab upon receipt. The samples were stored at 4°C upon receipt at the laboratory.

Dissolved Metals by EPA Method 6010B

Batch QC was run along with these samples. These results have been provided for informational purposes only. The Method Blank and Laboratory Control Samples were within criteria. No anomalies were encountered during this analysis.

Hexavalent Chromium by EPA Method 7199

The samples were received and analyzed past the recommended holding time. The data has been flagged accordingly.

All of the samples required dilution due to the nature of the matrices. Therefore, the reporting limits have been adjusted based on dilution. All of the samples except Raw (L0501654-001) have been reported as non-detect at an elevated reporting limit. The samples were initially analyzed less dilute on 9/19/05. Sample Raw (L0501654-001) was over the calibration range and required a higher dilution. The other samples were non-detect but the matrix spikes that were checked for two of the samples yielded low spike recoveries. Additionally the Continuing Calibration Verification (CCV) failed because of matrix interferences that contamin ated the IC system due to the samples. The system was cleaned out overnight and the samples rerun at higher dilutions on 9/20/O5.

Ine Judish Date 10/5/05

3/28/06 104(e) 0405

Analytical Report

Client: Project: MWH Americas, Incorporated

Honeywell - North Hollywood, CA/1890933.0401

Date Collected: 09/15/05

Sample Matrix:

Water

Service Request: L0501654 Date Received: 09/19/05

Metals

Sample Name:

Raw

Units: mg/L (ppm)

Lab Code:

Test Notes:

L0501654-001

Basis: NA

Analyte	Prep Method	Analysis Method	PQL	MDL	Dilution Factor	Date Digested	Date Analyzed	Result	Result Notes
Arsenic, Dissolved fron, Dissolved Manganese, Dissolved	EPA 3010A EPA 3010A EPA 3010A	6010B 6010B 6010B	0.1 0.05 0.02	0.05 0.02 0.002]]	09/23/05 09/23/05 09/23/05	09/30/05 09/30/05 09/30/05	ND 0.03 ND	J

Estimated concentration. The result is less than the PQL but greater than the MDL.

Approved By:

J

4.

3/28/06 104(e) 0406

METWD.XLT

L0501654icp.ba1 - Sample 10/05/05

Analytical Report

Client: Project: Sample Matrix: MWH Americas, Incorporated

Honeywell - North Hollywood, CA/1890933.0401

Water

Service Request: L0501654 Date Collected: 09/15/05

Date Received: 09/19/05

Metals

Sample Name: Lab Code: Test Notes:

0.5% CaSx L0501654-002 Units: mg/L (ppm)

Basis: NA

Analyte	Prep Method	Analysis Method	PQL	MDL	Dilution Factor	Date Digested	Date Analyzed	Result	Result Notes
Arsenic, Dissolved	EPA 3010A	6010B	0.1	0.05	I	09/23/05	09/30/05	ND	
Iron, Dissolved	EPA 3010A	6010B	0.05	0.02	1	09/23/05	09/30/05	ND	
Manganese, Dissolved	EPA 3010A	6010B	0.02	0.002	I	09/23/05	09/30/05	0.006	J

Estimated concentration. The result is less than the PQL but greater than the MDL.

Approved By:

_____ Date: 10 5 05

5

3/28/06 104(e) 0407

L0501654icp.ba1 - Sample (2) 10/05/05

METWO.XLT

Analytical Report

Client: Project: MWH Americas, Incorporated

Honeywell - North Hollywood, CA/1890933.0401

Water

Service Request: L0501654 Date Collected: 09/15/05 Date Received: 09/19/05

Metals

Sample Name: Lab Code:

Sample Matrix:

1% CaSx

Test Notes:

L0501654-003

Units: mg/L (ppm)

Basis: NA

Analyte	Prep Method	Analysis Method	PQL	MDL	Dilution Factor	Date Digested	Date Analyzed	Result	Result Notes
Arsenic, Dissolved Iron, Dissolved Manganese, Dissolved	EPA 3010A EPA 3010A EPA 3010A	6010B 6010B	0.1 0.05 0.02	0.05 0.02 0.002	1 1 1	09/23/05 09/23/05 09/23/05	09/30/05 09/30/05 09/30/05	ND ND ND	

BarbaraSeubr

Analytical Report

Client: Project: Sample Mat MWH Americas, Incorporated Honeywell - North Hollywood, CA/1890933.0401 Water Service Request: L0501654 Date Collected: 09/15/05 Date Received: 09/19/05

Sample Matrix:

Metals

Sample Name: Lab Code: Test Notes: 2.5% CaSx L0501654-004 Units: mg/L (ppm)

Basis: NA

Analyte	Prep Method	Analysis Method	PQL	MDL	Dilution Factor	Date Digested	Date Analyzed	Result	Result Notes
Arsenic Dissolved Iron, Dissolved Manganese, Dissolved	EPA 3010A EPA 3010A EPA 3010A	6010B 6010B 6010B	100 0.05 0.02	50 0.02 0.002	1	09/23/05 09/23/05 09/23/05	09/30/05 09/30/05 09/30/05	ND ND 0.003	J

Estimated concentration. The result is less than the PQL but greater than the MDL.

Approved By.

RankaraSeubon

Date: 10 505

3/28/06 104(e) 0409

Analytical Report

Client: Project: Sample Matrix: MWH Americas, Incorporated

Honeywell - North Hollywood, CA/1890933.0401

Water

Service Request: L0501654 Date Collected: 09/15/05 Date Received: 09/19/05

Metals

Sample Name: Lab Code:

5% CaSx L0501654-005 Units: mg/L (ppm) Basis: NA

Test Notes:

Dilution Date Date Result Prep Analysis Method Analyte Method PQL MDL Factor Digested Analyzed Result Notes 200 09/23/05 10/03/05 0.16 FIA/J EPA 3010A 6010B 100 2 Arsenic, Dissolved 09/30/05 ND 0.05 0.02 09/23/05 Iron, Dissolved **EPA 3010A** 6010B ı 09/30/05 0.04 J **EPA 3010A** 6010B 0.02 0.002 09/23/05 Manganese, Dissolved

FIA

Estimated concentration. The result is less than the PQL but greater than the MDL. The MRL is elevated because of matrix interferences requiring sample dilution.

Approved By:

8

3/28/06 104(e) 0410

METWD.XLT

L0501654icp.bal - Sample (5) 10/05/05

Analytical Report

Client: Project: Sample Matrix: MWH Americas, Incorporated

Honeywell - North Hollywood, CA/1890933.0401

Water

Service Request: L0501654 Date Collected: 09/15/05

Date Received: 09/19/05

Metals

Sample Name: Lab Code: Test Notes:

10% CaSx L0501654-006 Units: mg/L (ppm)

Basis: NA

Analyte	Prep Method	Analysis Method	PQL	MDĹ	Dilution Factor	Date Digested	Date Analyzed	Result	Result Notes
Arsenic Dissolved Iron, Dissolved Manganese, Dissolved	EPA 3010A EPA 3010A EPA 3010A	6010B 6010B	0.1 0.05 0.02	0.05 0.02 0.002	1 1 1	09/23/05 09/23/05 09/23/05	09/30/05 09/30/05 09/30/05	ND ND ND	

Benjamen Serken _ Date: 10/5/05 Approved By:

3/28/06 104(e) 0411

Analytical Report

Client: Project: MWH Americas, Incorporated

Honeywell - North Hollywood, CA/1890933.0401

Sample Matrix: Water Service Request: L0501654 Date Collected: NA

Date Received: NA

Metals

Sample Name: Lab Code:

Method Blank

Units: mg/L (ppm)

Basis: NA

Test Notes:

L050923-MB1

L0501654jcp.bol - M Blank 10/05/05

Dilution Date Date Result Prep Analysis Result Notes PQL MDL Digested Analyzed Analyte Method Method Factor Arsenic, Dissolved EPA 3010A 6010B 0.1 0.05 09/23/05 09/30/05 ND 0.02 09/23/05 09/30/05 ND EPA 3010A 6010B 0.05 Iron, Dissolved 1 09/30/05 ND 0.02 0.002 09/23/05 Manganese, Dissolved EPA 3010A 6010BI

Date: 10 5 05

10

3/28/06 104(e) 0412

METWD.XLT

QA/QC Report

Client:

MWH Americas, Incorporated

Project:

LCS Matrix:

Honeywell - North Hollywood, CA/1890933.0401

Date Received: NA

Date Digested: 09/23/05

Service Request: L0501654

Date Collected: NA

Date Analyzed: 09/30/05

Laboratory Control Sample Summary

Metals

Sample Name:

Lab Control Sample

Lab Code:

L050923-LCS1

Water

Test Notes:

Units: mg/L (ppm)

Basis: NA

CAS Percent Recovery **Percent** Acceptance Result Prep Analysis True Limits Notes Recovery Analyte Method Method Value Result 89-119 EPA 3010A 6010B 1.00 1.00 100 Arsenic, Dissolved EPA 3010A 6010B 5.00 4.87 97 94-119 Iron, Dissolved 6010B 0.500 0.486 97 90-119 Manganese, Dissolved EPA 3010A

Approved By: LCS/020597p L0501654icp.bal - LCS 10/05/05

METWD.XLT

QA/QC Report

Client:

MWH Americas, Incorporated

Project:

Honeywell - North Hollywood, CA/1890933.0401

Sample Matrix:

Water

Service Request: L0501654

Date Collected: NA
Date Received: NA

Date Digested: 09/23/05 Date Analyzed: 09/30/05

Matrix Spike/Duplicate Matrix Spike Summary

Metals

Sample Name:

Batch QC

Lab Code:

L0501654-001MS

L0501654-001DMS

Units: mg/L (ppm)

Basis: NA

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	PQL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Arsenic, Dissolved	EPA 3010A	6010B	0.1	1.00	1.00	ND	0.937	1.02	94	102	84-121	8	
Iron, Dissolved	EPA 3010A	6010B	0.05	5.00	5.00	ND	4.88	4.88	98	98	83-120	<1	
Manganese, Dissolve	d EPA 3010A	6010B	0.02	0,500	0.500	ND	0.484	0.487	97	97	81-119	<1	

Approved By: Barbara Sulbn 12 Date: 10/5/05

METWD.XLT

Analytical Report

Client:

MWH Americas, Incorporated

Project:

Honeywell - North Hollywood, CA/1890933.0401

Sample Matrix: Water Service Request: L0501654

Date Collected: 9/15/05 Date Received: 9/19/05

Chromium, Hexavalent

Prep Method:

METHOD

Analysis Method: 7199

Units: ug/L (ppb) Basis: NA

Test Notes:

Sample Name	Lab Code	PQL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Raw	L0501654-001	20	4	200	NA	9/20/05	760	Bl
0.5% Ca\$x	L0501654-002	10	2	100	NA	9/20/05	ND	· BI/FIB
1% CaSx	L0501654-003	10	2	100	NA	9/20/05	ND	B1/F1B
2.5% CaSx	L0501654-004	10	2	100	NA	9/20/05	ND	B1/F1B
5% CaSx	L0501654-005	10	2	100	NA	9/20/05	ND	· BI/FIB
10% CaSx	L0501654-006	10	2	100	NA	9/20/05	ND	B1/F1B
Method Blank	L050920-MB	0.1	0.02	1	NA	9/20/05	0.05	J

В1

Sample was received and analyzed outside of the recommended maximum holding time.

FIB

The PQL is elevated because of matrix interferences.

he Oeulest

Estimated concentration. The result is less than the PQL but greater than the MDL.

Approved By:

IA/020597p

13

L0501654WET.HK1 - Sample 9/25/05

3/28/06 104(e) 0415

QA/QC Report

Client:

MWH Americas, Incorporated

Service Request: L0501654

Project:

Honeywell - North Hollywood, CA/1890933.0401

Date Collected: NA

LCS Matrix:

Water

Date Received: NA

Date Extracted: NA
Date Analyzed: 9/20/05

Laboratory Control Sample/Duplicate Laboratory Control Sample Summary

Chromium, Hexavalent

- Sample Name:

Duplicate Lab Control Sample

Units: ug/L (ppb)

Lab Code:

L050920-LCS L050920-DLCS

Basis: NA

Test Notes:

Percent Recovery

									CAS	Relative	
	Prep	Analysis	True	Value	Re	sult			Acceptance	Percent	Result
Analyte	Method	Method	LCS	DLCS	LCS	DLCS	LCS	DLCS	Limits	Difference	Notes
				*							
Chromium, Hexavalent	METHOD	7199	2.00	2.00	2.12	2.10	106	105	90-110	<}	

Approved By:

L0501654WET.NEI - DLCS 9/25/05

14

Page No

QA/QC Report

Client:

Project: Sample Matrix: MWH Americas, Incorporated

Honeywell - North Hollywood, CA/1890933.0401

Water

Service Request: L0501654

Date Collected: 9/15/05 Date Received: 9/19/05

Date Extracted: NA Date Analyzed: 9/20/05

Matrix Spike/Duplicate Matrix Spike Summary

Chromium, Hexavalent

Sample Name:

Lab Code: Test Notes: Raw

L0501654-001MS

L0501654-001DMS

Units: ug/L (ppb)

Basis: NA

•											CAS	Relative	
-	Prep	Analysis		Spike	Level	Sample	Spike	Result			Acceptance	Percent	Result
Analyte	Method	Method	PQL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Chromium, Hexavalent	METHOD	7199	20	200	200	758	946	940	94	91	90-110	<1 .	

Approved By: DMS/020597p

Que Quelestr Date: 9/25/05

15

QA/QC Report

Client:

MWH Americas, Incorporated

Project:

Sample Matrix: Water

Honeywell - North Hollywood, CA/1890933.0401

Date Received: 9/19/05

Service Request: L0501654 Date Collected: 9/15/05

Date Extracted: NA

Date Analyzed: 9/20/05

Duplicate Summary Chromium, Hexavalent

- Sample Name:

Raw

Lab Code:

L0501654-001DUP

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	PQL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Chromium, Hexavalent	METHOD	7199	20	758	759	759	<1	

Approved By: DUP/020597p

L0501654WET,NK1 - DUP 9/25/05

4	050	16	54		lone		11	Cha	in Of	Cust					uest									COC10 37870-2275
			-	FDD To:	& Confiden	net Calles of				Site Na		NORT							_		-			Lab Pro
vd								-		Location	_	_		well -	North I	follyv	vood, (Califo	rola P	ojec		_		THE COURS !
Ilent Contact: (nat	ne, co., addr	ess)		Sampler				····			Prese 0	rvative 0	0 1	0	o I	0	o	0	0	0	0	To	To	Tobil 87 - 1022 - 1890933 0401
ichard Thomasse	Michael El	maper		P O # 1890975 .0 401 Analysis Turnaround Time: 10					100					-	0	<u>`</u>	<u> </u>	٠.		+	+	Ť		
1050 Saturn Street, S	uite 205. Bre	. CA 9282	1	Standard				•0			3	30	2	7		İ	ļ							
nichael flaugher Om	wholobal.com	n		Rath Charges Anthorized for - 2 wooks -						37	7	38	d	176.2				Ì						AND ALL REAL PROPERTY.
ontact Phone/Call;	(714) 646-200	07/(714) 9	36-3397								1	4.7	શ્										1	的語言的表示。
Hardenpy Report To: Chris Nancawow Invoke To: Benny Delighi			l week •						i i	HCK. Chowin (פיח אין)	PON, MANGEMERACE ACCENTE	JUTHE (PM 3000)	WITHOU (BRAZZE	(1.2										
				Next Day	Sample	Sample	Sample	Sample	1 1	D Piter	3	A, 74	The Control	LFID	DC(415.1)									
	Sample	Identifica	itlen	Date	Time	Type		Purpose		5	1	12	J	3	6					_	-			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Location ID	Start Depth (ft)	End Depth (ft)	Field Sample ID							Units	Mg/L	mg/L.	mg/L.	mg/L	Men.	Tym	MeA.	MEA	ug.A.					Lab Sample Numbers
ARD		-	RAW	9.15.0	5 1630		H20		.1		1	~												
			0.5% Casx	1	1						-	~												2
_			170 Casy								1	~												3
7			2.5% (asx								1	V												4
			590 Casy								~	1												5
			10% CaSx						V		v	/												6
						1														_			\perp	-
		 					 _	ļ	ļ		-			<u> </u>		·			-	<u> </u>	. .		┿.	
		<u> </u>				ļ <u></u>	 	<u> </u>	<u> </u>			-		-					ļ	+		-		
				-			 	 	-	-	ļ <u>.</u>		ŧ					-	-	-	+-	-	+	<u> </u>
		ļ			ļ		-		-				-					_	-	┾	-	+	+-	
Special Instruction	s: X No	DEY	AVALYSIS			٠		ļ	<u></u>	1	1	<u></u>	ļ	L			L ,		<u> </u>	1_	1			<u> </u>
Relinquishedby	MAIL	11	Comp		MWH					<u>_</u>	Diese		тралу	MW]	ł			btion		4		Cus	tody S	cals Intact
Relinquished by Comp			9./6.05 /500 Panny Received by					Date/Time Company				CAS			Cooler Temp.		1	OE	Cus	Custody Seals Intact				
Felev	,		Date/Time			0	L. A			-	Date		-,,	9	ole	5	Cool	7 (1 5)02	20.)-D	-		
		107.2.4	HNO3): 13 - H2504): (4 -	N-OUR II				1.7100.41						T.O	5.50	_	٠ ٢					L		

SAMPLE RECEIPT FORM

Service Request No: L050 1654 Client: MWH	
Sample(s) delivered by: Client CAS Emp After Hours DHL	
Golden State Overnight Fed X UPS Other Courier	
Chain of Custody filled out accurately? Yes No(See Comments)	1
Appropriate sample volume and containers? Yes No (See Comments)	1
Sufficient labeling on container(s)? Yes No(See Comments)	ı
Container(s) supplied by CAS? Yes No (See Comments)
Custody seal(s) intact? N/A Yes No (See Comments)	•
Trip Blank(s) received Yes No	
If Trip Blank was supplied by CAS, record serial #	_
Temperature of sample(s)/cooler °C ** Temp Blank? Y o(N) Circle One)	
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comme	nts)
Preserved Bottles Requiring pH check(s)? Yes Appropriate Preservation? Yes No	-
RUSH Turn around time? Yes Notified Date & Time	_
Short Hold-Time Analysis (check all that apply)	
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors	
Notified Date & Time	_
Container(s) received and their preservative(s):	
1->6 = 1-200ml WM PLASTIC	
Comments * Need to split for Metals once Cubt done au	<u>d</u>
XX NO ICE IN CODLETTS	
Initials Date Time 8n 9/19/05 0900 3/28/06 1040	e)

6925 Canoga Avenue

Canoga Park, California

	An Emphrone United Empires	Phone: (818) 587-5550 Fax: (818) 587-5555
	SAMPLE REC	EIPT EXCEPTION REPORT
	e namen en	
Servic	e Request #: 1050/654	Client/Project: MNH NORTH HOWY WOOD
		COMMENTS
	No custody seal as required by project.	
	Analysis, description, date/time of collection not provided.	
/	Temperature of samples inappropriate for analysis requested.	NO ICE IN COOLER. 20°C.
	Samples broken or leaking on receipt.	
	5. Container inappropriate for analysis requested.	
	6. Inadequate sample volume.	
~	Preservation inappropriate for analysis requested.	NON- PRESENTED SAMPLE WILL NEED TO WESTELLS
1	8. Samples received out of holding time for analysis requested.	
	Discrepancies between COC form and container labels.	
	10. Other	
The Will		のできたないできます。
*		rective Actions Taken: 15 0900 Rep. CHRIS ABOUT DIFFERENCES
		PCH, NOT FOR COMPLIANCE. WILL
- 1		AND FIXED AS NELESSARY NSTRUCTED.
N	lotified:	Antibution of the contraction of
_ 1	Client CHRIS Xbu Carron	
	LCAS Project Manager Sue	Date: 9/19/55

Submittal of Waste Discharge Requirements Permit Application and Supplemental Information

May 2005

Submittal of Waste Discharge Requirements Permit Application and Supplemental Information

Former North Hollywood Site 11600 Sherman Way North Hollywood, California

May 2005

Jedex Prinity 1890933.0401

California Regional Water Quality

Control Board

320 West 4th Street, Suite 200 Los Angeles, CA 90013

Office phone: 213-576-6807 Office fax:

213-576-6640

eMail: alex.lapostol@ch2m.com

Name

Alex

First name: Middle name: Last name:

Lapostol

Suffix:

Phones

Office phone:

213-576-6807

Office fax:

213-576-6640

Cell phone:

Home phone:

Home fax: Pager:

Business

Company:

California Regional Water

Quality Control Board

Title:

Job title:

Email and Web Page

eMail address:

alex.lapostol@ch2m.com

Web page:

Home

Business

Address:

320 West 4th Street,

Suite 200

Los Angeles, CA

Country:

Home address:

ZIP/Postal code:

90013

ZIP/Postal code:

Country:

Location: Department:

Manager: Assistant:

Spouse: Children:

Birthday:

Name

Full user name: Mail domain:

Alex Lapostol

Organize Categories:

Logo:

Beach Texture

Short name:

Phonetic name: Display name format:

Lastname Firstname

Internet Certificate

Internet certificate:

Not Available

Internet certificate

issuers:

3/28/06 104(c)

0425

Jedex Priority

Oriola Dixon

California Regional Water Quality

Unit Chief; Senior Engineering Control Board

Geologist; Well Investigation

Program-

320 West 4th Street, Suite 200

Los Angeles, CA 90013

Office phone:

213-576-6803

Office fax: 213-576-6700

eMail: doriola@rb4.swrcb.ca.gov

Manne

First name: Middle name:

Last name:

Dixon

Α Oriola

Title:

Phones

Office phone:

213-576-6803

Office fax:

213-576-6700

Cell phone:

Home phone:

Suffix:

Home fax: Pager:

Business

Company:

California Regional Water

Ouality Control Board

Job title:

Unit Chief

Senior Engineering Geologist Well Investigation Program

Email and Web Page

eMail address:

donola@rb4.swrcb.ca.gov

Web page:

Business

Address:

320 West 4th Street,

Suite 200

Los Angeles, CA

ZIP/Postal code:

Home

Home address:

Country:

90013

ZIP/Postal code:

Country:

Location:

Department:

Manager: Assistant:

Spouse: Children:

Birthday:

Mame

Full user name: Mail domain:

Dixon A Oriola

Organize Calegories:

Logo:

Beach Texture

Short name:

Phonetic name:

Display name format:

Lastname Firstname

Internal Carifficate

Internet certificate:

Not Available

DeHghi(Benny Manager; Remediation & **Evaluation Services**

Feder Prinity 1890933.0401

Honeywell

2525 West 190th Street Torrance, CA 90604-6099

Office Phone: Office Fax:

310-512-2296 310-512-2489

Cell Phone: 310-292-0991

eMail: benny.dehghi@honeywell.com

Name

First name:

Benny

Middle name:

Last name:

DeHghi

Title:

Phones

Office Phone:

310-512-2296 310-512-2489

Office Fax: Cell Phone:

Home Phone:

Home Fax: Pager:

Suffix:

Business* x

Company: Job title:

Honeywell

Manager

Remediation & Evaluation

Services

Email and Web Page

benny.dehghi@honeywell.com

eMail address: Web page:

Business -

Address:

2525 West 190th Street

Torrance, CA

ZIP/Postal code:

Country:

90604-6099

ZIP/Postal code:

Country:

Home address:

Location: Department:

Manager:

Assistant:

Spouse:

Children:

Birthday:

Name

Full user name: Mail domain:

Benny DeHghi

Organize Categories:

Logo:

Beach Texture

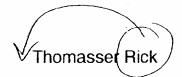
Short name:

Phonetic name:

Display name format:

Lastname Firstname

Internet Certificate


Internet certificate:

Not Available

وعالما ووعادم

Internet certificate

issuers:

1890933.0401

Office phone:

707-259-8657

Office fax: Cell phone: 707-259-8619 925-899-1882

WCK phone:

925-975-3436

Name

Frallian.

Phones

707-259-8657

First name: Middle name: Rick

Office phone: Office fax:

Last name:

Thomasser

Cell phone:

707-259-8619

Title: Suffix: WCK phone:

925-975-3436

Home fax: Pager:

Company: Job title:

Email and Web Page

eMail address:

Web page:

Business . partur Address:

Country:

804 First Street

Napa, CA

94559

Home Home address:

ZIP/Postal code:

Country:

Location:

Department:

ZIP/Postal code:

Manager:

Assistant:

Spouse:

Children:

Birthday:

Name

Rick Thomasser

Full user name: Mail domain:

Categories:

Logo:

Beach Texture

Short name:

Phonetic name:

Display name format:

Organize

Lastname Firstname

Internet Certificate

Internet certificate:

Not Available

Internet certificate

issuers:

Notes Certificates

Certified public key: Flat name key:

May 31, 2005

Mr. Dixon Oriola
Unit Chief
California Regional Water Quality Control Board
Los Angeles Region
320 West 4th Street, Suite 200
Los Angeles, California 90013

Subject:

Submittal of Waste Discharge Requirements Permit Application

and Supplemental Information

Former Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Dear Mr. Oriola:

MWH Americas, Inc. (MWH) is submitting this Waste Discharge Requirements (WDR) Permit Application and Supplemental Information package, including a check for \$5,668.00 for the permit and surcharge fees, to the Regional Water Quality Control Board – Los Angeles Region (RWQCB) on behalf of Honeywell International Inc. (Honeywell). The WDR Permit Application Form 200 was requested by the RWQCB in a letter dated April 13, 2005. The supplemental information included in this package is presented in support of the permit application.

1.0 INTRODUCTION

This document has been prepared in support of a permit application to establish WDRs for the soil and groundwater remediation activities at the Former Honeywell North Hollywood Site (Site) using in-situ chemical reduction. The soil and groundwater remediation approach has been presented in a remediation plan titled, "Soil and Interim Groundwater Remedial Action Plan (SIGRAP), Former Honeywell North Hollywood Site" prepared by MWH, dated July 30, 2004 (Appendix A). The SIGRAP was approved by the RWQCB in a letter dated April 13, 2005 (Appendix B). The goals of the proposed soil remedial measures are to reduce mobile hexavalent chromium concentrations in the vadose zone to prevent these residual concentrations from further threatening groundwater quality. The goals for interim groundwater remediation are to provide for hydraulic control of the on-Site chromium plume and to reduce concentrations of dissolved chromium in groundwater.

The WDR permit application Form 200 for in-situ chemical reduction has been prepared and is included as Appendix C. In addition, the Environmental Information Form, Part 1 of the Initial Study, has been prepared and included as Appendix D.

The following sections of this document provide summarized information regarding the Site background and remedial technology.

2.0 SITE HISTORY

The Site is located in the east-central part of the San Fernando Valley (SFV), approximately 14 miles northwest of downtown Los Angeles, California. It is bordered by Sherman Way to the north, Lankershim Boulevard to the west, various commercial/light industrial businesses to the east, and by the Southern Pacific Railroad right-of-way to the south. The present-day land use is commercial/retail, including office buildings owned and operated by Kaiser Permanente in the western part of the Site, a self-storage business owned and operated by Public Storage, Inc. in the central part of the Site, and a hardware store owned and operated by Home Depot, Inc. in the eastern part of the Site.

During the period from 1941 to 1992, the Site was used by the Bendix Corporation and later by AlliedSignal/Bendix Electrodynamics (Bendix was purchased by AlliedSignal, now known as Honeywell International Inc.) for the manufacture of hydraulic and pneumatic valves. Prior to its demolition in 1993, the Site included two main building complexes referred to as Plant 1 and Plant 2. Plant 1, which was constructed in 1941, was the larger of the two and was located in the central portion of the facility near the present-day Public Storage parcel and the western part of the Home Depot parcel. Plant 2, which was constructed in 1949, occupied the eastern portion of the facility and was located north and east of the current Home Depot building. After the plant buildings were razed, the Site was subdivided and re-developed as three separate parcels as discussed above. The western part of the Site, which was formerly used as a parking lot, was sold to Kaiser Permanente in 1991. The middle part of the Site was sold to Public Storage, Inc. in 1997. The easternmost part of the Site, which includes the former locations of Plant 2 and much of Plant 1, was sold to Home Depot in 1995.

Since the late 1980s, phased investigation and soil remediation efforts at the Site have been conducted in close coordination with the RWQCB. The early investigations focused primarily on evaluating the nature and extent of volatile organic compounds (VOCs) and metals in the subsurface at the Site. For many years, VOC-impacted groundwater in the site vicinity has formed the basis for the San Fernando Valley Superfund site (specifically, the North Hollywood Operable Unit. In late February 2003, the RWQCB issued Cleanup and Abatement Order (CAO) No. R4-2003-0037, which required the assessment of emerging chemicals and heavy metals (including total and hexavalent chromium) in the unsaturated and saturated zones beneath the Site. Additional Site characterization investigations followed. In July 2004, the SIGRAP was submitted to the RWQCB. The SIGRAP was approved in April 2005.

Historically, remediation activities at the Site have consisted of excavation. In 1994, Honeywell excavated approximately 120 cubic yards of soil from the former Plant 2 area. In 1997, chromium-impacted soil hotspots were removed from locations beneath Plant 1 using a bucket auger. Between December 1999 and March 2000 an additional 230 tons of chromium-impacted soil was removed from Plant 1 during redevelopment for the Public Storage facility.

3.0 HYDROGEOLOGIC SETTING

The Site is hydrogeologically situated in the San Fernando Valley Groundwater Basin, a part of the water management area known as the Upper Los Angeles River Area. Groundwater supply wells, such as the various well fields operated by the City of Los Angeles, comprise an important source of drinking water. Following the listing of parts of the Basin on the National Priority List in the 1980s, large-scale groundwater remediation projects have used groundwater extraction and aboveground treatment to address widespread contamination due to VOCs and nitrate.

The prevailing direction of the regional groundwater flow in the basin is toward the east-southeast, in the direction of the Los Angeles River Narrows. Groundwater extraction, either for water supply or remedial purposes, influences this pattern and can locally reverse the otherwise natural direction of groundwater flow. A detailed discussion of well fields near the Site is included in the attached SIGRAP.

Water levels measured in the on-Site groundwater monitoring wells indicated significant fluctuations since groundwater monitoring began in 1991. A significant rise in the water table (i.e., on the order of 40 to 50 feet) was observed during the period from 1993 to 1997. Detectable chromium in on-Site groundwater monitoring wells was not documented until 1998. The groundwater flow gradient beneath the immediate Site is relatively flat. Due to the influence of groundwater extraction in the surrounding well fields, local groundwater flow direction at the Site is highly variable and subject to pronounced changes from one monitoring event to another. The most recent Site groundwater monitoring report, "Groundwater Monitoring Report, First Quarter 2005," dated April 15, 2005, is included as Appendix E.

4.0 CHROMIUM IMPACTS TO SOIL AND GROUNDWATER

Historical releases from the former plating operations occurred primarily in the northern half of the plating facility in Plant 1. The aerial extent of elevated hexavalent chromium concentrations in soil covers an area of approximately 1,750 square feet centered around the location of plating tanks and areas of highest use within the plating room of Plant 1. In general, the lateral extent of elevated hexavalent chromium in soil is within the limits of the former plating facility. Migration from the point of release is primarily downward with little lateral spreading. The vertical extent of chromium impact is well defined with the majority of the contaminant mass primarily sorbed or contained-in the uppermost 50-feet of the vadose zone beneath the source area.

Groundwater was analyzed in select wells for hexavalent chromium beginning in July 1997. Honeywell conducted additional groundwater monitoring for total and hexavalent chromium in February 1998, July 1998, July 1999, and February 2001. The maximum concentration of total chromium detected during these sampling events was 5,810 micrograms per liter in the February 2001 sample from well GW-3. Historical analytical data including the February 2001 groundwater data were provided to the RWQCB in the, "Technical Report and Remedial Investigation Workplan for Chromium, Honeywell International, Inc." by Parsons, dated December 2001. In accordance with the RWQCB's February 21, 2003 CAO, Honeywell initiated quarterly groundwater monitoring, including sampling of all on-Site groundwater monitoring wells and testing for total and hexavalent chromium.

During First Quarter 2005, thirteen groundwater monitoring wells were sampled and analyzed for Title 22 metals, hexavalent chromium, and VOCs. Select wells were sampled and analyzed for 1,4-dioxane and perchlorate. The First Quarter 2005 Groundwater Monitoring Report is included as Appendix E. During this reporting period, the groundwater flow direction was to the northeast. Hexavalent chromium was detected in eight of the 13 wells at concentrations ranging from 0.002 milligrams per liter (mg/L) to 6.4 mg/L. VOCs were detected in all wells at relatively low concentrations, with higher concentrations in the southwest corner of the Site. In November 2004, Honeywell commenced installation of four off-Site monitoring wells to the south and southeast of the Site. Well installation and development activities were completed on April 29, 2005. All four wells have been completed as multi-screened wells with Barcad samplers to allow for discrete vertical groundwater sampling. A report detailing well installation, the results of soil and verticallydiscrete groundwater samples collected during drilling, and initial groundwater samples collected after development will be submitted by June 30, 2005. The new off-Site wells were added to the routine groundwater monitoring program during Second Quarter 2005 and groundwater monitoring results will be presented in the Second Quarter 2005 Groundwater Monitoring Report which will be submitted to the RWQCB on July 15, 2005.

5.0 REMEDIAL TECHNOLOGY SUMMARY

The SIGRAP proposed an integrated approach to cleanup hexavalent chromium in the vadose zone, (thereby inhibiting future migration of chromium from the vadose zone into the underlying groundwater); cleanup chromium-impacted groundwater; and provide hydraulic control of the on-Site groundwater chromium plume.

The approach involves eliminating the 'reservoir' of mobile hexavalent chromium present in the contaminated soils by percolation of reductant solution from an infiltration basin. Such percolation will displace a portion of the mobile chromium from the vadose zone, but it will be captured by pumping of a recovery well within the 'footprint' of the soil contamination area. The recovered water will be treated and used as a source of supply for the infiltration solution.

Hydraulic control and in-situ reduction of chromium in the saturated zone under the Site will be achieved by pumping initially from one down-gradient well and one source area well and reinjection of the reductant-treated water in cross-gradient wells, thereby achieving lateral reduction of the plume within the on-Site plume areas. The reduction will also generate conditions optimal to microbiological reduction of hexavalent chromium and chlorinated solvents. A detailed discussion of the remedial approach is described in the attached SIGRAP.

Appendix F is a table summarizing MWH experience with respect to *in-situ* treatment of hexavalent chromium. Additional details on these projects, along with several RWQCB-issued WDRs and project documents were submitted by MWH to the RWQCB in the "Data Package to Support Proposed Remediation, Former Honeywell North Hollywood Site," dated June 2004.

Both Honeywell and MWH appreciate your attention to this project. If you have any questions or comments, or if you would like additional information, please feel free to contact Mr. Richard Thomasser at (707) 259-8657 or Ms. Lisa Hall at (714) 646-2001.

Sincerely,

MWH Americas, Inc.

Lisa A. Hall, P.E.

Lisa A Hall

Principal Engineer

Richard M. Thomasser, P.G. Principal Hydrogeologist

Appendices

Check for \$5,668.00 for Permit Fee (to Dixon Oriola only)

A SIGRAP (MWH, July 2004)

B SIGRAP Approval Letter (RWQCB, April 2005)

C WDR Permit Application Form 200

D Environmental Information Form, Initial Study Part 1

E Groundwater Monitoring Report, First Quarter 2005 (MWH, April 2005)

F MWH In-Situ Chromium Treatment Experience Summary

cc: Mr. Alex Lapostol, RWQCB

Mr. Benny DeHghi, Honeywell

May 31, 2005

Mr. Dixon Oriola
Unit Chief
California Regional Water Quality Control Board
Los Angeles Region
320 West 4th Street, Suite 200
Los Angeles, California 90013

Subject:

Submittal of Waste Discharge Requirements Permit Application

and Supplemental Information

Former Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Dear Mr. Oriola:

MWH Americas, Inc. (MWH) is submitting this Waste Discharge Requirements (WDR) Permit Application and Supplemental Information package, including a check for \$5,668.00 for the permit and surcharge fees, to the Regional Water Quality Control Board – Los Angeles Region (RWQCB) on behalf of Honeywell International Inc. (Honeywell). The WDR Permit Application Form 200 was requested by the RWQCB in a letter dated April 13, 2005. The supplemental information included in this package is presented in support of the permit application.

1.0 INTRODUCTION

This document has been prepared in support of a permit application to establish WDRs for the soil and groundwater remediation activities at the Former Honeywell North Hollywood Site (Site) using in-situ chemical reduction. The soil and groundwater remediation approach has been presented in a remediation plan titled, "Soil and Interim Groundwater Remedial Action Plan (SIGRAP), Former Honeywell North Hollywood Site" prepared by MWH, dated July 30, 2004 (Appendix A). The SIGRAP was approved by the RWQCB in a letter dated April 13, 2005 (Appendix B). The goals of the proposed soil remedial measures are to reduce mobile hexavalent chromium concentrations in the vadose zone to prevent these residual concentrations from further threatening groundwater quality. The goals for interim groundwater remediation are to provide for hydraulic control of the on-Site chromium plume and to reduce concentrations of dissolved chromium in groundwater.

The WDR permit application Form 200 for in-situ chemical reduction has been prepared and is included as Appendix C. In addition, the Environmental Information Form, Part 1 of the Initial Study, has been prepared and included as Appendix D.

The following sections of this document provide summarized information regarding the Site background and remedial technology.

2.0 SITE HISTORY

The Site is located in the east-central part of the San Fernando Valley (SFV), approximately 14 miles northwest of downtown Los Angeles, California. It is bordered by Sherman Way to the north, Lankershim Boulevard to the west, various commercial/light industrial businesses to the east, and by the Southern Pacific Railroad right-of-way to the south. The present-day land use is commercial/retail, including office buildings owned and operated by Kaiser Permanente in the western part of the Site, a self-storage business owned and operated by Public Storage, Inc. in the central part of the Site, and a hardware store owned and operated by Home Depot, Inc. in the eastern part of the Site.

During the period from 1941 to 1992, the Site was used by the Bendix Corporation and later by AlliedSignal/Bendix Electrodynamics (Bendix was purchased by AlliedSignal, now known as Honeywell International Inc.) for the manufacture of hydraulic and pneumatic valves. Prior to its demolition in 1993, the Site included two main building complexes referred to as Plant 1 and Plant 2. Plant 1, which was constructed in 1941, was the larger of the two and was located in the central portion of the facility near the present-day Public Storage parcel and the western part of the Home Depot parcel. Plant 2, which was constructed in 1949, occupied the eastern portion of the facility and was located north and east of the current Home Depot building. After the plant buildings were razed, the Site was subdivided and re-developed as three separate parcels as discussed above. The western part of the Site, which was formerly used as a parking lot, was sold to Kaiser Permanente in 1991. The middle part of the Site was sold to Public Storage, Inc. in 1997. The easternmost part of the Site, which includes the former locations of Plant 2 and much of Plant 1, was sold to Home Depot in 1995.

Since the late 1980s, phased investigation and soil remediation efforts at the Site have been conducted in close coordination with the RWQCB. The early investigations focused primarily on evaluating the nature and extent of volatile organic compounds (VOCs) and metals in the subsurface at the Site. For many years, VOC-impacted groundwater in the site vicinity has formed the basis for the San Fernando Valley Superfund site (specifically, the North Hollywood Operable Unit. In late February 2003, the RWQCB issued Cleanup and Abatement Order (CAO) No. R4-2003-0037, which required the assessment of emerging chemicals and heavy metals (including total and hexavalent chromium) in the unsaturated and saturated zones beneath the Site. Additional Site characterization investigations followed. In July 2004, the SIGRAP was submitted to the RWQCB. The SIGRAP was approved in April 2005.

Historically, remediation activities at the Site have consisted of excavation. In 1994, Honeywell excavated approximately 120 cubic yards of soil from the former Plant 2 area. In 1997, chromium-impacted soil hotspots were removed from locations beneath Plant 1 using a bucket auger. Between December 1999 and March 2000 an additional 230 tons of chromium-impacted soil was removed from Plant 1 during redevelopment for the Public Storage facility.

3.0 HYDROGEOLOGIC SETTING

The Site is hydrogeologically situated in the San Fernando Valley Groundwater Basin, a part of the water management area known as the Upper Los Angeles River Area. Groundwater supply wells, such as the various well fields operated by the City of Los Angeles, comprise an important source of drinking water. Following the listing of parts of the Basin on the National Priority List in the 1980s, large-scale groundwater remediation projects have used groundwater extraction and aboveground treatment to address widespread contamination due to VOCs and nitrate.

The prevailing direction of the regional groundwater flow in the basin is toward the east-southeast, in the direction of the Los Angeles River Narrows. Groundwater extraction, either for water supply or remedial purposes, influences this pattern and can locally reverse the otherwise natural direction of groundwater flow. A detailed discussion of well fields near the Site is included in the attached SIGRAP.

Water levels measured in the on-Site groundwater monitoring wells indicated significant fluctuations since groundwater monitoring began in 1991. A significant rise in the water table (i.e., on the order of 40 to 50 feet) was observed during the period from 1993 to 1997. Detectable chromium in on-Site groundwater monitoring wells was not documented until 1998. The groundwater flow gradient beneath the immediate Site is relatively flat. Due to the influence of groundwater extraction in the surrounding well fields, local groundwater flow direction at the Site is highly variable and subject to pronounced changes from one monitoring event to another. The most recent Site groundwater monitoring report, "Groundwater Monitoring Report, First Quarter 2005," dated April 15, 2005, is included as Appendix E.

4.0 CHROMIUM IMPACTS TO SOIL AND GROUNDWATER

Historical releases from the former plating operations occurred primarily in the northern half of the plating facility in Plant 1. The aerial extent of elevated hexavalent chromium concentrations in soil covers an area of approximately 1,750 square feet centered around the location of plating tanks and areas of highest use within the plating room of Plant 1. In general, the lateral extent of elevated hexavalent chromium in soil is within the limits of the former plating facility. Migration from the point of release is primarily downward with little lateral spreading. The vertical extent of chromium impact is well defined with the majority of the contaminant mass primarily sorbed or contained-in the uppermost 50-feet of the vadose zone beneath the source area.

Groundwater was analyzed in select wells for hexavalent chromium beginning in July 1997. Honeywell conducted additional groundwater monitoring for total and hexavalent chromium in February 1998, July 1998, July 1999, and February 2001. The maximum concentration of total chromium detected during these sampling events was 5,810 micrograms per liter in the February 2001 sample from well GW-3. Historical analytical data including the February 2001 groundwater data were provided to the RWQCB in the, "Technical Report and Remedial Investigation Workplan for Chromium, Honeywell International, Inc." by Parsons, dated December 2001. In accordance with the RWQCB's February 21, 2003 CAO, Honeywell initiated quarterly groundwater monitoring, including sampling of all on-Site groundwater monitoring wells and testing for total and hexavalent chromium.

During First Quarter 2005, thirteen groundwater monitoring wells were sampled and analyzed for Title 22 metals, hexavalent chromium, and VOCs. Select wells were sampled and analyzed for 1,4-dioxane and perchlorate. The First Quarter 2005 Groundwater Monitoring Report is included as Appendix E. During this reporting period, the groundwater flow direction was to the northeast. Hexavalent chromium was detected in eight of the 13 wells at concentrations ranging from 0.002 milligrams per liter (mg/L) to 6.4 mg/L. VOCs were detected in all wells at relatively low concentrations, with higher concentrations in the southwest corner of the Site. In November 2004, Honeywell commenced installation of four off-Site monitoring wells to the south and southeast of the Site. Well installation and development activities were completed on April 29, 2005. All four wells have been completed as multi-screened wells with Barcad samplers to allow for discrete vertical groundwater sampling. A report detailing well installation, the results of soil and verticallydiscrete groundwater samples collected during drilling, and initial groundwater samples collected after development will be submitted by June 30, 2005. The new off-Site wells were added to the routine groundwater monitoring program during Second Quarter 2005 and groundwater monitoring results will be presented in the Second Quarter 2005 Groundwater Monitoring Report which will be submitted to the RWQCB on July 15, 2005.

5.0 REMEDIAL TECHNOLOGY SUMMARY

The SIGRAP proposed an integrated approach to cleanup hexavalent chromium in the vadose zone, (thereby inhibiting future migration of chromium from the vadose zone into the underlying groundwater); cleanup chromium-impacted groundwater; and provide hydraulic control of the on-Site groundwater chromium plume.

The approach involves eliminating the 'reservoir' of mobile hexavalent chromium present in the contaminated soils by percolation of reductant solution from an infiltration basin. Such percolation will displace a portion of the mobile chromium from the vadose zone, but it will be captured by pumping of a recovery well within the 'footprint' of the soil contamination area. The recovered water will be treated and used as a source of supply for the infiltration solution.

Hydraulic control and in-situ reduction of chromium in the saturated zone under the Site will be achieved by pumping initially from one down-gradient well and one source area well and reinjection of the reductant-treated water in cross-gradient wells, thereby achieving lateral reduction of the plume within the on-Site plume areas. The reduction will also generate conditions optimal to microbiological reduction of hexavalent chromium and chlorinated solvents. A detailed discussion of the remedial approach is described in the attached SIGRAP.

Appendix F is a table summarizing MWH experience with respect to *in-situ* treatment of hexavalent chromium. Additional details on these projects, along with several RWQCB-issued WDRs and project documents were submitted by MWH to the RWQCB in the "Data Package to Support Proposed Remediation, Former Honeywell North Hollywood Site," dated June 2004.

Both Honeywell and MWH appreciate your attention to this project. If you have any questions or comments, or if you would like additional information, please feel free to contact Mr. Richard Thomasser at (707) 259-8657 or Ms. Lisa Hall at (714) 646-2001.

Sincerely,

MWH Americas, Inc.

Lisa A. Hall, P.E.

Lisa A. Hall

Principal Engineer

Reput humasor

Richard M. Thomasser, P.G. Principal Hydrogeologist

Appendices

Check for \$5,668.00 for Permit Fee (to Dixon Oriola only)

- A SIGRAP (MWH, July 2004)
- B SIGRAP Approval Letter (RWQCB, April 2005)
- C WDR Permit Application Form 200
- D Environmental Information Form, Initial Study Part 1
- E Groundwater Monitoring Report, First Quarter 2005 (MWH, April 2005)
- F MWH In-Situ Chromium Treatment Experience Summary

cc: Mr. Alex Lapostol, RWQCB

Mr. Benny DeHghi, Honeywell

APPENDIX A

SOIL AND GROUNDWATER INTERIM REMEDIATION PLAN July 30, 2004

SOIL AND INTERIM GROUNDWATER REMEDIAL ACTION PLAN FOR REDUCTION OF HEXAVALENT CHROMIUM FORMER HONEYWELL NORTH HOLLYWOOD SITE 11600 SHERMAN WAY, NORTH HOLLYWOOD, CALIFORNIA

Prepared for

HONEYWELL INTERNATIONAL, INC. 2525 West 190th Street Torrance, California

July 30, 2004

Prepared by

MWH 3050 Saturn Street, Suite 205 Brea, California (714) 646-2020

Lisa A. Hall, P.E.

Project Manager

Jim V. Rouse

Technical Director

Richard Thomasser, R.G. Principal-In-Charge

Distribution List

Mr. Dixon Oriola California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

Mohammad Zaidi, R.G. California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

Mr. Benny DeHghi Honeywell International, Inc. 2525 West 190th Street M/S 23-1-80 Torrance, California 90504

Mr. Ron Newquist
Kaiser Permanente
11668 Sherman Way
North Hollywood, California 91605

Mr. A.J. Blanco, Assistant Manager Home Depot 11600 Sherman Way North Hollywood, California 91605

Mr. Barry Dunzer, Project Manager Public Storage 11620 Sherman Way North Hollywood, California 91605

File

TABLE OF CONTENTS

Section No. Page		Page No.
1.0	INTRODUCTION	1-1
	1.1 DOCUMENT ORGANIZATION	1-1
	1.2 SITE HISTORY	1-2
	1.3 REGULATORY HISTORY	1-3
	1.4 CONCEPTUAL SITE MODEL	1-4
	1.4.1 Regional Hydrogeology	1-4
	1.4.2 Nature and Extent of Contamination	1-6
	1.4.2.1 Chromium Impacts in Soil	1-6
	1.4.2.2 Chromium Impacts in On-Site Groundwater	1-7
	1.4.2.3 Regional Detection of Chromium in Groundwater	
	1.4.2.4 Volatile and Emergent Chemicals in Groundwater	1-9
	1.5 HISTORICAL AND PROPOSED REMEDIAL ACTION	1-9
	1.6 REMEDIAL ACTION OBJECTIVE	1-9
2.0	OVERVIEW OF PROPOSED REMEDIAL TECHNOLOGY	2-1
	2.1 CHROMIUM GEOCHEMISTRY AND ENVIRONMENTAL FATI	
	2.2 IN-SITU REDUCTION OF HEXAVALENT CHROMIUM	
	2.3 EXPERIENCE GAINED AT OTHER SITES	
	2.4 CONCEPTUAL DISCUSSION OF PROPOSED APPROACH	
3.0	PRE-IMPLEMENTATION CONSIDERATIONS	3-1
	3.1 ACCESS AGREEMENTS	
	3.2 PERMITTING	
	3.3 ORGANIC CONTAMINANTS IN GROUNDWATER	
	3.4 PILOT TESTING	
	3.4.1 Reductant Selection and Soil and Groundwater	
	Reductant Demand	3-2
	3.4.2 Infiltration Test	
	3.4.2.1 Basin Construction	3-3
	3.4.2.2 Water Supply/Control	3-3
	3.4.2.3 Test Procedures	
	3.4.2.4 Restoration	3-4
	3.4.3 Aquifer/Pump Test	3-4
4.0	IMPLEMENTATION PLAN	4-1
	4.1 REMEDIAL SYSTEM DESIGN	4-1
	4.1.1 Extraction Wells	
	4.1.2 Conveyance Piping	
	4.1.3 Surge Tank and Pre-Filter	
	4.1.4 GAC Units	
	4.1.5 Reductant Storage Tank	
	4.1.6 Reductant Dosing A	
	w w 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

TABLE OF CONTENTS (Continued)

Section No.	
	4.1.7 Settling Tanks 4-4
	4.1.8 Effluent Filtration
	4.1.9 Carbon Dosing (Effluent A) 4-4
	4.1.10 Reinjection Wells
	4.1.11 Reductant Dosing B (Effluent B)4-5
	4.1.12 Infiltration Basin4-5
	4.1.13 Controls/Safety4-6
	4.2 SYSTEM START-UP AND PROVE-OUT4-7
	4.3 OPERATION, MAINTENANCE, AND MONITORING (OM&M)4-7
	4.3.1 Operation
	4.3.2 Maintenance
	4.3.3 Monitoring
	4.3.3.1 Remediation Monitoring4-8
	4.3.2.2 Regulatory Monitoring
5.0	REMEDIATION GOALS AND CONFIRMATION TESTING5-1
6.0	SCHEDULE 6-1
7.0	REFERENCES
	LIST OF FIGURES
Figure 1	Site Location
Figure 2	Site Plan and Former Facility Layout
Figure 3	Extent of Chromium Impacts in Soil
Figure 4	Groundwater Monitoring Well Locations
Figure 5	Total and Hexavalent Chromium Concentrations in Groundwater On-Site,
- 18	June 2004
Figure 6	Emergent Chemicals in Groundwater, June 2004
Figure 7	Conceptual Site Model In-Situ Soil and Interim Groundwater Remedial
U	Action
Figure 8	Proposed Remedial System Layout
Figure 9	Typical Well Construction Diagram
Figure 10	••
Figure 11	Infiltration Basin
Figure 12	Basin Cross-Section A-A'
Figure 13	

LIST OF TABLES

Table 1 Remediation Progress Sampling Schedule

LIST OF APPENDICES

- A Geologic Cross-Sections
- B Chromium Concentrations in Soil
- C Treatability Study Protocols

LIST OF ACRONYMS AND ABBREVIATIONS

bgs Below ground surface

CAO Cleanup and Abatement Order

cfs Cubic feet per second CSM Conceptual Site Model

CY Cubic yard E-Stop Emergency stop

FML Flexible membrane liner ft²/day Square feet per day

ft/day Feet per day

GAC Granular activated carbon gpm Gallons per minute

gpm Gallons per minute
Honeywell International, Inc.

IGWRAP Interim Groundwater Remedial Action Plan

IRM Interim Remedial Measures

K_{sp} Hydroxide solubility product

MCL Maximum Contaminant Level

ml Milliliters

μg/L Microgram per liter
MWH MWH Americas, Inc.

NHOU North Hollywood Operable Unit

NPL National Priority List

OM&M Operation, maintenance, and monitoring

ORP Oxidation/reduction potential

OU Operable Unit
PVC polyvinyl chloride
RAP Remedial Action Plan
RI Remedial Investigation
ROWD Report of Waste Discharge

RWQCB Regional Water Quality Control Board - Los Angeles Region

SFV San Fernando Valley

SIGRAP Soil and Interim Groundwater Remedial Action Plan

Site Former Honeywell Facility, 11600 Sherman Way, North Hollywood,

California

SRB Sulfate reducing bacteria
ULARA Upper Los Angeles River Area

USEPA United States Environmental Protection Agency

VOC Volatile organic compound WDR Waste Discharge Requirement

SECTION 1.0

INTRODUCTION

This combined Soil and Interim Groundwater Remedial Action Plan (SIGRAP) has been prepared by MWH Americas, Inc. (MWH) on behalf of Honeywell International Inc. (Honeywell) in response to the requirements outlined in the Regional Water Quality Control Board – Los Angeles Region (RWQCB) letter dated May 27, 2003 pertaining to the Honeywell North Hollywood site located at 11600 Sherman Way, North Hollywood, California (Site). The location of the Site is shown on Figure 1.

This document presents a conceptual design for an integrated soil and interim groundwater remedial measure. The objectives of the proposed remedial action are:

- To reduce the mass of hexavalent chromium in the vadose zone, thereby inhibiting future migration of chromium from the vadose zone into the underlying groundwater;
- To reduce chromium concentrations in groundwater; and
- To provide hydraulic control of the on-Site groundwater chromium plume.

This combined SIGRAP supercedes remedial documents previously submitted to the RWQCB, but not approved by the RWQCB, as discussed in Section 1.3.

1.1 DOCUMENT ORGANIZATION

This document is organized as follows:

Section 1.0 Introduction describes the Site history, summarizes Site investigations and provides a Conceptual Site Model (CSM), which forms the basis for proposed remedial actions. Previously completed remedial actions are summarized and the objectives for further remedial action at the Site are discussed.

Section 2.0 Technology Overview describes the proposed soil and interim groundwater remedial action technology to be used at the Site. Experience gained with this technology at other sites is discussed, and a conceptual approach to implement the technology at this Site is presented.

Section 3.0 Pre-Implementation Considerations discusses activities that will be preformed in advance of implementing the proposed remedial action at the Site.

Section 4.0 Implementation Plan describes the remedial action plan including remedial design, construction, startup and operations, maintenance and monitoring of the proposed remedial measures.

Section 5.0 Remediation Goals discusses the expected results of implementing the proposed remedial measures at the Site. A discussion of remediation confirmation testing, designed to ensure remediation objectives for soil and groundwater are met, is presented.

Section 6.0 Schedule provides the schedule to implement the proposed remedial measures at the Site.

Section 7.0 References provides the references cited in the text.

1.2 SITE HISTORY

The Site is located in the east-central part of the San Fernando Valley (SFV), approximately 14 miles northwest of downtown Los Angeles, California (Figure 1). It is bordered by Sherman Way to the north, Lankershim Boulevard to the west, various commercial/light industrial businesses to the east, and by the Southern Pacific Railroad right-of-way to the south. The present-day land use is commercial/retail, including office buildings owned and operated by Kaiser Permanente in the western part of the Site, a self-storage business owned and operated by Public Storage, Inc. in the central part of the Site, and a hardware store owned and operated by Home Depot, Inc. in the eastern part of the Site.

During the period from 1941 to 1992, the Site was used by the Bendix Corporation and later by AlliedSignal/Bendix Electrodynamics (Bendix was purchased by AlliedSignal, now known as Honeywell International, Inc.) for the manufacture of hydraulic and pneumatic valves. Prior to its demolition in 1993, the facility included two main building complexes referred to as Plant 1 and Plant 2. Plant 1, which was constructed in 1941, was the larger of the two and was located in the central portion of the facility near the present-day Public Storage parcel and the western part of the Home Depot parcel. Plant 2, which was constructed in 1949, occupied the eastern portion of the facility and was located north and east of the current Home Depot building. After the plant buildings were razed, the Site was subdivided and re-developed as three separate parcels as discussed above. The western part of the former facility, which was formerly used as a parking lot, was sold to Kaiser Permanente in 1991. The middle parcel, which is also known as the Western Parcel, was sold to Public Storage, Inc. in 1997. The easternmost parcel, which includes the former locations of Plant 2 and much of Plant 1 and is also known as the Eastern Parcel, was sold to Home Depot in 1995. Figure 2 illustrates the present-day layout of the Site, as well as the approximate location and boundaries of Plants 1 and 2 (Groundwater Technology, Inc. [GTI] 1992; Parsons 2004b).

1.3 REGULATORY HISTORY

Since the late 1980s, phased investigation and soil remediation efforts at the Site have been conducted in close coordination with the RWQCB, the lead regulatory agency. These early investigations focused on evaluating the nature and extent of volatile organic compounds (VOCs) and metals in the subsurface at the Site.

For many years, VOC-impacted groundwater in the site vicinity has formed the basis for the SFV Superfund site (specifically, the North Hollywood Operable Unit (NHOU). Honeywell settled out of court for all VOC-related issues specific to the Public Storage and Home Depot Parcels with the United States Environmental Protection Agency (USEPA) and the State of California in 1996.

In 2001, the RWQCB requested the preparation and submittal of a technical report containing, among other things, a summary of all available chromium analytical data at the Site (RWQCB 2001a). In response, Honeywell submitted a *Technical Report and Remedial Investigation Workplan for Chromium* to the RWQCB on December 7, 2001 (RI Workplan; Parsons 2001). The document provided the requested summary and set forth a proposed program of chromium assessment for soil and groundwater.

In late February 2003, the RWQCB issued Cleanup and Abatement Order No. R4-2003-0037 (CAO; RWQCB 2003), which required the assessment of emerging chemicals and heavy metals (including total and hexavalent chromium) in the unsaturated and saturated zones beneath the Site. Because the previously submitted RI Workplan addressed many of the assessment requirements contained in the CAO, an Assessment Workplan Addendum that addressed the Board's new requirements was prepared and submitted on March 31, 2003 (Parsons 2003a). The RWQCB provided comments on the December 7, 2001 RI Workplan and the March 31, 2003 Assessment Addendum Workplan in a letter dated May 27, 2003 (RWQCB 2003). In its letter, the RWQCB required an expanded assessment of soil and groundwater and the preparation and submittal of a revised RI Workplan and an interim groundwater Remedial Action Plan (RAP) by June 30, 2003.

In response to the request for an expanded assessment for soil, Honeywell submitted the Revised Remedial Investigation Workplan for Chromium and Emerging Chemicals, dated June 30, 2003 (Parsons 2003d). On October 23, 2003, the RWQCB approved the Revised Workplan with some modifications (RWQCB 2003c). In the same letter, the RWQCB also requested preparation of a Vadose Zone RAP. This workplan included drilling of 12 soil borings and the installation of a well pair to determine the lateral and vertical extent of chromium in the Plant 1 source area. The work was executed at the end of 2003 and the results were provided in the report Remedial Investigation Report for Chromium and Emerging Chemicals, dated February 27, 2004 (Parsons 2004a).

To address the RWQCB requirement for groundwater interim actions, Honeywell submitted the Interim Groundwater Remedial Action Plan for Chromium (IGWRAP), dated June 30, 2003 (Parsons 2003c). This IGWRAP called for groundwater treatment by in-situ methods at the source area and temporary hydraulic containment along the site boundary. However, Honeywell did not receive any response regarding this document. Honeywell also submitted an Interim Remedial Measures (IRM) Workplan for Soil on April 15, 2004 (Parsons 2004b). The proposed interim measures described in these documents have not been implemented to date and soil and interim groundwater remedial actions are being addressed by this SIGRAP. Since submittal of the IGWRAP and IRM Workplan for Soil, Honeywell has evaluated other potential in-situ technologies and contracted MWH to evaluate methods to address the chromium-related issues. In response to Honeywell's request, MWH proposed to combine the soil and interim on-Site groundwater remedial actions. This combined Soil and Interim Ground Water Remedial Action Plan supercedes the previously submitted IGWRAP and IRM Workplan for Soil.

1.4 CONCEPTUAL SITE MODEL

The results of the investigations completed to date have been used to develop a CSM for the Site. The CSM, which includes information on the local hydrogeological setting and the extent of soil and groundwater contamination, is described below in Section 1.4. The CSM forms the basis for soil and interim groundwater remedial actions, which are described in Section 2.0

1.4.1 Regional Hydrogeology

The Site is located in the SFV Basin, which is bounded on the north and northwest by the Santa Susanna Mountains; on the north and northeast by the San Gabriel Mountains; on the east by the Verdugo Mountains and San Rafael Hills, on the south by the Santa Monica Mountains, and on the west by the Simi Hills. The Basin is a Holocene-age sedimentary basin that contains unconsolidated alluvial deposits up to 1,000 feet thick. Stratigraphic boring logs developed during previous bore-hole investigations indicate that the alluvium in the unsaturated zone is dominated by interbedded sand, gravelly sand, sandy gravel, and gravel strata. Geologic cross-sections illustrating these stratigraphic relationships were previously presented in the *RI Workplan* (Figures 2-1 through 2-4 in the *RI Workplan*; Parsons 2001). These cross-sections are presented in Appendix A of this report.

The Site is hydrogeologically situated in the SFV Groundwater Basin, a part of the water management area known as the Upper Los Angeles River Area (ULARA). Water rights in the basin were adjudicated by court decree in the late 1960s. Since that time, groundwater extractions have been administered by a court-appointed basin watermaster. Groundwater in the basin is replenished by percolation/infiltration from rainfall, surface runoff, and from recharge utilizing imported water and detained storm water. Significant amounts of groundwater are extracted from the basin through dewatering projects, groundwater supply wells, and groundwater remediation projects. Groundwater supply wells, such as the various well fields operated by the City of Los Angeles, comprise an important source of drinking water. Following the listing of parts of the Basin on the National Priority List (NPL) in the

1980s, larger-scale USEPA directed groundwater remediation projects such as the Glendale Operable Unit (OU), Lockheed-Burbank OU, North Hollywood OU, and Pollock and Headworks Well Treatment Plants, used groundwater extraction and aboveground treatment to address widespread contamination due to VOCs and nitrate (ULARA 2001).

The prevailing direction of the regional groundwater flow in the basin is toward the eastsoutheast, in the direction of the Los Angeles River Narrows. Groundwater extraction, either for water supply or remedial purposes, influences this pattern and can locally reverse the otherwise natural direction of groundwater flow. Although changes in total basin extraction or recharge and/or variations in seasonal precipitation can result in water table fluctuations, the single largest influence on groundwater elevations and local flow is regional pumping. Water supply wells in the Site vicinity often operate on demand and their combined effect on the water table can be difficult to predict. The North Hollywood Well Field, an east-west array of water supply wells located south of the Site and one of ten designated production well fields in the San Fernando Valley, consists of 29 extraction wells with a combined extraction capacity of 129 cubic feet per second (cfs) or approximately 20,000 acre-feet per year. The North Hollywood OU Treatment Facility (also referred to as the North Hollywood Aeration Facility) extracts and treats groundwater from a northwest-trending network of eight aeration wells. Finally, the Rinaldi-Toluca Well Field, a production well field located northwest of the Site, has an extraction capacity of approximately 30,000 acre-feet per year (Hydrologue 1997).

Based on aquifer pumping tests conducted by ULARA Watermaster in extraction wells near the Site, the transmissivity and hydraulic conductivity of the upper aquifer is high, ranging from 4,950 to 8,560 square feet per day (ft²/day) and from 30 to 140 feet per day (ft/day), respectively. A pumping test in nearby water supply well #3810U yielded similar estimates a transmissivity of 7,220 ft²/day and hydraulic conductivity of 100 ft/day assuming an aquifer thickness of 72 feet (JMM 1992).

Drawdown measurements during recent well purging and published aquifer hydraulic properties for water supply wells in the central part of the Basin provide an indication of the probable response to pumping in on-Site monitoring wells. During groundwater monitoring in March and June 2003, a submersible pump was used to purge the wells prior to sampling; the pumping rates ranged from 1 to 1.5 gallons per minute (gpm) and the resultant drawdown varied between 0.04 and 1.6 feet. Based on these data, the inferred specific capacity varied from less than 1 gpm/ft to approximately 46 gpm/ft, with a mean value that was within the range of published specific capacities for water wells in the Site vicinity (JMM 1992). Using the published aquifer test data from nearby water supply well #3810U and methods developed by Javendel and Tsang (1986) and assuming a nominal 30 gpm pumping rate, an anticipated drawdown of approximately 1 foot and a capture zone width of approximately 200 feet to either side of the pumping well was calculated.

Water levels measured in the on-Site groundwater monitoring wells indicated significant fluctuations since groundwater monitoring began in 1991. A significant rise in the water table (i.e., on the order of 40 to 50 feet) was observed during the period from 1993 to 1997. Detectable chromium in on-site groundwater monitoring wells was not documented until

1998. The groundwater flow gradient beneath the immediate site is relatively flat. Due to the influence of groundwater extraction in the surrounding Rinaldi-Toluca, North Hollywood, and North Hollywood OU well fields, local groundwater flow direction at the Site is highly variable and subject to pronounced changes from one monitoring event to another, with indicated flow ranging from west-northwest to northeast.

1.4.2 Nature and Extent of Contamination

This section discusses the current understanding regarding the nature and extent of contamination in soil and groundwater at the Site.

1.4.2.1 Chromium Impacts in Soil. Historical releases from the former plating operations occurred primarily in the northern half of the plating facility in Plant 1. The aerial extent of elevated hexavalent chromium concentrations in soil covers an area of approximately 1,750 square feet centered around the highest concentrations that have been documented in soil borings PBP1-01 and SBP1-073. The primary source area is located within and north of the proposed excavation area outlined in the *IRM Workplan for Soil* (Parsons 2004b). From observations made prior to and during decommissioning of the plating facility, these locations are consistent with the location of plating tanks and areas of highest use within the plating room of Plant 1 (Figure 3 and Appendix B).

In general, the lateral extent of elevated hexavalent chromium in soil is within the limits of the former plating facility. Migration from the point of release are primarily downward with little lateral spreading. This is consistent with the overall coarse granular nature of the subsurface lithology within the Upper Zone of the SFV Groundwater Basin. Elevated concentrations in shallow soils at 5 feet below ground surface (bgs) observed in soil borings SBP1-037 and SBP1-008 (east and southwest of the source area, respectively) are interpreted to represent lateral flow from the source area along a preferential pathway, possibly related to migration in fill material. Remedial investigation boring PBP1-04, drilled closer to the plating room than SBP1-008, did not encounter elevated concentrations at the same depth and, therefore, the relatively low concentrations further from the source than this boring are not considered significant.

The vertical extent of chromium impact is well defined with the majority of the contaminant mass primarily sorbed or contained-in the uppermost 50-feet of the vadose zone beneath the source area. Deeper evidence of impact of the release is discontinuous and "blotchy," with some evidence of impact extending horizontally from the cylindrically shaped soil plume. There is also evidence of elevated hexavalent chromium concentrations below sections of clean soil within the soil column (e.g., soil borings PBP1-02 at 50-feet and SBP1-038B below 40-feet).

The recent RI Report for Chromium and Emerging Chemicals (Parsons 2004a) documented zones of higher concentration that correlate to finer grained material within the soil column. This would result from the relatively greater moisture-holding capacity of the fine-grain material, relative to coarser sands and gravels. The hexavalent chromium in the vadose zone is actually present as dissolved hexavalent chromium in soil moisture, and not as hexavalent

chromium sorbed onto aquifer solids. For this reason, the more moist materials appear to be higher in hexavalent chromium concentration. This illustrates the difficulty of using soil samples alone for determination of hexavalent chromium contamination in vadose zone material (Rouse, Davies, DeSantis, and Hutton 2001). Because the finer-grained zones also hold more moisture, they tend to cause 'perching' and lateral spread of contamination, which in turn causes the horizontal splays away from the main body of the plume. However, despite these horizontal splays, the recent deep borings did not discover a significant horizontal migration component that would indicate the footprint of soil impacts is significantly larger at the soil/groundwater interface.

1.4.2.2 Chromium Impacts in On-Site Groundwater. In 1991, six groundwater monitoring wells were installed in the Eastern and Western Parcels (GW-1, -2, and -3 in the Western Parcel and GW-4, -5, and -6 in the Eastern Parcel) and in 1993, four additional wells were installed in the adjacent Kaiser Parcel (GW-7, -8, -9, and -10). The location of these wells is shown on Figure 4. Groundwater was analyzed in select wells for total chromium beginning in August 1993 and for hexavalent chromium beginning in July1997. During the August 1993 groundwater sampling event, the total chromium concentrations measured ranged from <10 micrograms per liter (μ g/L) to 12 μ g/L.

Additional groundwater samples were collected from wells GW-3 and GW-4 in July 1997 and in February 1998 and were analyzed for total and hexavalent chromium. The total chromium concentrations measured in samples collected from wells GW-3 and GW-4 were 1,400 µg/L and 43 µg/L, respectively. These samples were not filtered. Subsequent comparisons of laboratory-filtered, field-filtered, and unfiltered samples did not show a consistent bias towards either sampling method. Honeywell conducted additional groundwater monitoring for total and hexavalent chromium in July 1998, July 1999, and February 2001. The maximum concentration of total chromium detected during these sampling events was 5,810 µg/L in the February 2001 sample from well GW-3. Historical analytical data including the February 2001 groundwater data were provided to the RWQCB in December 2001 (Parsons 2001).

In accordance with the RWQCB's February 21, 2003 CAO and the May 27, 2003 review comments for the December 2001 RI Workplan, Honeywell initiated quarterly groundwater monitoring, including sampling of all on-Site groundwater monitoring wells and testing for total and hexavalent chromium. Quarterly monitoring reports presenting the results of sampling are routinely submitted.

Most of the wells whose total chromium concentrations exceeded the California Maximum Contaminant Level (MCL) in the February 2001 sampling event generally have shown significant decreases since that event. These changes could be related to lowered water table elevations in response to regional pumping activity and/or variations in seasonal precipitation and recharge (i.e., the groundwater elevations had dropped roughly 10 feet from February 2001 to March 2004).

As discussed above, as part of the recent additional remedial investigation, Honeywell installed a shallow and deep well pair (GW-14A and GW-14B) in the Plant 1 soil source area. The purpose of these wells was to determine the vertical extent of chromium impact in the source area. The June 2004 sample from deeper well GW-14B (screened from 285 to 312 feet bgs) showed no detectable concentration of hexavalent chromium. Shallower well GW-14A (screened from 255 to 285 feet bgs) exhibited 280 µg/L hexavalent chromium.

In addition, in 2004, well GW-15 was installed as part of planned interim remedial actions. This well was completed to potentially be used as a groundwater extraction well to establish hydraulic control of on-Site chromium impacts in groundwater. The results of the most recent quarterly groundwater sampling demonstrate that GW-15 has the current highest chromium concentrations (1,800 µg/L) in on-Site groundwater monitoring wells.

The 13 existing on-Site groundwater monitoring wells define the lateral and vertical extent of chromium impacts in on-Site groundwater. Figure 5 illustrates the extent of the on-Site chromium plume in groundwater as interpreted from data collected during the June 2004 sampling event.

1.4.2.3 Regional Detection of Chromium in Groundwater. The identification and remediation of hexavalent chromium in soil and groundwater has been a topic of interest in the SFV Basin since 1998 when the ULARA Watermaster reported the first impacts to extraction wells associated with the Superfund clean-up in the SFV. The RWQCB has implemented a basin-wide evaluation of potential chromium sources through the current phase of its Well Investigation Program, which began in 2001.

As discussed in Section 1.4.1, groundwater in the SFV Basin generally flows in a southeastern direction towards the Los Angeles River Narrows under natural (non-pumping conditions). The groundwater bearing zones beneath the Site are highly permeable and have relatively high transmissivity.

The hydrologic dynamics of the Site have been affected by historical pumping from nearby extraction wells within the NHOU. Review of the historical total and hexavalent chromium concentrations detected in the monitoring wells located on the Site reveal that chromium concentrations as well as groundwater gradient and flow direction vary between groundwater monitoring events.

Generally, chromium impacts emanating from the soil/groundwater interface below the source area appear to extend to the south-southwest (Figure 5). The downgradient (off-Site) extent of chromium impacts from the Site has not yet been defined. Honeywell has prepared a Revised Workplan Amending Revised Remedial Investigation Workplan Dated June 2003 for installation of off-Site wells (Parsons 2004d) that has been submitted to and approved by the RWOCB.

1.4.2.4 Volatile and Emergent Chemicals in Groundwater. As discussed in the Second Ouarter 2004 Quarterly Groundwater Monitoring Report (Parsons 2004c), selected wells at the Site are sampled and analyzed for two organic emergent chemicals, 1,4-dioxane and perchlorate. Figure 6 illustrates the concentrations of these compounds in groundwater in June 2004. In general concentrations of these compounds are low. Perchlorate is only detected slightly in excess of the method detection limit (2 µg/L) in three of six wells in The highest concentration detected was 3.1 µg/L. which samples were analyzed. Concentrations of 1,4-dioxane was detected in each of the six wells in which samples were analyzed, ranging from 4.8 to 8.1 µg/L. Based on the widespread low detection of 1.4-dioxane, it is not clear that the concentrations are representative of a source at the Site or rather just background groundwater conditions. Treatment for organic chemicals is not the focus of this SIGRAP. Nonetheless, the presence of low levels of these compounds in groundwater has been considered with respect to the proposed remedial measures for chromium. This is discussed further in Sections 3.0 and 4.0.

1.5 HISTORICAL AND PROPOSED REMEDIAL ACTION

In 1994, Honeywell excavated approximately 120 cubic yards (CY) of soil from the former Plant 2 area. In 1997, as part of the Western Parcel closure, chromium-impacted soil hotspots were removed from locations beneath Plant 1 using a bucket auger. Between December 1999 and March 2000 an additional 230 tons of chromium-impacted soil was removed from Plant 1 during the redevelopment of the area for the Public Storage facility. The location of the Plant 1 previous soil excavation is shown in Figure 3.

1.6 REMEDIAL ACTION OBJECTIVE

This combined SIGRAP calls for an integrated approach to:

- Cleanup of hexavalent chromium in the vadose zone, thereby inhibiting future migration of chromium from the vadose zone into the underlying groundwater;
- Cleanup of chromium-impacted groundwater; and
- Provision for hydraulic control of the on-Site groundwater chromium plume.

The approach involves eliminating the 'reservoir' of mobile hexavalent chromium present in the contaminated soils by percolation of reductant solution from an infiltration basin. Such percolation will displace a portion of the mobile chromium from the vadose zone, but it will be captured by pumping of a recovery well within the 'footprint' of the soil contamination area. The recovered water will be treated and used as a source of supply for the infiltration solution.

Hydraulic control and *in-situ* reduction of chromium in the saturated zone under the Site will be achieved by pumping initially from one down-gradient well and one source area well and reinjection of the reductant-treated water in cross-gradient wells, thereby achieving lateral reduction of the plume within the on-Site plume areas. The reduction will also generate conditions optimal to microbiological reduction of hexavalent chromium and chlorinated solvents. The proposed remedial approach is described in Section 2.0.

SECTION 2.0

OVERVIEW OF PROPOSED REMEDIAL TECHNOLOGY

2.1 CHROMIUM GEOCHEMISTRY AND ENVIRONMENTAL FATE

The impact of chromium contamination on soil and groundwater is primarily controlled by the oxidation state of the metal, which affects its solubility. The two most common oxidation states of chromium are trivalent chromium (Cr^{+3}) and hexavalent chromium (Cr^{+6}). These two oxidation states have significantly different potential environmental impacts. Trivalent chromium is a relatively non-toxic ion and an essential nutrient with no carcinogenic properties, while hexavalent chromium is toxic and a known inhalation carcinogen. The chemical properties of these two oxidation states also differ widely. Trivalent chromium generally exists as a cation, is virtually insoluble above a pH of 6.2 with a hydroxide solubility product (K_{sp}) of 6.0 X 10^{-31} , and is a relatively non-reactive metal ion. Conversely, hexavalent chromium exists as a soluble anion, is a strong oxidizing agent, and is highly mobile in the subsurface environment due to its solubility.

When hexavalent chromium is released into the environment, the ion generally passes through the overlying soil column before reaching the groundwater. During this passage, some of the hexavalent chromium may be reduced to trivalent chromium by naturally occurring ferrous iron or soil organic matter. The result is that the trivalent chromium becomes immobilized, while the remaining hexavalent chromium, dissolved in soil moisture or present as secondary chromate minerals, is slowly leached from the soil into the groundwater. Significant concentrations of hexavalent chromium in groundwater generally result when a release of chromate (or dichromate) solution is persistent enough to exceed the natural reducing capability of the soil. This is the situation that exists at the North Hollywood Site.

2.2 IN-SITU REDUCTION OF HEXAVALENT CHROMIUM

Hexavalent chromium is a strong oxidant, and can be reduced to the trivalent form by many electron donors such as carbonaceous matter, ferrous iron minerals, and reduced sulfur. Soil containing carbonaceous matter can reduce hexavalent chromium by the reaction

$$2Cr_2O_7^{-2} + 3C + 16H^+ \rightarrow 4Cr^{+3} + 3CO_2 + 8H_2O$$

The trivalent chromium forms chromium hydroxide, which binds to the aquifer solids. The reduction is facilitated by sulfate reducing anaerobic microorganisms, which use sulfate and carbon as a part of their life system, producing HS ion, which also reduces hexavalent chromium to the trivalent form.

Hexavalent chromium can be reduced to the trivalent form by ferrous iron, either in solution or in various ferrous-bearing silicates such as olivene, amphibolites, micas, and chlorites.

A proposed reaction for the reduction of hexavalent chromium by ferrous biotite is given by Palmer and Puls (1994) as

[Fe(II), K⁺]biotite + Fe⁺³
$$\Rightarrow$$
 [Fe(III)]biotite + K⁺ + Fe⁺²

The resultant ferrous ions in solution react with hexavalent chromium according to

$$HCrO_4^- + 3Fe^{+2} + 7H^+ \rightarrow Cr^{+3} + 3Fe^{+3} + 4H_20$$

The trivalent chromium and iron forms oxyhydroxides, which sorb to the aquifer. The second reaction of ferrous iron with hexavalent chromium would be applicable in the case of direct addition of ferrous iron, or with the reduction of ferric iron to the ferrous state by reaction with reduced sulfur species such as with the addition of a chemical reductant like calcium polysulfide.

When calcium polysulfide is added to water, it forms a number of reduced species. The most important is sulfide ion (S^{\pm}) in the form of HS or H₂S, depending on the water pH. It also forms thiosulfate $(S_2O_3)^{\pm}$ ion. The reaction products of the reaction with hexavalent chromium is either elemental sulfur or sulfate ion. Sulfate ion, in turn, is reduced to the sulfide ion under anoxic conditions by the action of sulfate-reducing bacteria (SRB) in the presence of sufficient carbon. It is thus obvious that no one reaction can be the most important, but rather, there is a complex series of inorganic reactions and biological processes. Further, the polysulfide reduces ferric iron to the ferrous state, which is known to be an effective reductant for hexavalent chromium. The ferrous ion also reacts with sulfide ion to form insoluble iron sulfides. These are effective scavengers of dissolved metals.

In-situ chromium treatment techniques involve reducing hexavalent chromium to trivalent chromium, and then relying on the differences in chemical properties between the two forms. For ex-situ treatment processes such as electrochemical precipitation, the resulting trivalent chromium precipitate is removed as sludge from the system. For in-situ treatment processes, trivalent chromium will become immobilized in the subsurface thereby reducing dissolved chromium concentrations in the groundwater. The introduction of a reducing agent such as calcium polysulfide, or the generation of reducing conditions in the subsurface under the appropriate conditions, can bring about the in-situ reduction of hexavalent chromium. The resultant precipitates have very low solubility, and therefore, are essentially immobile in the aquifer.

2.3 EXPERIENCE GAINED AT OTHER SITES

As described by Rouse (2001), MWH personnel have conducted similar remedial programs at chromium sites under varied geohydrological regimes. This has led to the development of a valuable experience base in the application of this innovative technology.

A summary of other sites where *in-situ* remediation has been performed was provided to the RWQCB in a submittal dated June 29, 2004 (MWH 2004).

In general, there are two key elements to a successful in-situ remedial program:

- Selection of the appropriate reductant solution, considering site geochemistry, and
- Design of the proper reductant delivery system to ensure contact of the contaminant with the reductant.

Several reductants have been used to reduce hexavalent chromium to the trivalent form, including ferrous iron, metabisulfite, dithionite and polysulfide. Ferrous iron is effective, but the resultant ferric hydroxide forms precipitates, which plug pore spaces; and the oxidation of ferrous ions to ferric ions generates acidic conditions, which may have adverse effects. Metabisulfite ion forms high concentrations of sulfate, as does dithionite. Polysulfide, by contrast, has shown greater effectiveness, due to the formation of sulfide ion, part of which forms elemental sulfur when it reacts with hexavalent chromium. The stimulation of sulfate reduction further enhances its effectiveness in saturated conditions.

A key factor to mixing an effective reductant solution is to evaluate the solution density relative to the ambient conditions. For unsaturated conditions, it is proper to use a solution with a density significantly higher than that of water, to aid in percolation and vadose-zone fluid displacement. Solutions applied to the saturated zone should not be much more dense than ground water to avoid the formation of density currents in which the reductant can sink without contacting contaminated upper portions of the saturated zone.

Reductant delivery can take the form of infiltration from the surface (basin); introduction through permanent or temporary wells; or introduction through direct-push technology under high pressures to achieve solution migration and perhaps to induce horizontal fractures. Each of these are described below:

<u>Surface Basin:</u> Basins are well-adapted to treating vadose zone material. The gravel in the basin has the ability to receive secondary precipitates without plugging (as can happen with wells); however, a basin also allows for oxygen input to the subsurface and consumption of the reductant. There also may be a "lag" of weeks to months before the solution migrates to the saturated zone.

<u>Wells:</u> Introduction of the reductant solution through permanent or temporary wells works well in highly permeable sediments, but are prone to fouling by the formation of secondary precipitates from the reductant solution, which is at or above the solubility of calcium carbonate.

<u>Direct-Push</u>: Introduction of the reductant solution through grid-based, direct-push technology is well suited to the introduction of reductant solution to the saturated zone and capillary fringe, in low-permeability silts and clays. Using high pressure with this method

actually forms sub-horizontal fractures, which allow the reductant solution to migrate laterally from the introduction point, and then diffuse between the fractures.

The existing data on soil contamination in the vadose zone at the North Hollywood Site is based on soil sampling and analysis. As described by Rouse (2001), experience has shown that much of the hexavalent chromium is actually present as dissolved chromate ion in the vadose-zone fluid. Monitoring changes of hexavalent chromium concentrations in vadose-zone fluid is best accomplished through clusters of pressure/vacuum lysimeters. Such clusters also would allow for determination of the rate of advance of a reducing front.

2.4 CONCEPTUAL DISCUSSION OF PROPOSED APPROACH

As discussed, MWH proposes to conduct an integrated approach to the *in-situ* reduction of hexavalent chromium contamination in the vadose zone with interim remediation of on-Site groundwater contamination. Figure 7 illustrates this conceptual approach, which is described in further detail below.

To address chromium impacts in the vadose zone, a subgrade infiltration basin will be constructed in the area of known soil contamination. The basin will consist of an excavation completed below any existing fill material, and will be backfilled with gravel, to serve as a means of lateral spreading of the solution across the area of contamination. Levels of solution in the basin will be controlled by means of standpipes installed in the gravel, to permit measurement of solution level. Water for the infiltration basin will be obtained from groundwater recovery wells within the footprint of the infiltration basin and at the downgradient extent of the on-Site plume. The groundwater is anticipated to be contaminated with hexavalent chromium, and in the case of the well beneath the infiltration basin, to become more contaminated as a result of the plug-flow displacement of contaminated vadose-zone soil moisture by the infiltrating solution.

The extracted groundwater will be treated and dosed with reductant, the resultant trivalent chromium hydroxide precipitate removed by settling, the water dosed with additional reductant, and the treated water discharged into the infiltration basin. The rate of advance of the reductant solution will be monitored by clusters of pressure/vacuum lysimeters installed at locations throughout the basin. Once the reductant solution reaches the groundwater, hexavalent chromium (and other reducible species including nitrate, iron, manganese, and arsenic) will react with the reductant. The result will be a sharp decrease in concentrations of hexavalent chromium and nitrate, but a temporary increase in the concentration of iron, manganese and arsenic, as ferric hydroxide is dissolved from the aquifer solids and the co-precipitated manganese and arsenic adjusts to the newly-created geochemical environment. Experience at other sites has shown this mobilization to be temporary, and this temporary mobilization is what is expected at this Site.

In addition to extraction from one well in the source area, interim groundwater remediation will also be accomplished by pumping initially from one down-gradient well, treating the recovered water as described above by the addition of reductant, and removing the chromium hydroxide precipitate by settling. Excess water, beyond that required for infiltration needs, will be injected

into cross-gradient wells. This will result in reduction of hexavalent chromium across the plume, as the reaction front advances from the point of injection to recovery.

While much of the reduction of hexavalent chromium is accomplished by inorganic reactions, MWH experience has shown that there are beneficial aspects to the introduction of carbon sources into the treated water, especially into the water to be reinjected into the saturated zone. These benefits include the decrease in sulfate ion concentrations by means of the actions of SRB, and the generation of conditions suitable for the reductive dechlorination of chlorinated solvents. Accordingly, the treated water to be injected into the cross-gradient injection wells and potentially infiltrated in the vadose zone, will be amended by the addition of food-grade carbon sources such as corn syrup, edible oils, or other similar compound.

SECTION 3.0

PRE-IMPLEMENTATION CONSIDERATIONS

The following sections describe activities that will be conducted prior to implementation of the soil and interim groundwater remedial actions.

3.1 ACCESS AGREEMENTS

Permission for placement of all components of the remedial system will have to be obtained from the current property owners. It is envisioned that components of the proposed soil and interim ground water remedial system will be installed on each of the current Home Depot, Public Storage and Kaiser Permanente parcels. The approximate location of remedial system components is described in further detail in Section 4.0. The actual location of all components will be determined through detailed design activities.

3.2 PERMITTING

The implementation of the proposed soil and interim groundwater remedial action will require the issuance of a Waste Discharge Requirements (WDR) Order by the RWQCB. Upon approval of this SIGRAP, Honeywell will submit a Form 200 Report of Waste Discharge (ROWD) to the RWQCB.

Well construction permits will be obtained from the Los Angeles County Department of Health Services for any additional wells that may be installed.

Construction of the treatment system components will require building permits from the City of North Hollywood and possibly from County of Los Angeles Fire Department.

3.3 ORGANIC CONTAMINANTS IN GROUNDWATER

As described in Section 1.4, low levels of organic compounds, including the emerging contaminants 1,4-dioxane and perchlorate, are detected in on-Site monitoring wells. Although the detection of these compounds in not likely related to an on-Site source of contamination, the design of the proposed remedial action will consider the presence of these compounds in the influent and effluent streams from the treatment system. Specifically, the remedial approach shall be designed so that it does not acerbate the current conditions or contribute to the spread of these contaminants to non-impacted areas.

During detailed design, an evaluation of influent and effluent concentrations of non-targeted contaminants will be considered as well as potential treatment approaches, if needed.

3.4 PILOT TESTING

Prior experience with *in-situ* reduction of hexavalent chromium in the vadose and saturated zones enables MWH to reduce the amount of pre-design testing; however, a limited amount of bench and field scale testing, as described below, is needed to ensure an effective, Site-specific remedial design.

3.4.1 Reductant Selection and Soil and Groundwater Reductant Demand

MWH experience has shown calcium polysulfide solution to be the most effective reductant for reduction of hexavalent chromium in contaminated soil and groundwater. In the case of groundwater contamination, the addition of a carbon source, such as corn syrup or an emulsion of edible oils, aids in promotion of the growth of SRB, which tends to enhance degradation of chlorinated solvents, and prevents excessive sulfate concentrations in the groundwater.

Nonetheless, to ensure an effective Site-specific remedy, bench-scale scoping tests using Site groundwater samples will be conducted to select the most effective reductant and the appropriate dosing rates for treatment of hexavalent chromium impacted groundwater. This information is important during the design to size a chemical feed pump and estimate chemical usage rates, as well as provide proof of concept.

The groundwater samples for bench-scale testing will be obtained from well GW-10 or GW-15, which contain the highest concentrations of hexavalent chromium. Samples will be placed in beakers and dosed with varying quantities of three inorganic reductants (calcium polysulfide, metabisulfite, and ferrous iron) to select the optimal dosage that ensures treatment for a given dissolved-phase concentration. Measurements will be made for pH and oxidation/reduction potential (ORP), and hexavalent chromium. This will verify the effectiveness of the various reductants, and provide dose rate information and information on groundwater reductant demand.

Once the reductant and dose rate are selected, a 2-liter sample of the contaminated water will be dosed with the selected reductant. After mixing, I liter will be placed in a 1-liter sedimentation flask, to determine settling rate of the solids. The other liter will be sent to an analytical laboratory to evaluate the concentration of hexavalent chromium, nitrate, and other reducible species.

A sample of contaminated soil from the source area will be used to assess contaminated soil reductant demand. In this testing, a slurry will be prepared, using the contaminated soil sample and Site groundwater collected from a non-impacted well. A portion of the slurry will be sent to an analytical laboratory where it will be analyzed for dissolved hexavalent chromium by EPA Method 7199; for iron, manganese, and arsenic by EPA Method 6010B, and for sulfate by EPA Method 300.0, and sulfide by EPA Method 376.2. The slurry will be divided into a number of sub-samples and dosed with varying concentrations of the selected reductant. Field measurements of slurry ORP will be made, to provide data on the required reagent dose required to achieve generation of reduced conditions. Measurements will be repeated on an hourly basis

for at least 4 hours, to determine long-term trends. In addition, the concentrations of dissolved chromium will be determined in the field with HACH field test kits. A laboratory sample will then be prepared by dosing a soil sample with the selected reductant dosage, and submitting the sample for analysis of dissolved hexavalent chromium by EPA Method 7199; iron, manganese, and arsenic by EPA Method 6010B; and sulfate by EPA Method 300.0; and sulfide by EPA Method 376.2. The results of the soil testing will provide information on soil reductant demands. Appendix C contains protocols for the above scoping tests.

3.4.2 Infiltration Test

A key component of the proposed approach to remediation of contaminated soil in the source area is the ability to infiltrate reductant solution from the near-surface to the water table. This is controlled by the local geology and cannot be accurately replicated in the laboratory. Therefore, prior to the detailed design of the infiltration basin, MWH will conduct a clean-water, Site-specific infiltration test to evaluate the infiltration rate and changes over time. The test will be conducted away from the source area so as not to displace chromium impacted soil pore water.

3.4.2.1 Basin Construction. The test will require cutting an approximate 10-foot by 10-foot square in the concrete pavement southwest corner of the Public Storage property. This is away from major traffic/use areas and in an area without soil impacts. The concrete will be removed and disposed. The 10-foot by 10-foot area will be excavated through fill material to native soil, estimated to be less than 4 feet bgs. The soil will be stockpiled nearby on plastic and covered with plastic. Temporary fencing and barricades will be placed around the excavation to prevent accidental entry.

Some infiltration through the side-walls will occur in both the full-scale and test basins, slightly expanding the treatment area; however, the impact of this on the apparent infiltration rate will be much larger in the test basin than the full size basin because of the higher ratio of side surface area to floor area in the test basin. The rate of side-wall infiltration also varies with depth (hydraulic head) and may be impacted by geologic stratification. As a result, it significantly complicates the scaling equation but is not a significant consideration in the final basin design; therefore, to eliminate this variable, the sides of the excavation will be covered with a plastic liner draped from ground surface.

3.4.2.2 Water Supply/Control. A temporary water supply hose will be connected to a local fire hydrant for a source of potable water. A water meter will be installed to monitor the volume and flow rate of water being placed into the excavation. A mechanical float and valve assembly will be secured to a post driven into the excavation floor. The float will be set to maintain a 2-foot water depth, similar to the proposed maximum basin reductant solution depth. Equipment will be sized to permit a flow rate of up to 50 gpm.

3.4.2.3 Test Procedures. The following procedures will be followed to collect the required design information:

- Clean tap water will be used to fill the excavation. The mechanical (non-electric) valve
 will automatically maintain a constant head of 2 feet of water in the excavation base for
 the duration of the test.
- The initial flow rate and total volume required to initially fill the test basin will be recorded. It is assumed this will require less than ½ hour.
- After the basin is filled, totalizer readings (total volume infiltrated) will be recorded every ½ hour for the first 8 hours of infiltration. Note: The first reading will be ½ hour after flow was initiated. The average infiltration rate (measured in gpm) will be calculated between the last two periods. If the flow rate changes more than 10%, monitoring will be continued until the change is less than 10%. When the change is less than 10%, the next reading will be collected approximately 8 hours later (16 hours into the test) and an additional reading will be collected 8 hours later (24 hours into the test).
- It is possible after one day, the infiltration rate will remain high:
 - If the rate exceeds 10 gpm, this indicates long-term infiltration rates in the full-scale basin will be sufficient to deliver the required reductant volume, and the test will be ended.
 - If it is less than 10 gpm, the test will be continued. Measurements will be collected every 12 hours for a maximum total duration of 5 days, or until the change between the last two flow rates is less than 10%.
- Test basin (model) infiltration rates will be scaled upward and used to determine overall
 viability of basin infiltration at this Site and to size full-scale piping, pumps, and other
 equipment.
- **3.4.2.4 Restoration.** Upon completion of the test, and after the balance of the water has infiltrated into the ground, all equipment will be removed, the stockpiled soil will be placed into the excavation, compacted appropriately, and the surface will be resurfaced with concrete or asphalt to match the existing grade.

3.4.3 Aquifer/Pump Test

MWH does not intend to conduct Site-specific aquifer testing. The reason for this is related to the numerous aquifer tests that have been conducted in the area, thereby providing reliable information of aquifer conditions such as permeability and storage. In addition, the presence of hexavalent chromium contamination would dictate the treatment of the water prior to discharge. Because of the high production capacity of the aquifer, this would mandate setting up a very large temporary storage or treatment system for the duration of the test. Rather, MWH will include sufficient flexibility into the subsequent remedial system design to allow for the possible variation in aquifer conditions, and will develop such aquifer characteristic data during operation of the remedial system during actual, full-scale conditions.

SECTION 4.0

IMPLEMENTATION PLAN

A conceptual remedial design of the proposed *in-situ* soil and interim groundwater approach is described below by system component. In addition, the remedial system startup approach and operation, maintenance and monitoring that will be performed are also discussed. Upon approval of this conceptual remedial approach by the RWQCB, a detailed design will be performed to prepare documents suitable for construction of the remediation system.

4.1 REMEDIAL SYSTEM DESIGN

This section describes the conceptual remedial system design. Actual equipment and well selection may change slightly during the formal design process; however, the underlying conceptual approach will remain as presented. Possible well locations, piping runs, equipment placement, and infiltration basin location are shown in Figure 8.

Extracted and treated groundwater will be used as the "carrier" for the reductant into the vadose zone and groundwater. Two existing wells will be evaluated for suitability as extraction wells during the remedial design. Extracted water will be treated with granular activated carbon (GAC) to remove VOCs and then dosed with calcium polysulfide (or alternate reductant based on results of bench scale tests described in Section 3.4) to precipitate the hexavalent chromium as trivalent chromium. Based on the anticipated flow rate, it is expected that two clarifying tanks will be placed in parallel to allow the solids to settle. To reduce injection well fouling concerns, sand filters may be used to remove any suspended solids that pass through the settling tanks. After the sand filters, the treated water will be split into two streams. One stream will be dosed with additional reductant and distributed to the infiltration basin for treatment of the vadose zone soils. The other portion will be dosed with a carbon source such as emulsified oil prior to reinjection in two or more cross-gradient wells. The extraction/reinjection will approximate a closed-loop flow pattern that will collapse the on-Site and near-Site plume while eliminating the source of contamination, both in the vadose and saturated zones. The system will be designed to maximize the range of flow rates and expandability that can be economically incorporated, such as oversized piping, installation of additional supply and return lines, and selection of pump flow/head operating ranges.

4.1.1 Extraction Wells

The critical aspect in well selection/design is to assure that the maximum amount of groundwater recovery occurs from the most contaminated portion of the aquifer, thereby resulting in the most contaminant recovery from the least water. Use of recovery wells screened over long portions of the aquifer or screened deeper than the contamination can 'smear' the contamination across presently non-contaminated portions of the aquifer. Determination of the vertical component of contamination concentrations will be conducted by depth-discrete sampling of water during construction of potential new wells and by low-flow sampling protocols for existing wells. If the

data indicate existing wells are screened over too long a vertical section, the wells will be modified by installation of packers or backfilling with grout or bentonite to assure that pumping only recovers water from the contaminated section of the aquifer and does not pull contamination deeper.

Two existing wells are being considered for use as extraction wells: GW-14A and GW-15, as shown in Figure 8. A typical extraction well construction diagram is shown in Figure 9. GW-14A is located in the source area and will be used primarily to capture high concentration soil pore water as it is displaced by infiltration of reductant solution during the treatment process. GW-14A is a 4-inch diameter well constructed of Schedule 80 polyvinyl chloride (PVC) and screened between 225 to 285 feet bgs. GW-15 is located downgradient of the source area near the property boundary and within the primary groundwater plume, exhibiting the highest on-Site concentrations of hexavalent chromium in June 2004. It will be used to pull back off-Site contamination and to provide additional on-Site plume capture. GW-15 is a 6-inch diameter well, screened from 245 to 330 feet bgs. High head electric submersible pumps will be used to pump groundwater approximately 300 feet up to ground surface. The minimum anticipated flow rate from each pump is approximately 50 gpm; however, the 6-inch well diameter of GW-15 will permit installation of a larger pump/motor for flow rates of approximately 100 gpm, if desired or required. Given the high yield formation, dewatering of the extraction wells is not anticipated; therefore, level controls will not be required.

It should be noted that these two wells each have a very long screen interval, 60 feet in GW-14A and 85 feet in GW-15. Low-flow sampling will be used to establish the vertical variation in chromium concentration in these two wells before extensive pumping and the potential to 'smear' contamination across more of the aquifer. If the data document that the contamination is only in a minor portion of the aquifer, likely the upper few feet of the saturated zone, the wells will be modified to allow skimming the contaminated water from the upper portion of the aquifer.

A process flow diagram is provided in Figure 10.

4.1.2 Conveyance Piping

Down-well piping will connect to the conveyance piping through an in-well pitless adapter. A separate supply line will be installed from each extraction well. Similarly, the infiltration basin and each injection well will have a separate return line. Prior to backfill, all conveyance piping will be leak-checked with pressured air. The surface will be completed to match existing materials.

As discussed in Section 3.4.3, initial system operation is effectively a long-term pump test to determine what flow rates and chemical dosing will optimize plume capture and Site remediation. To allow for possible future expansion or modifications to the system, additional supply and return lines will be run to the ends of each trench.

4.1.3 Surge Tank and Pre-Filter

Many remedial systems use an influent surge tank to stabilize flow rates through the treatment process; however, given the high yielding aquifer, dewatering of the well and resulting pump cycling are not anticipated; therefore, flow rates are anticipated to remain steady, eliminating the need for a surge tank. Eliminating the surge tank also reduces oxygenation of the water, reducing GAC maintenance caused by metals precipitation.

Some systems that use GAC treatment require a pre-filter to remove suspended solids that may clog the GAC, reducing efficiency and/or flow rates. However, it is anticipated that given adequate well development, initial turbidity will be low and will continue to decrease. Also, given the high design flow rates, the GAC units (as discussed in Section 4.1.4) will be backwashable pressure units. If the GACs were to become plugged, the units could be quickly cleaned with a backwash. Eliminating the large filters will simplify the system and reduce the required footprint which, as will be discussed later, is a significant design consideration.

4.1.4 GAC Units

GAC will be used to remove VOC contaminants from the extracted water prior to reinjection; they provide no significant removal of hexavalent chromium. Eliminating the surge tank and prefilters will allow sizing of the down-well pumps to pump directly through the GAC units. This further simplifies the system, increasing reliability by eliminating level controls and pumps that can fail. GAC units will be installed in a lead-lag (series) configuration. Valves will be installed to permit operation of any unit as the lead unit and/or to permit bypass if treatment is not required. Sample ports and pressure gauges will be located before and after each unit. If back-pressure develops beyond an acceptable level, the GACs will be backwashed to a holding tank dedicated to that purpose. The water will be allowed to settle, and if necessary, flocculent added to remove the majority of the suspended solids. A manually operated pump will then be turned on to pump the water through a filter and back through the GAC units.

4.1.5 Reductant Storage Tank

Reductant solution will be delivered in bulk in tanker trucks and will be stored in a double-walled (self-contained) polyethylene tank. No bottom ports or openings will be installed on the tank to preserve its integrity. Instead, the fill line and each chemical feed pump suction line will enter through the top of the tank and continue to the bottom. To eliminate the risk of uncontrolled siphon drainage, each suction line will be equipped with a normally open (opens if power removed) air solenoid siphon break, installed at the top of each tank. All chemical feed lines outside the tank will be double-contained. Depending upon the tank width to height ratio, seismic restraints will be installed if necessary.

4.1.6 Reductant Dosing A

A chemical feed pump will be used to inject sufficient reductant to reduce and precipitate the dissolved hexavalent chromium as trivalent chromium. The reaction rate is rapid; therefore, to prevent pipe fouling, the reductant will be injected directly into the mixing/clarification tank.

Turbulence caused by the high flow rates will mix the solutions. Complete reduction of hexavalent chromium to trivalent chromium will be verified by field and lab effluent sampling. To assure complete treatment, an excess amount of reductant will be added.

4.1.7 Clarification Tanks

After chemical dosing, the reductant will mix with the water and precipitates will be allowed to settle. Clarification tanks will be sized to provide adequate weir overflow rates and retention time sufficient to allow settling of the trivalent chromium precipitates. It is likely more than one tank will be required. If so, flow will be evenly split between the tanks. Low, high, and high high (alarm) floats will control effluent pump operation and shut down the system if an alarm high condition occurs. An effluent sampling port will permit sample collection for field determination of residual reductant concentrations. Accumulated solids will be suctioned from each tank bottom, as necessary. The slurry will be hauled off-Site to a certified hazardous waste processing facility where it will be dewatered and wastes properly disposed.

4.1.8 Effluent Filtration

To reduce reinjection well fouling caused by accumulation of trace solids, such as turbidity or precipitates that were not removed in the clarification tanks, the system will be designed with the option of pumping clarifier effluent water through two parallel sands filters. The filters will be equipped with a pressure differential sensor and backwash valve that automatically backwashes one filter at a time. The backwash water will be directed to a surge tank. Backwash water will be pumped from the surge tank at a low flow rate back through the clarification tanks.

4.1.9 Carbon Dosing (Effluent A)

A portion of treated water will be diverted and dosed with a carbon source such as emulsified vegetable oil. The benefits of this addition include a decrease in sulfate ion concentrations by means of the actions of SRB, and the generation of conditions suitable for the reductive dechlorination of chlorinated solvents. The tank type, size, oil delivery, setup, and chemical feed pumps will be similar to those described for the reductant in Sections 4.1.5 and 4.1.6. Turbulence in the pipe will provide the necessary mixing prior to reinjection.

4.1.10 Reinjection Wells

The carbon-enriched and low to moderate residual reductant concentration effluent water will be discharged to cross-gradient reinjection wells that will help push contaminated water toward the extraction wells, increasing hydraulic control in addition to providing *in-situ* treatment of low concentration groundwater in the vicinity of the wells (i.e., at the plume edge). As previously discussed, each reinjection well will have its own supply line. To prevent excessive turbulence (and resulting precipitation) from water cascading down the well casing, each line will continue down the well to below groundwater. Each system effluent line will be equipped with a totalizer/flow meter, regulating valve, sample tap and pressure/vacuum gauge. It is anticipated these wells will be 4-inch diameter PVC casing, with the screen interval bottom based on the depth of contamination within the aquifer. The screen will be relatively coarse, to minimize the

impact of potential scale formation, and the filter pack more coarse than conventional design. The screen interval will also extend well up into the unsaturated zone, to maximize the inflow to the formation in the upper, contaminated section.

4.1.11 Reductant Dosing B (Effluent B)

The remaining portion of the treated water will be dosed with additional reductant prior to delivery to the infiltration basin. A third chemical feed pump will be used to complete this dosing. One reductant supply line will be run to the basin. This line will be equipped with a flow meter, sample tap, pressure gauge, and valve. The reductant solution is more dense than groundwater, which aids in percolation through the vadose zone and provides additional reductant to react in the higher concentration source area. The solution will become less dense as it migrates, both because of reaction/consumption of the reductant, and because of dilution by the displaced vadose-zone fluids. Excess reductant will eventually percolate to the groundwater, where it will react with the displaced hexavalent chromium and hexavalent chromium already in the groundwater.

4.1.12 Infiltration Basin

The infiltration basin will be an approximate 50-foot by 50-foot area which extends past the known source area. This is a conservative treatment area, to allow for the possibility that current delineation of soil contamination is not exactly defined. The basin will be constructed by removing the concrete and excavating to a depth of approximately 5 feet below grade. Visually contaminated soil (chromium is intensely colored) will be stockpiled separately and disposed of at a hazardous waste landfill. Other soil will be stockpiled and composite sample(s) will be collected to determine if soil disposal standards are exceeded. This soil will be disposed of as required based upon the composite sample results.

Within the main basin, two sub-basins will be created (Figures 11 and 12). Sub-basin 1 is the primary source area. Sub-basin 2 is a former excavation area (to a depth of 15 feet) that will have different permeability/infiltration characteristics than the remainder of the basin. Soil berms constructed of clean excavated material will be placed around each of these areas to a height of 2 feet above the basin floor (3 feet bgs). A flexible membrane liner (FML) will be placed over these berms to further reduce the permeability. Separation of these two areas will permit a higher level of control of where the solution is injected. As shown in Figure 11, the treatment system effluent line will continue to a valve box on one side of the basin. Inside this vault will be valves and in-line flow meters that branch from this main header. Each leg exits the vault as a solid pipe that continues to the perforated distribution pipes shown in Figure 11 (1A/1B through 8A/8B). The number and spacing of these legs will be based upon the results of the infiltration test (Section 3.4.2), but will be spaced appropriately to assure complete lateral distribution and saturation of the soils covered by each leg. After placement of the piping, the bottom of the basin/sub-basins will be filled with clean well-sorted gravel as shown in basin cross-section A-A' (Figure 12). A geotextile will be placed on top of the gravel. Clean lowpermeability fill will be placed above this to help separate the basin from the surface and minimize addition of oxygen (reacts with reductant, causing precipitation). Finally, the surface will be restored with a gravel sub-grade and pavement.

Measuring standpipes and pressure/vacuum lysimeters will be installed across the basin to provide monitoring. Actual locations and numbers will be determined during the design; however, example locations are shown in Figure 11. The standpipes will be used to monitor solution depth across the basin to assure uniform treatment. One or more will be equipped with a high level float that will trip and shut down flow to the basin if the basin is overfilling. Clusters of lysimeters will permit the collection of vadose-zone fluids on a routine basis from specific depths. A typical lysimeter installation is shown in Figure 13. By installing a series of lysimeters over various depths at each monitoring site, in a cluster, it is possible to detect the passage of the reaction front, as the reductant-bearing water displaces and reacts with residual vadose-zone contamination. Approximately six clusters of lysimeters will be used. Each cluster will consist of three lysimeters. One lysimeter will be installed at a depth of approximately 9 feet bgs; one will be installed at a depth of approximately 19 feet bgs; and one will be installed at approximately 29 feet bgs. Given the method of lysimeter operation, deeper locations become cost prohibitive and/or technically impractical. The three proposed intervals will allow detailed monitoring of the most highly contaminated zones and will provide data useful in predicting deeper migration rates and reaction front arrival times. Typically, lysimeters yield 250 to 500 milliliters (ml) of solution, which permits measurement of pH and ORP in the field, together with determination of chromium concentration by means of HACH field test kits. Such field operational monitoring is needed for infiltration basin operation, and is not proposed as regulatory monitoring. This field determination is backed with periodic laboratory analyses for hexavalent chromium concentrations, for regulatory considerations.

The electric vault and associated lines shown in Figure 11 will not be removed. The lines will be temporarily de-energized and excavated around. Soil under the vault will remain in place. As shown in Figures 11 and 12, this is a small area and solution will migrate into the soil beneath the vault, completing treatment. To assure fluids do not enter the electric vault, an additional standpipe and level float will be placed in the vault that will shut down flow to the basin if any water is detected.

4.1.13 Controls/Safety

Some safety features such as tank and basin high levels floats have been previously discussed; however, the design will include additional safety controls such as high pressure alarms, and emergency stop (E-Stop). All equipment will be placed within one or more bermed treatment pads equipped with a high level float. If any alarm trips, required pumps will be deactivated. Most alarms will be a result of small in-balance in flow rates; therefore, the condition will be allowed to correct itself and treatment continued without a manual restart. However, if a treatment pad alarm exists, all pumps will be deactivated and the reductant siphon breaks activated, safely shutting down all processes until the situation is investigated and the alarm manually reset by on-site personnel. Upon any alarm condition, the equipment operator will be notified by a call-out feature. Tanks or equipment requiring seismic restraints will be secured.

4.2 SYSTEM START-UP AND PROVE-OUT

After construction, all equipment will undergo a 2-week testing and prove-out period. Initially, above ground equipment will be charged and operated with clean water to leak check piping/fittings, assure proper equipment operation, and assure level and alarm float operation. Thereafter, extraction and treatment will begin. Chemical dosing rates, pressures, and flow rates will be monitored and adjusted as necessary. For the first week, the equipment will be operated only 8 hours per day under continuous supervision to provide quick response/trouble-shooting, and to assure all parameters remain within the anticipated range. During the second week, operation will increase to 24 hours per day with daily checks on equipment and operating parameters.

4.3 OPERATION, MAINTENANCE, AND MONITORING (OM&M)

Proper OM&M is necessary to assure remedial goals are achieved in a timely and cost-effective manner. This section provides a summary of the probable OM&M activities. An OM&M Plan will be prepared upon approval of the detailed design.

4.3.1 Operation

Operation will continue 24-hours per day, 7 days per week until breakthrough of reductant is noted in GW-14A (or replacement source area extraction well). This source area well will then be shut off. This will protect the GACs from reductant fouling and permit *in-situ* treatment of the residual chromium contamination. The downgradient well(s) (e.g., GW-15) will continue pumping until reductant is observed in it/their effluent. This would suggest the primary chromium source area has been treated. The system will be shut down for a period of 1 month to allow subsurface conditions to stabilize. Confirmation groundwater and soil monitoring will be completed after this time as described in Section 5.0. If results indicate the remedial goals have been achieved, the system will be shut down and decommissioned. If not, groundwater extraction and reinjection in either the wells or basin will continue; however, reductant solution for the basin will be amended with a carbon source, similar to the injection wells until remedial goals are achieved. Extraction and/or injection well flow rates will be adjusted as necessary to promote capture and/or *in-situ* treatment of any recalcitrant areas.

4.3.2 Maintenance

Metals precipitation increases required maintenance compared to a standard VOC pump and treat system; however, high operational up-time can be maintained with proper preventative maintenance procedures. Some of the procedures include:

- Monitoring of system pressures to detect precipitation in piping. Piping will be designed to permit easy mechanical or chemical cleaning and removal of the precipitates.
- Pressure monitoring will also indicate when injection wells require redevelopment.
- Mid-point GAC sampling will be used to indicate when GAC change-out is required.

- Trivalent chromium precipitates will be regularly measured in the settling tanks and required removal of accumulated solids will be scheduled to assure proper process retention times.
- Standard pump maintenance/cleaning will be completed.
- All piping, fittings, and tanks will be regularly inspected for leaks.
- Periodic testing and cleaning of level control and alarm floats will be conducted.

4.3.3 Monitoring

Monitoring activities will be of two types:

- Remediation monitoring to evaluate the effectiveness of the on-going remedial efforts, to allow for modifications to increase the effectiveness of the system.
- Regulatory monitoring to be specified as a part of the regulatory system.

Each aspect is discussed below. Obviously, the regulatory monitoring requirements are to be imposed by the regulatory agencies, but the discussion is intended to suggest the type of regulatory monitoring which has been required at other sites and has been shown to provide regulatory agencies an understanding of the success of the system.

4.3.3.1 Remediation Monitoring. It is anticipated that the chemical nature of groundwater from the two extraction wells will change rather soon after the start of operation. This is especially anticipated for GW-14A, as infiltration displaces highly-contaminated fluid from the vadose zone into the saturated zone, where it will be recovered by the well pumping. Therefore, for the first 3 months of operation, daily readings will be made of the volume of water extracted from each well, daily groundwater level monitoring will be conducted on each extraction well, and daily field analysis of the pH, ORP, electrical conductivity, and hexavalent chromium (by means of a HACH field test kit) will be conducted on each extraction well discharge. Daily measurements will be made for the first 3 months and a minimum of three times per week after the first 3 months.

Once per month, samples from the extraction wells will be collected and submitted to an analytical laboratory for analysis of the following:

- Dissolved hexavalent chromium by EPA Method 7199;
- Iron, manganese, and arsenic by EPA Method 6010B;
- Calcium, magnesium, potassium, and sodium by EPA Method 6010B;
- Carbonate/bicarbonate alkalinity by SM2320; and
- Nitrate, nitrite, chloride, and sulfate by EPA Method 300.0.

Samples from the influent and effluent of the treatment system will also be collected daily and analyzed in the field for pH, ORP, and electrical conductivity for the first 3 months; and a minimum of three times per week after the first 3 months. A log will be kept of the amount of reductant added to the treatment system. Samples will be collected monthly from the influent and effluent of the treatment system and submitted to an analytical laboratory for analysis of hexavalent chromium by EPA Method 7199 and VOCs by EPA Method 8260B.

Monitoring of the infiltration basin will include monitoring the flow into each sub-basin and the standing solution depth daily for the first 3 months, and a minimum of three times per week after the first 3 months. Lysimeters will be sampled at least weekly and analyzed in the field for ORP, pH, electrical conductivity, and hexavalent chromium (by means of a HACH field test kit). Samples will be collected quarterly from the lysimeters and submitted to an analytical laboratory for analysis of hexavalent chromium by EPA Method 7199.

Monitoring of the injection wells will include determination of the volume of solution discharged to each well, the well-head pressure (if any) involved in the injection, and the water level in each injection well. Monitoring will be conducted daily for the first 3 months and a minimum of three times per week after the first 3 months.

Frequency of the above-mentioned remediation monitoring may be modified as remediation progresses, depending on the results obtained in the field.

4.3.3.2 Regulatory Monitoring. As noted, the program of regulatory monitoring will be specified by the permitting authority; however, it is anticipated that quarterly monitoring of the site wells will be sufficient. The quarterly report that is submitted to the RWQCB will include remediation monitoring data, including the laboratory analyses of the recovery well(s) and treatment system influent and effluent. A quarterly report will be prepared and submitted to the applicable agencies.

SECTION 5.0

REMEDIATION GOALS AND CONFIRMATION TESTING

The goal of the proposed soil remedial measures are to reduce mobile hexavalent chromium concentrations in the vadose zone to prevent these residual concentrations from further threatening groundwater quality.

As described in Section 4.3, the infiltration basin will continue to be operated until the presence of reductant solution is detected in downgradient groundwater extraction well GW-15. At this point a soil boring confirmation test program will be implemented to evaluate the presence of hexavalent chromium in soils in the source area.

The soil source area will be divided into four quadrants and soil samples will be collected by drilling one boring through each quadrant. Soil samples will be collected every 20 feet from ground surface to approximately 300 feet bgs from each boring. Samples will be analyzed for hexavalent chromium by EPA Method 7199.

The goal for interim groundwater remediation is to provide for hydraulic control of the on-Site chromium plume and to reduce concentrations of dissolved chromium in groundwater. Confirmation of achievement of remedial goals will be performed through the quarterly groundwater monitoring program. The results will continue to be provided in quarterly reports, which will include a specific section to discuss the remedial action activities and results.

SECTION 6.0

SCHEDULE

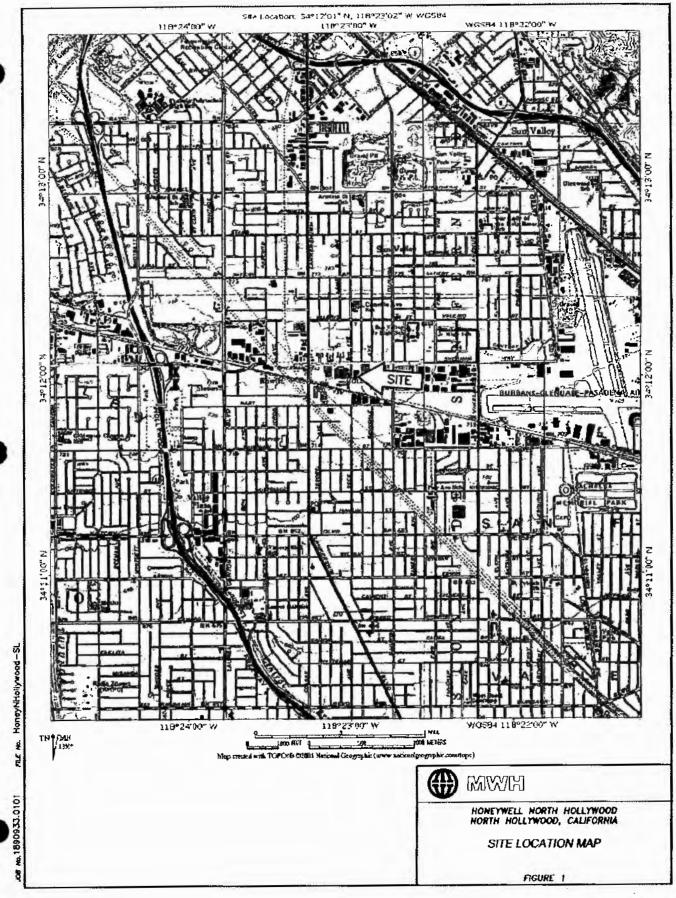
Upon approval of the SIGRAP by the RWQCB, Honeywell will submit ROWD Form 200 to provide the RWQCB with required information to begin drafting of the WDR Order. It is expected that upon submittal of the ROWD Form 200, the RWQCB can draft the WDR and schedule it for consideration at a regular meeting of the Regional Board, within approximately 3 months.

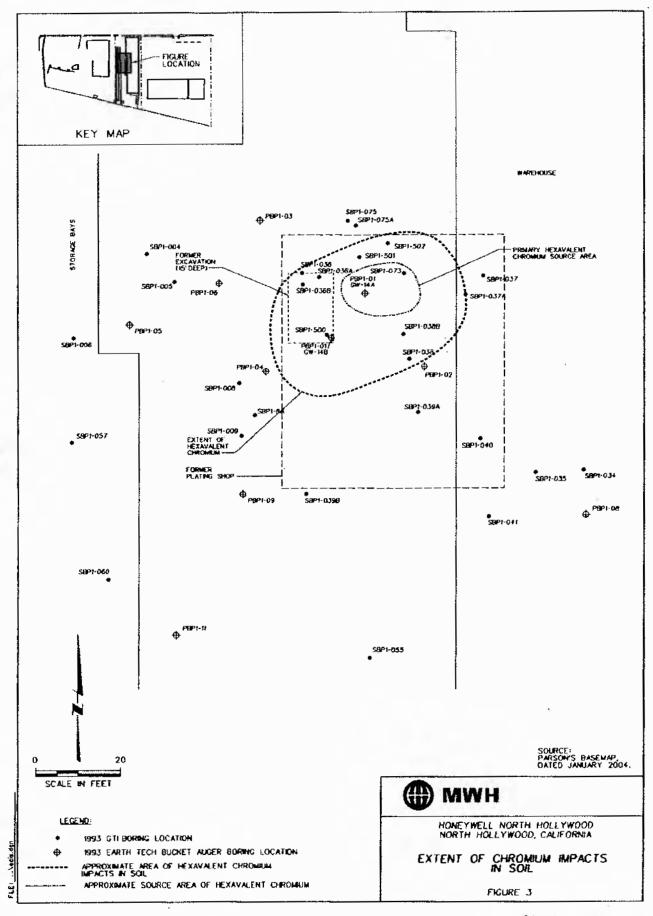
In addition, following approval of the SIGRAP by the RWQCB, Honeywell will begin predesign, bench-scale and clean water infiltration testing described in Section 3.4 and detailed design activities. These activities as well as access permits should be completed within the timeframe for WDR approval, such that construction of the remedial action elements can begin immediately upon approval of the WDR.

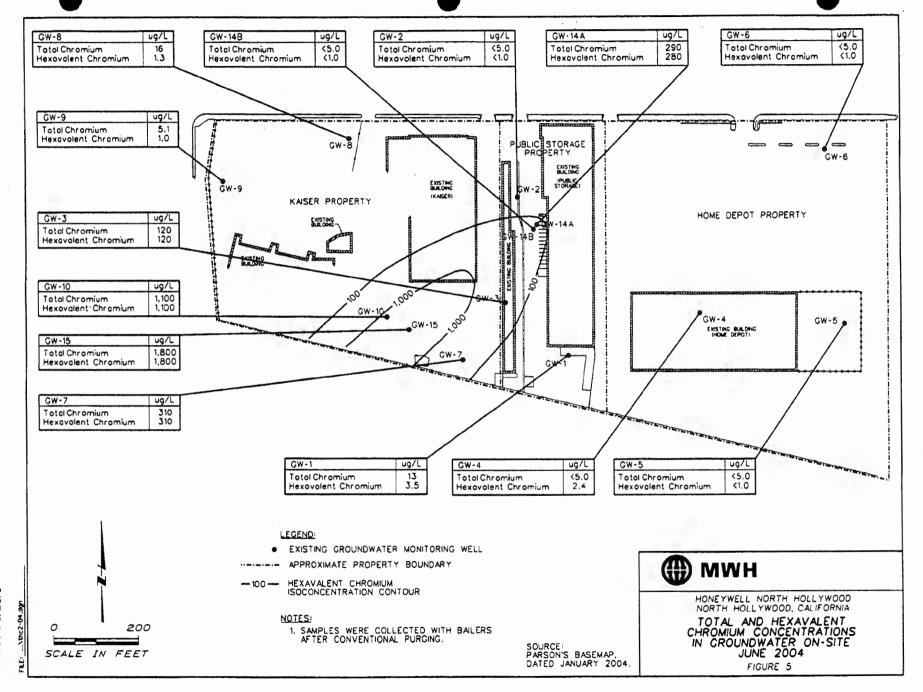
SECTION 7.0

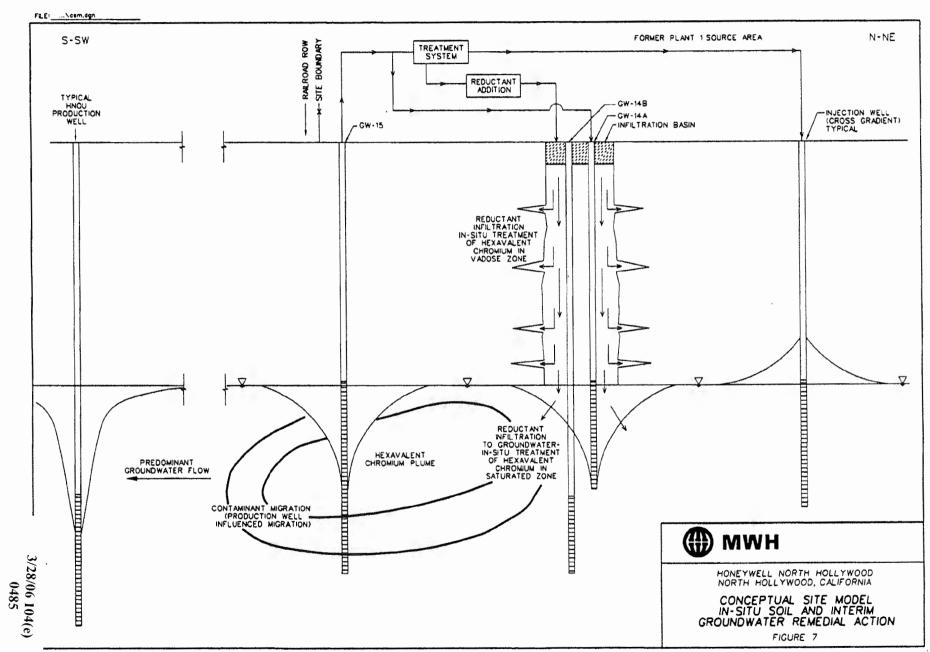
REFERENCES

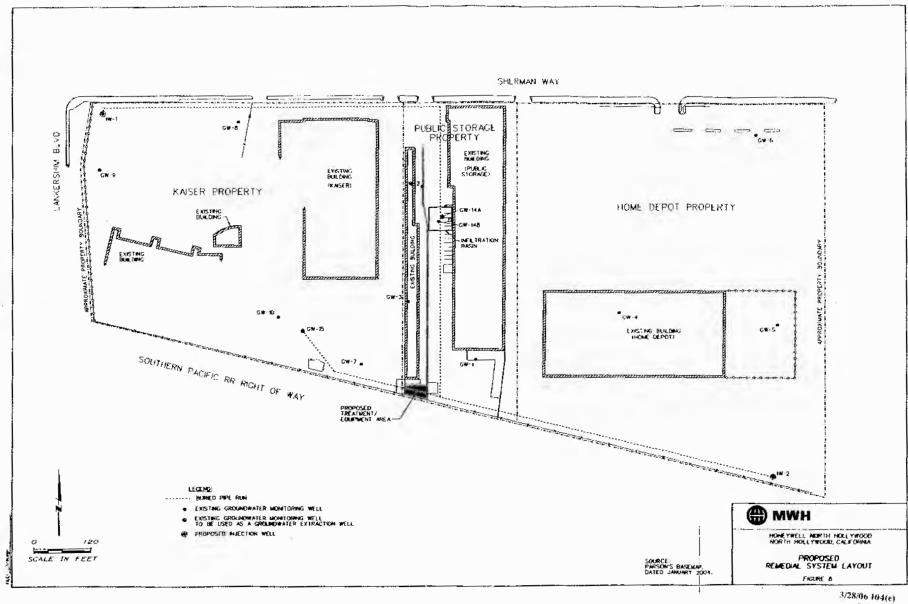
- GTI, 1992. Soil Characterization Workplan, North Hollywood Site, 11600 Sherman Way, North Hollywood, California, September 1.
- GTI, 1993. Step-Out and Deeper Soil Boring Report, AlliedSignal Aerospace, 11600 Sherman Way, North Hollywood, California, September 15.
- Hydrologue, Inc., Consulting Engineers and Geologists, 1997. A Groundwater Flow and Solute Transport Model for AlliedSignal North Hollywood Property, May 27.
- James M. Montgomery Consulting Engineers, Inc., 1992. Remedial Investigation Groundwater Contamination in the San Fernando Valley, December.
- Javendel, I, and C.F., Tsang, 1986. "Capture-zone Type Curves: A Tool for Aquifer Cleanup." Ground Water, 24:616-625.
- MWH, 2004. Submittal of Data Package to Support Proposed Remediation, Former Honeywell North Hollywood Site, June 29.
- Palmer, Carl D, and Robert Puls, 1994, Natural Attenuation of Hexavalent Chromium in Ground Water and Soils, EPA/540/S-94/505, U.S. Environmental Protection Agency Ground Water Issue, October.
- Parsons, 2001. Technical Report and Remedial Investigation Workplan for Chromium, Honeywell International, Inc., 11600 Sherman Way, North Hollywood, California, December 7.
- Parsons, 2003a. Assessment Workplan Addendum Emerging Chemicals and Chromium in the Unsaturated and Saturated Zones, Honeywell International, Inc., 11600 Sherman Way, North Hollywood, California, March 31.
- Parsons, 2003b. Quarterly Groundwater Monitoring Report, First Quarter 2003, Honeywell North Hollywood, April 15.
- Parsons, 2003c. Interim Groundwater Remedial Action Plan For Chromium, 11,600 Sherman Way, North Hollywood, California, June 30.
- Parsons, 2003d. Revised Remedial Investigation Workplan for Chromium and Emerging Chemicals, Honeywell International, Inc., 11600 Sherman Way, North Hollywood, California, June 30.

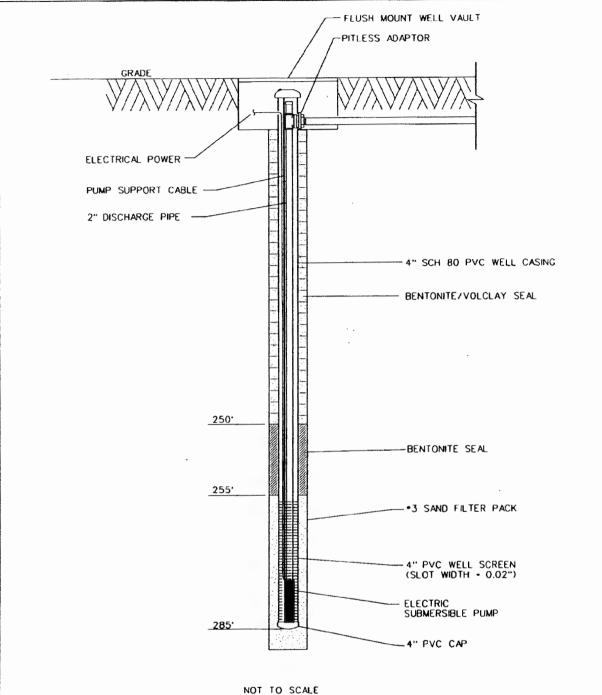



- Parsons, 2004a. Remedial Investigation Report for Chromium and Emerging Chemicals, February 27.
- Parsons, 2004b. Interim Remedial Measures, Former Honeywell International, Inc. Facility, April 15.
- Parsons, 2004c. Quarterly Groundwater Monitoring Report, Second Quarter 2004, Honeywell North Hollywood, July 15.
- Parsons, 2004d. Revised Workplan Amending Revised Remedial Investigation Workplan Dated June 2003, July 23.
- Rouse, Jim V., 2001, In-Situ Reduction and Geochemical Fixation of Chromium in Soils and Ground Water in Varied Geohydrological Regimes, Proceedings, New England Water Environment Association, Boston.
- Rouse, Jim V., Ian Davies, Amanda DeSantis, and Jan Hutton, July, 2001, In-Situ Hexavalent Chromium Reduction and Geochemical Fixation in Varied Geohydrological Regimes, First International Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater, Niagara Falls, Ontario.
- RWQCB, 2001. Requirement for a Technical Report Pursuant to California Water Code Section 13267 – Home Depot (Former AlliedSignal/Bendix), 11600 Sherman Way, North Hollywood, California 91605 (File No. 111.0180), March 3.
- RWQCB, 2003a. Cleanup and Abatement Order No. R4-2003-0037 for Honeywell International Inc. (Formerly Allied Signal Inc.), 11600 Sherman Way, North Hollywood, California (File No. 111.0180), February 21.
- RWQCB, 2003b. Comments on the Technical Report and Remedial Investigation Workplan for Chromium, in Addition to the Assessment Workplan Addendum for Emerging Chemicals in the Unsaturated and Saturated Zones, Honeywell International, Inc. (Formerly AlliedSignal Inc.), 11600 Sherman Way, North Hollywood, California (File No. 111.0180), May 27.
- RWQCB, 2003c. Approval of Revised Remedial Investigation Workplan for Chromium and Emerging Chemicals, Honeywell International Inc. (Formerly Allied Signal Inc.), 11600 Sherman Way, North Hollywood, California (File No. 111.0180) (Site Identification No. 2041900), October 23.
- Upper Los Angeles River Area Wastewater (LUARA), 2001. Watermaster Service in the Upper Los Angeles River Area Los Angeles County 1991-2000 Water Year, May.

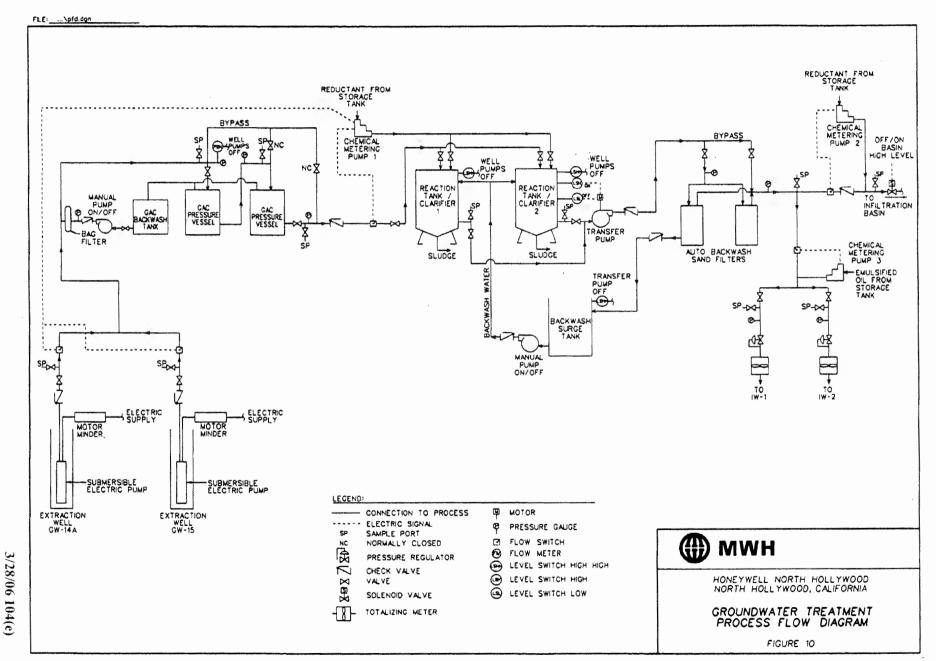

USOCO1S01/Projects/Honeywell/North Hollywood/SIGRAP Text

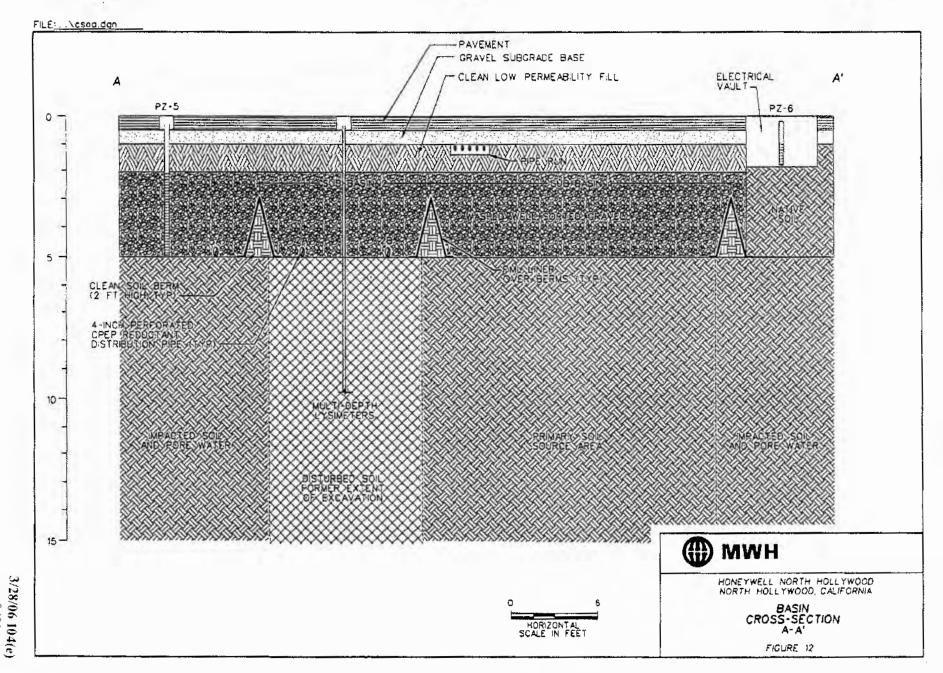



FIGURES



NOTES:


- 1. DEPTHS ARE FOR EXAMPLE ONLY.
- 2. DEWATERING OF WELLS IS NOT ANTICIPATED, THEREFORE PUMP MOTOR WILL BE PROTECTED WITH MOTOR MINDER/CURRENT SENSOR IN PLACE OF HIGH/LOW FLOATS.


HONEYWELL NORTH HOLLYWOOD NORTH HOLLYWOOD, CALIFORNIA

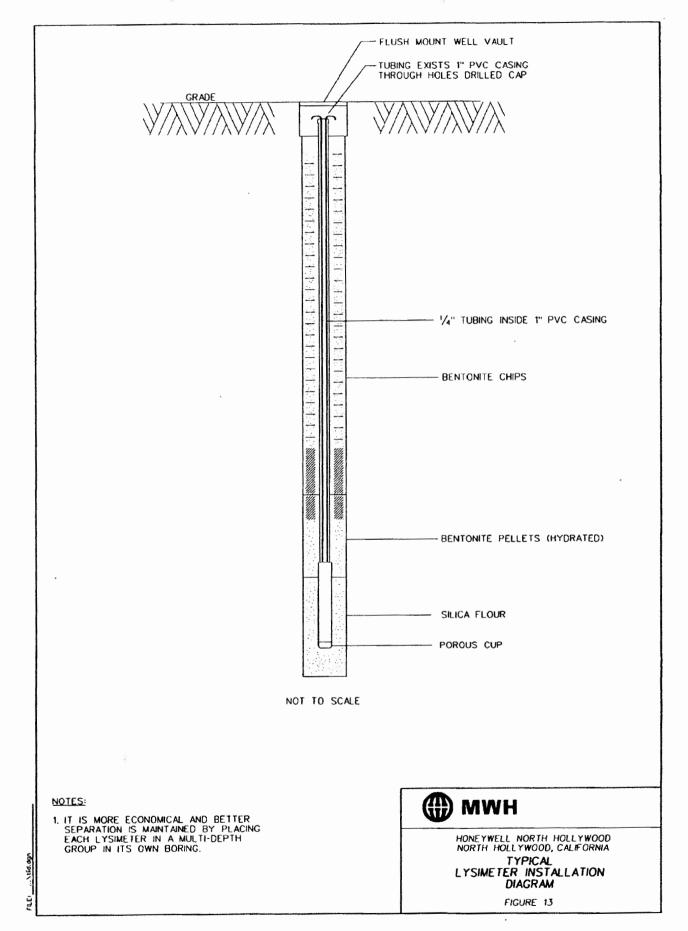

TYPICAL WELL CONSTRUCTION DIAGRAM

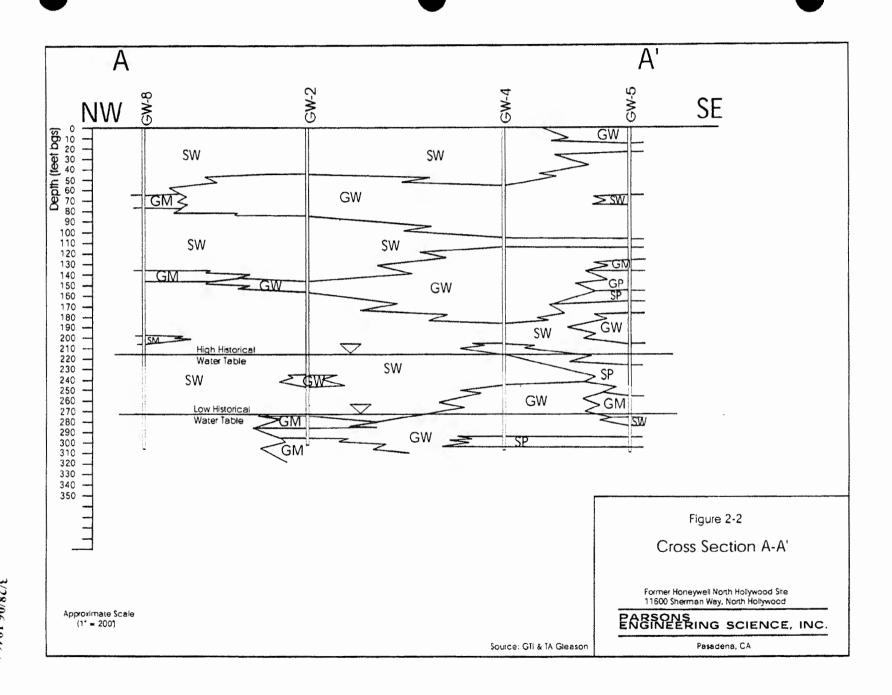
FIGURE 9

TABLES

REMEDIATION PROGRESS SAMPLING SCHEDULE

Former Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

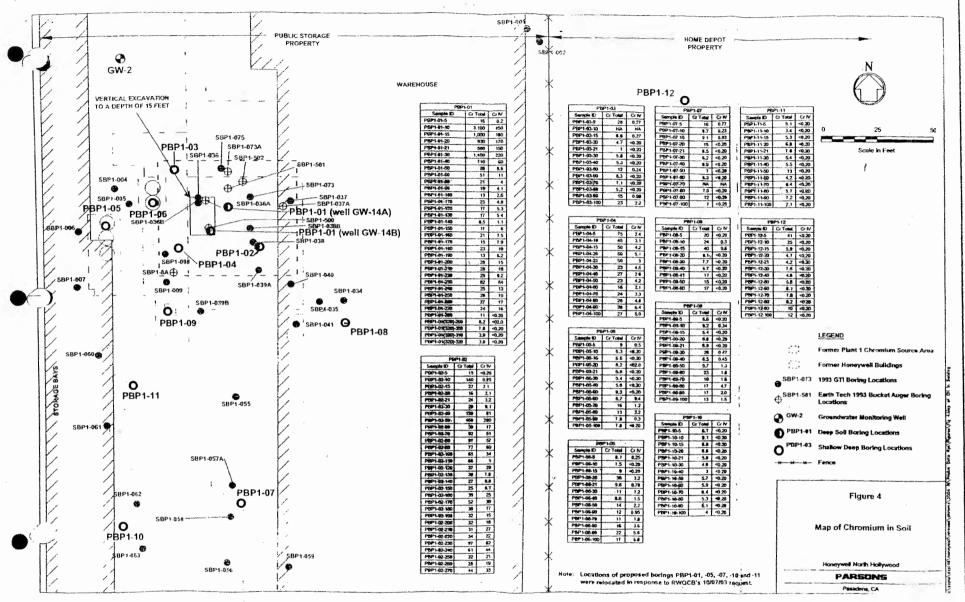
MONITORING LOCATION	SAMPLE ANALYSES	METHOD OF ANALYSES	FREQUENCY
Extraction Wells	Volume of water extracted Depth to groundwater pH, ORP, electrical conductivity Hexavalent chromium Dissolved hexavalent chromium Iron, manganese, arsenic Calcium, magnesium, potassium, sodium Carbonate/bicarbonate alkalinity Nitrate, nitrite, chloride, sulfate	Field equipment Field equipment Field equipment HACH Test Kit EPA Method 7199 EPA Method 6010B EPA Method 6010B SM2320 EPA Method 300.0	Daily for first 3 months, three times per week thereafter Daily for first 3 months, three times per week thereafter Daily for first 3 months, three times per week thereafter Daily for first 3 months, three times per week thereafter Monthly Monthly Monthly Monthly Monthly Monthly Monthly
Treatment System Influent and Effluent	Volume of water treated Volume of reductant used to treat influent Volume of reductant used for basin pH, ORP, electrical conductivity Dissolved hexavalent chromium VOCs	Field equipment Field equipment Field equipment Field equipment EPA Method 7199 EPA Method 8260B	Daily for first 3 months, three times per week thereafter Daily for first 3 months, three times per week thereafter Daily for first 3 months, three times per week thereafter Daily for first 3 months, three times per week thereafter Monthly Monthly
Infiltration Basin	Volume of reductant solution delivered to basin Flow rate into basin/sub-basins	Field equipment Field equipment	Daily for first 3 months, three times per week thereafter Daily for first 3 months, three times per week thereafter
Standpipes	Depth of reductant solution	Field equipment	Daily for first 3 months, three times per week thereafter
Lysimeters	pH, ORP, electrical conductivity Hexavalent chromium Dissolve hexavalent chromium	Field equipment HACH Test Kit EPA Method 7199	Weekly Weekly Quarterly
Injection Wells	Volume of water injected Well-head press, if applicable Depth to groundwater	Field equipment Field equipment Field equipment	Daily for first 3 months, three times per week thereafter Daily for first 3 months, three times per week thereafter Daily for first 3 months, three times per week thereafter

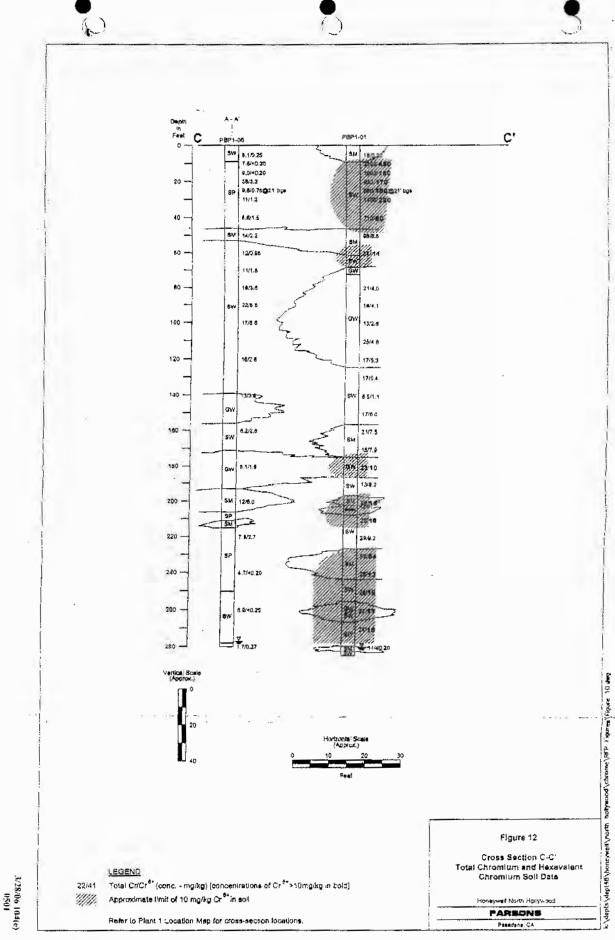

Notes:

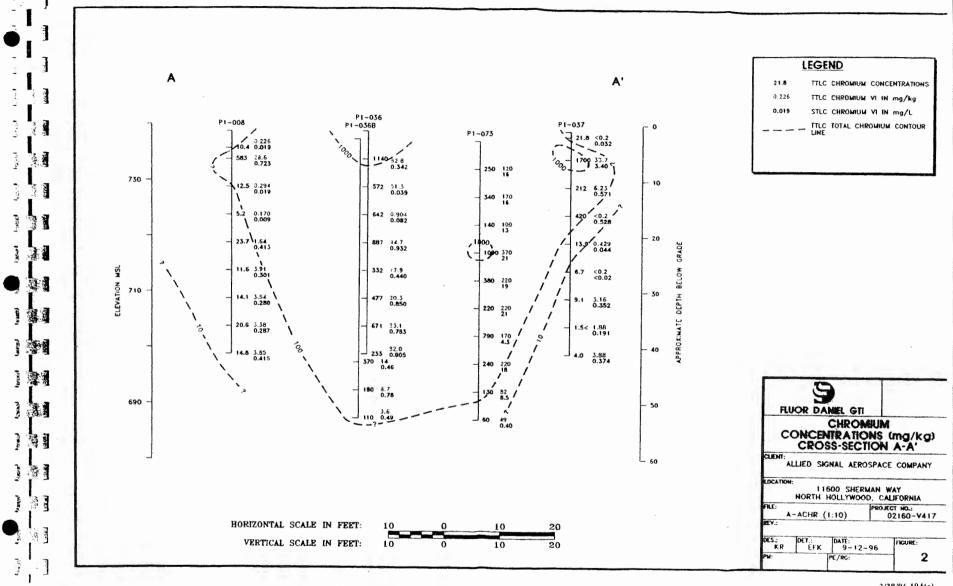
EPA - Environmental Protection Agency

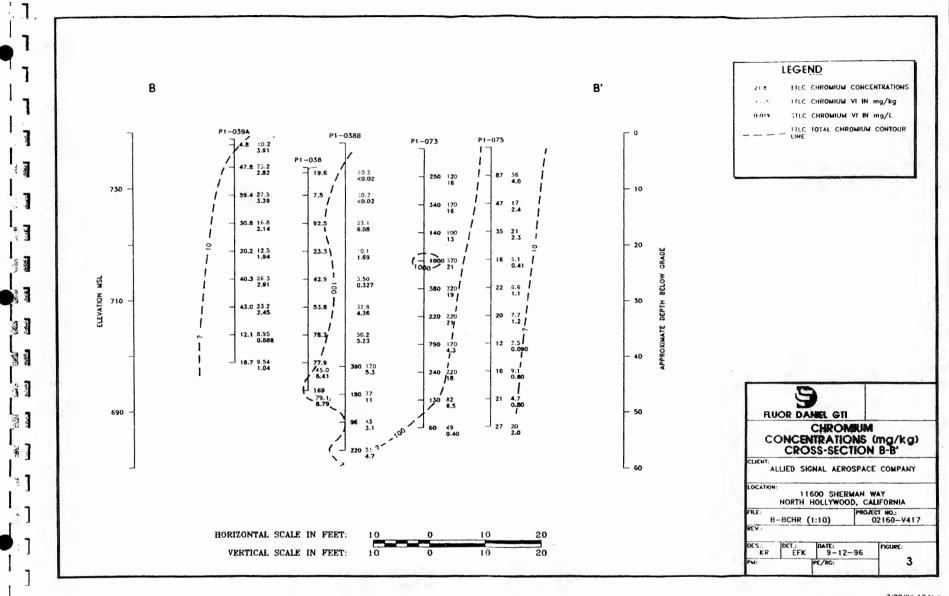
ORP - Oxidation/Reduction Potential

VOC - Volatile Organic Compound


APPENDIX A GEOLOGIC CROSS-SECTIONS






APPENDIX B

CHROMIUM CONCENTRATIONS IN SOIL

APPENDIX C

TREATABILITY STUDY PROTOCOLS

Conceptual Protocol for Scoping Tests for Reductant Selection and Reductant Demands of Contaminated Soil, Honeywell North Hollywood Facility, CA

Objectives:

Bench scale testing will be conducted in the field at the North Hollywood facility. The objectives of these tests are to:

- 1. Compare the relative effectiveness of three inorganic reductants to reduce hexavalent chromium in the ground water from wells at the site, and
- 2. Determine the reductant demand of contaminated site soil, *i.e.*, how much of the selected reductant is required to react with the various reducible species (hexavalent chromium, nitrate ion, ferric iron, etc) present in the soil, with information on the rate of reduction.

Approach:

Testing will be conducted in a phased manner to:

- 1. Select the reductant, based on behavior using actual site ground water, and then
- Develop data on the reductant demand of a slurry composed of contaminated soil and non-impacted well water.

Reductant Selection - The first phase is designed to produce data to select the most appropriate reductant. Experience gained at other sites indicates calcium polysulfide will be most effective, since it yields sulfide ion capable of reducing hexavalent chromium and produces elemental sulfur as the main reaction product, at near-neutral pH. Metabisulfite and ferric iron involve altered pH conditions. Ferric iron produces more solid waste from the reaction, while metabisulfite generates sulfate ion. To evaluate the effectiveness, testing will involve the following steps:

- 1. Prepare dilute aqueous solutions of the three reductants.
- 2. Obtain a bulk sample of contaminated ground water from GW-15, the most contaminated well on site. Measure the pH, ORP, and electrical conductivity of the water.
- 3. Pour up three sets of 5 beakers, using 100 ml of water in each of the 15 beakers.
- 4. Add increasing doses of each of the three reductant solutions to the five beakers in each of the three sets. After reductant addition, stir each for at least 30 seconds, then measure the pH and ORP, and allow to set for one hour, with observations of the various beakers, as to color, settling rate of solids, etc.
- Using a HACH field test kit, determine the chromium concentration in the clarified water in the beaker after one hour. Also, determine the pH, ORP, and electrical conductivity of each beaker in each set.

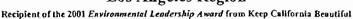
- Based on the results from the three sets of beakers, select the reductant which is most effective at reduction of hexavalent chromium, and produces the best settling solids blanket.
- 7. Pour a two-liter sample of the bulk ground water, and dose it with the selected dose of the selected reductant, and stir to achieve reaction. One half is to be placed in a one-liter settling flask, and observations made as to rate and mass of settlable solids as a function of time. The other half is to be filtered through a 0.45 micron filter and submitted for laboratory analysis of hexavalent chromium and major ions.

Reductant Demand - The second phase of the field testing is to determine the reductant demand exerted by contaminated soil from the site. If no soil material is available from prior drilling in the area of contaminated soil, a sample will be obtained by drilling a bucket hand auger hole (using a pre-cleaned auger) in an area that is known, from previous sampling, to contain elevated hexavalent chromium. Cuttings from the hand auger will be spread on a plastic sheet and blended to produce a homogenous solid sample, and a sample submitted for laboratory determination of hexavalent chromium, ferric iron, and nitrate concentration. A small quantity of the soil will be mixed with an equal volume of distilled water and stirred. The water from the slurry will then be tested for hexavalent chromium with a field test kit to assure that the soil is, in fact, contaminated with chromium.

- 1. Prepare a slurry by mixing 2 liters of soil with 3 liters of non-impacted well water, and stirring until well mixed and all clods or clumps of soil are desegregated. Remove and discard any rocks more than ½ inch diameter. Determine the pH and ORP of the slurry.
- 2. Send a sample of the slurry to an analytical laboratory for analysis of hexavalent chromium, ferric iron, manganese, arsenic, nitrate, sulfate, and sulfide.
- 3. Pour 5 samples of the slurry, each 500 ml in volume. Save a sixth sample as a control.
- 4. Add increasing doses of the selected reductant solution and stir for at least 5 minutes.
- Measure the pH and ORP of the slurry, including the control, at the cessation of stirring and each hour thereafter for at least 4 hours, noting any significant fact such as color change, settling rate, etc.
- Submit the control sample and at least two of the treated slurry samples for analysis of hexavalent chromium, ferric iron, manganese, arsenic, nitrate, sulfate, and sulfide concentration.

Anticipated Outcome

The outcome of the first phase of the field testing will be data on the most-effective reductant, the anticipated concentration of hexavalent chromium in he treated water, and the amount and settling rate of the trivalent chromium solids produced by reaction between the reductant and ground water. The second phase will provide information on the reductant demand exerted by contaminated soil from the area.

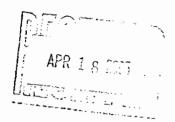

APPENDIX B

SOIL AND GROUNDWATER INTERIM REMEDIATION PLAN APPROVAL LETTER April 13, 2005

California Regional Water Quality Control Board

Los Angeles Region

Alan C. Lloyd, Ph.D.
Agency Secretary


320 W. 4th Street, Suite 200, Los Angeles, California 90013

Phone (213) 576-6600 FAX (213) 576-6640 - Internet Address: http://www.waterboards.ca.gov/losangeles

Arnold Schwarzenegger
Governor

April 13, 2005

Mr. Benny DeHghi Honeywell International, Inc. 2525 West 190th Street M/S 23-1-80 Torrance, California 90505-6099

SOIL AND INTERIM GROUNDWATER REMEDIATION ACTION PLAN, CLEANUP AND ABATEMENT ORDER NO. R4-2003-0037 FOR HONEYWELL (FORMER ALLIED-SIGNAL) 11600 SHERMAN WAY, NORTH HOLLYWOOD, CALIFORNIA (FILE NO. 111.0180)

Dear Mr. DeHghi,

California Regional Water Quality Control Board - Los Angeles Region (Regional Board) staff have reviewed the July 30, 2004 Soil and Interim Groundwater Remedial Action Plan (SIGRAP) prepared on behalf of Honeywell International, Inc. (Honeywell) by MWH Americas, Inc. (MWH) for the site referenced above. Additionally, on April 6, 2005 we received the required site-specific health and safety plan applicable to the operations, use and implementation of certain chemical compounds proposed in the SIGRAP.

The SIGRAP and health and safety plan are approved with the following requirements and comments:

- Waste Discharge Requirements(WDR) will be required from the Regional Board prior to the
 injection of material into the local aquifer. Based on information in the SIGRAP, an
 individual WDR may be applicable to your discharge. Please submit a completed Form 200
 (available on the Regional Board website), and the appropriate fee before June 1, 2005.
 Please contact the Groundwater Permits section of the Regional Board for the information
 regarding the fee schedule.
- The groundwater monitoring and reporting requirements of the approved WDR may differ from that proposed in the SIGRAP document.

California Environmental Protection Agency

If you have any questions regarding this matter, please call Mr. Dixon Oriola at (213) 576-6803; or Mr. Alex Lapostol at (213) 576-6807.

Singerely,

onathan S. Bishop **Executive Officer**

cc:

Mr. Leighton Fong, City of Glendale

Mr. Mark Mackowski, Upper Los Angeles River Area Watermaster

Mr. Thomas Erb, Los Angeles Department of Water & Power

Mr. David Stensby, USEPA Superfund Division, Region IX, San Francisco

Mr. Bill Mace, City of Burbank Water Supply Department

California Environmental Protection Agency

Our mission is to preserve and enhance the quality of California's water resources for the benefit of present and future generations.

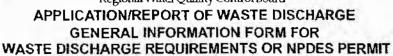
APPENDIX C

WASTE DISCHARGE REQUIREMENTS PERMIT APPLICATION Form 200

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

State of California Regional Water Quality Control Board

APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT



A. Facility:	1.	FACILITY IN	FORMATION	
Name :	Honeywell International	Inc North	Hollywood	
Microso	11600 Sherman Way			
City:	North Hollywood	county: Los Angeles	CA	21p Code: 91605
Contact Per	son: Benny DeHghi	<u>-</u>	7elephona Kunk	310-512-2296
B. Facility O	wner:	· •	"	
Hadili s	Honeywell International I	inc.		Owner Type (Check One) 1 ndividual 2 Corporation
Addresst	2525 West 190th Street	*		3. Ocernmental 4. Pertmership
City:	Torrance	CA CA	790504	S. Other:
Contact Pax	Benny DeHghi		7010phone Bush 310-512-2	
C. Facility 0	perator (The agency or business, not	the person):		+ :
Name:	Same as Facility Owner			Operator type (Check One) 1. Individual 2. Composation
AMress:				3. Governmental 4. Partnership
City:		States	Zip Code:	5. Other:
Contact Pers	OOL:		Tolophone Bush	ME!
D. Owner o	f the Land:			
Name :	See Attachment			Owner Type (Check One) 1. Individual 3. Componetion
Addross				3. Governmentel 4. Partzzrahip
citey:		States	Zip Code:	S. Other:
Contact Pers	COG. 2		Telephone Rizzh	A t:
E. Address	Where Legal Notice May Be Ser	ved:		
Adreses	Same as Facility Owner			
City:		State:	tip Code:	
Contact Par	ion:		Telephone Physic	er:
F. Billing A	Address:			·
Mrees	Same as Facility Owner			
City:		States	Žip Code:	*
Contact Par	son:	,	Telephone Burth	ar:

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

State of California Regional Water Quality Control Board

II. TYPE OF DISCHARGE

Check Type of Discharge(s) Described in	_	
X A. WASTE DISCHARGE TO I	AND B. WASTE	DISCHARGE TO SURFACE WATER
Check all that apply:		
Domestic/Municipal Wastewater Treatment and Disposal Cooling Water Mining Waste Pile Wastewater Reclamation X Other, please describe: In-sit	Animal Waste Solids Land Treatment Unit Dredge Material Disposal Surface Impoundment Industrial Process Wastewater u remediation using cher	Animal or Aquacultural Wastewater Biosolids/Residual Hazardous Waste (see instructions) Landfill (see instructions) Storm Water
III. I	LOCATION OF THE FA	CILITY
1. Assessor's Parcel Number(s) Facility: See bclow Discharge Point: N/A	2. Latitude Facility: -34.2 Discharge Point: N/A	3. Longitude Facility: -118.3852 Discharge Point: N/A
2320-001-028 2320-001-029 2320-001-030 2320-001-031 2320-001-032	IV. REASON FOR FILI	NG
X New Discharge or Facility	Changes in Ownership/O	perator (see instructions)
Change in Design or Operation	Waste Discharge Require	ments Update or NPDES Permit Reissuance
Change in Quantity/Type of Disc	charge Other:	-
V. CALIFORNIA Name of Lead Agency: California F	ENVIRONMENTAL QU	
Has a public agency determined that the pa		
If Yes, state the basis for the exemption and Basis for Exemption/Agency:		
Has a "Notice of Determination" been filed If Yes, enclose a copy of the CEQA document expected type of CEQA document and exp	eat, Environmental Impact Report, or	No Negative Declaration. If no, identify the
Expected CEQA Documents:		
EIR X Negative Declarat	ion Expected CEQA C	ompletion Date: July 30, 2005

State of California Regional Water Quality Control Board

APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT

I. FACILITY INFORMATION (continued)

D. Owner of the Land

		-	_	_	
O	W	N	-	D.	#1

Name: Kaiser Permanente	Assessor's Parcel Number: 2320-001-030	Operator Type: Corporation
Address: 11668 Sherman Way		Corporation
City: North Hollywood	State: California	Zip Code: 91605
Contact Person: Ron Newquist, Facilities Services A	Telephone Number: (818) 764-8893	

OWNER #2

Name:	Assessor's Parcel Number:	Operator Type:
Home Depot	2320-001-028 and 2320-001-029	Corporation
Address:		
11600 Sherman Way		
City:	State:	Zip Code:
North Hollywood	California	91605
Contact Person:	Telephone Number:	
John Cox, Assistant Store Manager	(818) 764-9600	

OWNER #3

Name:	Assessor's Parcel Number:	Operator Type:
Public Storage	2320-001-031 and 2320-001-03	32 Corporation
Address:		
11620 Sherman Way		
City:	State:	Zip Code:
North Hollywood	California	91605
Contact Person:	Telephone Number:	
Mike Risher, District Manager	(818) 464-6000	

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

State of California Regional Water Quality Control Board

APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT

VI. OTHER REQUIRED INFORMATION

Please provide a COMPLETE characterization of your discharge. A complete characterization includes, but is not limited to, design and actual flows, a list of constituents and the discharge concentration of each constituent, a list of other appropriate waste discharge characteristics, a description and schematic drawing of all treatment processes, a description of any Best Management Practices (BMPs) used, and a description of disposal methods.

Also include a site map showing the location of the facility and, if you are submitting this application for an NPDES permit, identify the surface water to which you propose to discharge. Please try to limit your maps to a scale of 1:24,000 (7.5' USGS Quadrangle) or a street map, if more appropriate.

VII. OTHER

application is complete or	representative of the RWQCE of there is additional informati section 13260 of the California	ion you must submit to complete y	r application. The notice will state if your our Application/Report of Waste Discharge,
	VIII.	CERTIFICATION	
direction and supervision in information submitted. Base	accordance with a system de ed on my inquiry of the perso	esigned to assure that qualified p ou or persons who manage the sy	mental information, were prepared under neersonnel properly gathered and evaluated to stem, or those persons directly responsible felief, true, accurate, and complete. I am awa
		false information, including the	
that there are significant Print Name: <u>From J</u>		false information, including t	he possibility of fine and imprisonment
that there are significant Print Name: <u>Ferny</u>		false information, including t	he possibility of fine and imprisonment
that there are significant Print Name: <u>Ferny</u>		false information, including t	he possibility of fine and imprisonmen
that there are significant Print Name: <u>From J</u>	penalties for sabmitting to	false information, including t	he possibility of fine and imprisonmen

APPENDIX D

ENVIRONMENTAL INFORMATION FORM INITIAL STUDY PART 1

ENVIRONMENTAL INFORMATION FORM

Initial Study - Part 1

Date Filed:

GENERAL INFORMATION

 Name and address of developer or project sponsor: Honeywell International Inc. 2525 West 190th Street Torrance, CA 90504

2. Address of project:

11600 Sherman Way North Hollywood, CA 91605

Assessor's Block and Lot Number:

MAP		PARCEL	
BOOK	<u>PAGE</u>	NO.	TAX RATE AREA
2320	001	028	00013
2320	001	029	00013
2320	001	030	00013
2320	001	031	00013
2320	001	032	00013

Name, address, and telephone number of person to be contacted concerning this project:

Benny DeHghi
Phone (310) 512-2296
Honeywell International Inc.
2525 West 190th Street
Torrance, CA 90504

Indicate number of the permit application for the project to which this form pertains: File # (to be determined by LARWQCB).

5. List and describe any other related permits and other public approvals required for this project, including those required by city, regional, state and federal agencies: Los Angeles County for groundwater monitoring well installation/destruction permits.

Existing zoning district:

Commercial/Industrial.

7. Proposed use of site (Project for which this for is filed):

The site is currently used for commercial/retail purposes. No changes to this use are currently being planned.

PROJECT DESCRIPTION

8. Site size:

The former Honeywell North Hollywood site is comprised of approximately 23.5 acres.

9. Square footage:

Not applicable to remediation project.

10. Number of floors of construction:

Not applicable to remediation project.

CEQA Initial Study Part 1.xls

PAGE 1 OF 4

ENVIRONMENTAL INFORMATION FORM

Initial Study - Part 1

11.	Amount of off-street parking provided:	Not applicable to remediation project.
12.	Attach plans:	See Soil and Interim Groundwater Remedial Action Plan for Reduction of Hexavalent Chromium, prepared by MWH and dated July 30, 2004.
13.	Proposed scheduling:	The estimated duration of the program is approximately 5 years.
14.	Associated projects:	Not applicable to remediation project.
15.	Anticipated incremental development:	Unknown at present/Not applicable to remediation project.
16.	If residential, include the number of units, schedule of unit sizes, range of sale prices or rents, and type of household size expected:	Not applicable.
17.	If commercial, indicate the type, whether neighborhood, city or regionally oriented, square footage of sales area, and loading facilities:	Unknown at present/Not applicable to remediation project.
18.	If industrial, indicate type, estimated employment per shift, and loading facilities:	Unknown at present/Not applicable to remediation project.
19.	If institutional, indicate the major function, estimated employment per shift, estimated occupancy, loading facilities, and community benefits to be derived from this project:	Not applicable.
20.	If the project involves a variance, conditional use or rezoning application, state this and indicate clearly why the application is required:	Not applicable.
	e the following items applicable to the project of scuss below all items checked "Yes")	or its effects?
21.	Change in existing features of any bays, tidelands, beaches, lakes or hills, or	[] Yes [x] No
	substantial alteration of ground contours?	

	ENVIRONMENTAL INFOR	RMATION FORM
	Initial Study - P	Part 1
22.	Change in scenic views or vistas from existing residential areas or public land or roads.	[] Yes [x] No
23.	Change in pattern, scale or character of general area of project.	[] Yes [x] No
24.	Significant amounts of solid waste or litter.	[] Yes [x] No
25.	Change in dust, ash, smoke, furnes or odors in vicinity.	[] Yes [x] No
26.	Change in ocean, bay, lake, stream or groundwater quality or quantity, or alteration of existing drainage patterns.	[x] Yes [] No
	source areas. The chemical reduction of Cr ⁶⁺ in soil and solution of calcium polysulfide (National Sanitation Found and potentially, food-grade carbon sources such as com the respective treatment areas. The calcium polysulfide chromium, a required nutrient that is relatively innocuous onto soil particles.	dation [NSF] certified for drinking water treatmen syrup, emulsified vegetable oil, and/or lactate to will react with Cr ⁶⁺ , reducing the Cr ⁶⁺ to trivalent
	It is anticipated that the residual reductant will locally raise and the concentrations of dissolved iron, dissolved mang decrease the dissolved oxygen and redox potential. How reverse over a period of time after amendment delivery har raise the calcium content and may raise sulfate content a hydrogen sulfide. In addition, the reducing conditions in the reduce nitrate concentrations that may be present in group within the treatment application area during and after rem	ganese, and dissolved arsenic, as well as wever, these local conditions are expected to has stopped. The residual reductant will locally and temporarily impart a taste and odor of the vicinity of the amendment delivery system caundwater. Groundwater quality will be monitored
27.	Substantial change in existing noise or vibration levels in the vicinity.	[] Yes [x] No
28.	Site on filled land or on slope of 10 percent or more.	[] Yes [x] No
29.	Use or disposal of potentially hazardous materials, such as toxic substances, flammables or explosives.	[] Yes [x] No
30.	Substantial change in demand for municipal services (police fire water sewage etc.)	[] Yes [x] No

		AL INFORMATION FORM
21	Substantially increase fossil fuel	Study - Part 1
31.	consumption (electricity, oil, natural gas, etc.)	[] Yes [x] No
32.	Relationship to a larger project or series of projects.	[] Yes [x] No
EN\	VIRONMENTAL SETTING	
33.	Describe the project site as it exists before the project, including information on topography, soil stability, plants and animals, and any cultural, historical or scenic aspects. Describe any existing structures on the site, and the use of the structures. Attach photographs of the site. Snapshots or Polaroid photos will be accepted.	No change in project site topography, soil stability, plants and animals, or special cultural, historical, or scenic aspects are anticipated to occur. Existing structures are for commercial/retail businesses.
34.	Describe the surrounding properties, including information on plants and animals, and any cultural, historical or scenic aspects. Indicate the type of land use (residential, commercial, etc.), intensity of land use (one-family, apartment houses, shops, department stores, etc.), and scale of development (height, frontage, set-back, rear yard, etc.). Attach photographs of the vicinity. Snapshots or Polaroid photos will be accepted.	Surrounding properties contain commercial/retail and industrial facilities up to 3 stories high, a railroad right-of-way, and high voltage power transmission lines.
CE	RTIFICATION	
info info Sig	ormation required for this initial evaluation to the bornation presented are true and correct to the beautinature:	and in the attached exhibits present the data and pest of my ability, and that the facts, statements, and st of my knowledge and belief. The state: Honeywell International, Inc.

APPENDIX E

GROUNDWATER MONITORING REPORT FIRST QUARTER 2005 April 15, 2005

GROUNDWATER MONITORING REPORT FIRST QUARTER 2005 HONEYWELL NORTH HOLLYWOOD SITE 11600 SHERMAN WAY, NORTH HOLLYWOOD, CALIFORNIA

Prepared For

HONEYWELL INTERNATIONAL INC. 2525 West 190th Street Torrance, California 90604-6099

Project Number 1890933.0501

April 15, 2005

Prepared by

MWH AMERICAS, INC. 3050 Saturn Street, Suite 205 Brea, California 92821 (714) 646-2020

Michael Flaugher, P.G. Supervising Geologist Richard M. Thomasser, P.G. Principal Hydrogeologist

Groundwater Monitoring Report Honeywell North Hollywood Site

Distribution List

Ms. Rachel Loftin U.S. Environmental Protection Agency Region IX 375 Stoakes Avenue San Leandro, California, 94577

Mr. Dixon Oriola and Alex Lapostol California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

Mr. Benny DeHghi Honeywell International, Inc. 2525 West 190th Street M/S 23-1-80 Torrance, California 90504

Mr. John Lindquist CH2M Hill 2525 Airpark Drive Redding, California 96001

Mr. Ron Newquist Kaiser Permanente 11668 Sherman Way North Hollywood, California 91605

Mr. Joe Cox, Assistant Manager Home Depot 11600 Sherman Way North Hollywood, California 91605

Ms. Nergus Choudry Public Storage 11620 Sherman Way North Hollywood, California 91605

File

TABLE OF CONTENTS

Section No.	<u>Page No.</u>
1.0	INTRODUCTION AND BACKGROUND1-1
	1.1 Site Description1-1
	1.2 Previous Investigations, Remediation, and Regulatory History1-1
2.0	GEOLOGY AND HYDROGEOLOGY2-1
3.0	GROUNDWATER FIELD ACTIVITIES AND RESULTS3-1
	3.1 Groundwater Depth Measurements3-1
	3.2 Groundwater Level Results
	3.2.1 Groundwater Level Transducers
	3.3 Groundwater Well Purging and Sampling3-2
	3.4 Analytical Results
	3.4.1 Field Parameters3-3
	3.4.2 Total and Hexavalent Chromium3-4
	3.4.3 Title 22 Metals
	3.4.4 Volatile Organic Compounds
	3.4.5 Emerging Chemicals
	3.4.6 Data Validation Summary3-6
4.0	CONCLUSIONS4-1
5.0	REFERENCES 5_1

LIST OF FIGURES

Figure No.

- 1 Site Location Map
- 2 Site Plan and Former Facility Layout
- 3 Groundwater Elevation Contour Map, February 2005
- 4 Total and Hexavalent Chromium Concentrations in Groundwater, February 2005
- 5 TCE and PCE Concentrations in Groundwater, February 2005
- 6 Emerging Chemicals in Groundwater, February 2005

LIST OF TABLES

Table No.

- 1 Well Construction Details
- 2 Groundwater Elevations
- 3 Analytical Program Summary
- 4 Field Parameters
- 5 Groundwater Analytical Data Inorganics
- 6 Groundwater Analytical Data Organics
- 7 Groundwater Analytical Data Emerging Chemicals

LIST OF APPENDICES

- A Field Sampling Protocol
- B Hydrographs
- C Historical Data Summaries
- D Groundwater Sampling Logs
- E Purging and Sampling Evaluation
- F Laboratory Analytical Reports
- G Data Validation Report

ACRONYMS AND ABBREVIATIONS

CAO Cleanup and Abatement Order

cis-Dichloroethane cis-DCA **DCA** Dichloroethane **DCE** Dichloroethene DO Dissolved oxygen EC Electrical conductivity Feet above mean sea level ft msl Geological Survey of America **GSA** Honeywell International, Inc. Honeywell

Hydrologue Inc.

IGRAP Interim Groundwater Remedial Action Plan

IRM Interim Remedial Measures

Kaiser Permanente

MCL. Maximum contaminant level
MS/MSD Matrix spike/matrix spike duplicate

mg/kg Milligram per kilogram
μg/L Microgram per liter
MWH MWH Americas, Inc.

NHOU North Hollywood Operable Unit ORP Oxidation-reduction potential

PCE Tetrachloroethene RAP Remedial Action Plan

RWQCB Regional Water Quality Control Board, Los Angeles Region

SIGRAP Soil and Interim Ground Water Remedial Action Plan

SVE Soil vapor extraction TCE Trichloroethene

USEPA U.S. Environmental Protection Agency

VOCs Volatile organic compounds

SECTION 1.0

INTRODUCTION AND BACKGROUND

This report presents details of the quarterly groundwater monitoring activities conducted at the Honeywell North Hollywood site (Site), located at 11600 Sherman Way, North Hollywood, California (Figure 1). This First Quarter 2005 Groundwater Report was prepared by MWH Americas, Inc. (MWH) on behalf of Honeywell International, Inc. (Honeywell). The purpose of groundwater monitoring at the Site is to periodically evaluate the concentrations of chromium, volatile organic compounds (VOCs), and other "emerging chemicals" in groundwater. Field work and related laboratory analyses followed methods and protocols outlined in Appendix A and the June 30, 2003 Revised Remedial Investigation Workplan for Chromium and Emerging Chemicals (Parsons 2003b) and were intended to meet the requirements of the Regional Water Quality Control Board (RWQCB) Cleanup and Abatement Order (CAO) No. R4-2003-037 (RWQCB 2003a).

1.1 SITE DESCRIPTION

The Site is located in the eastern part of the San Fernando Valley and is bordered by Sherman Way to the north, Union Pacific Railroad right-of-way to the south, Lankershim Boulevard to the West, and commercial buildings to the East (Figures 1 and 2). From 1941 through 1992, Bendix Corporation and later AlliedSignal/Bendix Electrodynamics (Bendix was purchased by AlliedSignal, Inc., now known as Honeywell International, Inc.) used the Site for manufacturing hydraulic and pneumatic valves. The former manufacturing facility consisted of two complexes, Plant 1 (which occupied the central portion of the Site) and Plant 2 (which occupied the eastern portion of the Site). During the 1990s, all of the buildings and parking areas were removed from the Site. The Site was then subdivided and re-developed as three separate parcels; the western most parcel (known as the 'Kaiser Property') is occupied by Kaiser Permanente, the middle parcel (known as the 'Western Parcel') is occupied by Public Storage, Inc., and the eastern most parcel (known as the 'Eastern Parcel) is occupied by Home Depot, Inc. Figure 2 shows the current layout, as well as the approximate location of former Plants 1 and 2.

1.2 PREVIOUS INVESTIGATIONS, REMEDIATION, AND REGULATORY HISTORY

Since the late 1980s, phased investigation and soil remediation efforts at the Site have been conducted in coordination with the RWQCB, the lead regulatory agency. The early investigations focused on evaluating the nature and extent of VOCs and metals in the subsurface at the Site.

For many years, VOC-impacted groundwater in the San Fernando Valley Basin has been monitored as part of investigation activities associated with the San Fernando Valley Superfund site. The Honeywell Site is located within the North Hollywood Operable Unit (NHOU). At the request of the RWOCB in a letter dated September 21, 2004, VOCs were

required to be analyzed in all wells in future quarterly groundwater monitoring events (RWQCB 2004).

A Site-wide chromium investigation was conducted in June and July 1993. Approximately 120 cubic yards of chromium-impacted soil was excavated and removed from the former Plant 2 area in October 1994 (Hydrologue Inc. [Hydrologue] 1995). Additional chromium-impacted soil was removed using a bucket auger in 1997 at 'hot spot' areas beneath former Plant 1 area (Earth Tech 1997) to fulfill a RWQCB soil closure requirement. RWQCB granted soil closure for the Eastern and Western Parcels in August 1997 (RWQCB 1997a and 1997b). An additional 230 tons of chromium-impacted soil was removed from the former Plant 1 area from December 1999 to March 2000 during the construction of the present-day Public Storage facility.

Groundwater assessment commenced with the installation of six groundwater monitoring wells (GW-1 through -6) in the Eastern and Western Parcels in 1991. Four additional wells (GW-7 through -10) were installed in the adjacent Kaiser Property in 1993. In July 1997 and February 1998, groundwater samples were analyzed for both total and hexavalent chromium in wells GW-3 and GW-4. Follow-on monitoring for total and hexavalent chromium continued on all wells in July 1998, July 1999, and February 2001.

In 2001, the RWQCB requested the preparation and submittal of a technical report containing, among other things, a summary of all available chromium analytical data at the Site (RWQCB 2001a). In response, Honeywell submitted a Technical Report and Remedial Investigation (RI) Workplan for Chromium to the RWQCB on December 7, 2001 (Parsons 2001). The document provided the requested summary and set forth a proposed program of chromium assessment for soil and groundwater. Additionally in late 2001, a soil vapor extraction (SVE) system was installed in the south parking lot of the Kaiser property to address vadose zone VOCs.

In late February 2003, the RWQCB issued CAO No. R4-2003-0037 (RWQCB 2003a), which required the assessment of emerging chemicals and heavy metals (including total and hexavalent chromium) in the unsaturated and saturated zones beneath the Site. Because the previously submitted RI Workplan addressed many of the assessment requirements contained in the CAO, an Assessment Workplan Addendum that addressed the Board's new requirements was prepared and submitted on March 31, 2003 (Parsons 2003a). The RWQCB provided comments on the December 7, 2001 RI Workplan and the March 31, 2003 Assessment Addendum Workplan in a letter dated May 27, 2003 (RWQCB 2003b). In its letter, the RWQCB required an expanded assessment of soil and groundwater and the preparation and submittal of a revised RI Workplan and an interim groundwater Remedial Action Plan (RAP).

In response to the request for an expanded assessment for soil, Honeywell submitted the Revised Remedial Investigation Workplan for Chromium and Emerging Chemicals, dated June 30, 2003 (Parsons 2003b). On October 23, 2003, the RWQCB approved the Revised Workplan with some modifications (RWQCB 2003b). This Revised Workplan included drilling of 12 soil borings and the installation of a well pair (GW-14A and GW-14B). The

work was executed in 2003 and the results were provided in the report Remedial Investigation Report for Chromium and Emerging Chemicals, dated February 27, 2004 (Parsons 2004a).

To address the RWQCB requirement for groundwater interim actions, Honeywell submitted the Interim Groundwater Remedial Action Plan for Chromium (IGWRAP), dated June 30, 2003 (Parsons 2003c). This IGWRAP called for groundwater treatment by *in-situ* methods at the source area and temporary hydraulic containment along the Site boundary. Honeywell also submitted an Interim Remedial Measures (IRM) Workplan for Soil on April 15, 2004 (Parsons 2004c). A Soil and Interim Ground Water Remedial Action Plan (SIGRAP) was submitted on July 30, 2004 (MWH 2004a). This combined SIGRAP supercedes the previously submitted IGWRAP and IRM Workplan for Soil.

In November 2004, Honeywell commenced installation of 4 offsite monitoring wells to the south and southeast of the site. The Revised Workplan for offsite well installations (Parsons 2004d), as amended by the Revised Amendment to Off-Site Groundwater Monitoring Well Installation Workplan and Response to Amended RWQCB CAO No. R4-2003-0037 (MWH 2005) was approved by both the RWQCB and the EPA. All four of the wells will be completed as multi-screened wells with Barcad samplers to allow for discrete vertical groundwater sampling. As of the date of this report, two wells GW-12 and GW-17 have been completed and wells GW-16 and GW-11 are being developed and having the Barcad samplers installed. Figure 2 shows the locations of the four new offsite wells. Data from well drilling, development, and initial well sampling will be reported in a well completion report no later than June 30, 2005. These wells will be added to the routine groundwater monitoring program during Second Quarter 2005.

SECTION 2.0

GEOLOGY AND HYDROGEOLOGY

The Site is located in the San Fernando Valley, a physiographic basin that is bounded by the San Gabriel Mountains to the north and the Santa Monica Mountains to the south. From a geologic perspective, the valley is underlain by a Holocene-age sedimentary basin that covers nearly 20 square miles. Much of the basin consists of recent alluvium with local thickness that approaches approximately 1,000 feet. The Site is located in the eastern part of the basin, where coarse sandy and gravelly alluvium was deposited by braided streams that originated in the nearby San Gabriel Mountains (Geological Survey of America [GSA] 1986). Previous drilling and logging indicates alluvium beneath the Site varies in composition and texture, as expected in this type of depositional environment. In general, the alluvium is dominated by interbedded sand, gravelly sand, sandy gravel, and gravel.

The Site is hydrogeologically situated in the San Fernando Groundwater Basin, part of the water management area known as the Upper Los Angeles River Area. Water rights in the basin were adjudicated by court decree in 1968 and subsequent extraction by water rights holders have been administered by a basin watermaster. Throughout the basin, significant amounts of groundwater are extracted for the purposes of dewatering, groundwater supply wells, and groundwater remediation. Water supply wells, such as the wells that comprise the various City of Los Angeles well fields, form an important source of drinking water in the area. A basin-wide groundwater remediation program relies on extraction and aboveground treatment to address widespread groundwater contamination due to VOC, nitrate, and chromium.

The general direction of groundwater flow in the basin is east-southeast. Groundwater extraction associated with the municipal well field(s) locally influence, and in some instances, reverse the otherwise natural direction of groundwater flow. The North Hollywood Well Field, a northwest-southeast array of 29 water supply wells located approximately west and south of the Site, has a combined extraction capacity of approximately 20,000 acre-feet per year. The Rinaldi-Toluca Well Field, located approximately northwest of the Site, has an extraction capacity of approximately 30,000 acre-feet per year. Appendix B provides hydrographs for Site monitoring wells. Figure B-1 illustrates the combined hydrographs for monitoring wells GW-1 through GW-10, GW-14A, and GW-14B from July 1991 through February 2005. Table 1 presents well construction details for all on-site wells. During the period 1991 through 2005, the water table elevation lowered by as much as 60 feet. These fluctuations in the water table beneath the Site are attributed to extraction from the well fields.

SECTION 3.0

GROUNDWATER FIELD ACTIVITIES AND RESULTS

Field activities for the First Quarter 2005 monitoring event were performed between February 22 and 25, 2005. These activities included groundwater depth measurements, purging, and sampling of the 13 onsite wells that comprise the current monitoring network at the Site (Figure 2). As discussed in Section 1.2, four new offsite wells are under construction. These wells were not fully completed for incorporation into the First Quarter 2005 monitoring event. However, these wells will be added to routine sampling during Second Quarter 2005. A report detailing well construction, development, and initial sampling results of the 4 new offsite wells will be submitted on or before June 30, 2005.

All field activities were conducted in accordance with field sampling protocols outlined in Appendix A, the Site-Specific Health and Safety Plan for Remediation and Groundwater Monitoring Activities (MWH 2004b), and under the direct supervision of a California-professional geologist.

3.1 GROUNDWATER DEPTH MEASUREMENTS

Depth to groundwater was measured and recorded on February 22, 2005. The data collected is consistent with measurements collected from previous monitoring events. Table 2 presents depth to water and groundwater elevation data. A summary of water level data since First Quarter 2003 is presented on Table C-1 in Appendix C.

3.2 GROUNDWATER LEVEL RESULTS

During the First Quarter 2005 monitoring event, groundwater elevations ranged from 467.07 feet above mean sea level (ft msl) in well GW-6 to 468.72 ft msl in well GW-9. Groundwater elevations were consistently higher than the previous elevations measured in November 2004 by an average of 5.7 feet. Present elevations are within the historical range at the Site (Figure B-1 in Appendix B). Groundwater at the Site exhibited an average horizontal hydraulic gradient of 0.001 feet per foot with a flow direction to the northeast (Figure 3).

Figure 3 is a groundwater elevation contour map based upon the February 2005 measurements. The interpreted groundwater flow direction has remained the same since the Fourth Quarter 2004 sampling event. By contrast, the inferred flow direction during the Third Quarter 2004 was to the southwest. Flow directions have fluctuated in the past as indicated in previous quarterly monitoring events. These changes could be due to fluctuations in pumping well activity in the vicinity of the Site and/or seasonal recharge.

A comparison of water levels in adjacent shallow deep well pair GW-14A and GW-14B in February 2005 shows a 0.25 foot difference in water levels, which equals a 0.013 feet per foot upward gradient calculated by vertical distances between the centers of the screened

363

intervals. Previously measured water level elevations have shown both upward and downward gradients between these two wells. This variation in water levels could be due to seasonal recharge and production well activities in the vicinity of the Site.

3.2.1 Groundwater Level Transducers

As discussed in the Fourth Quarter 2004 Groundwater Monitoring Report, Honeywell installed water level transducers in each of the 13 onsite wells during First Quarter 2005. The transducers will record water levels (initial on an hourly bases) to evaluate water level trends. These data will be used for interpretation of the effects of nearby pumping wells on groundwater gradient.

This initial data set is being calibrated with survey data for the wells and validated by manual groundwater level measurements to ensure accuracy of the transducers. The results of water level recordings will be presented and discussed in the Second Quarter 2005 Monitoring Report to be submitted by July 15, 2005.

3.3 GROUNDWATER WELL PURGING AND SAMPLING

Purging and sampling activities were conducted from February 22 through 25, 2005. All 13 onsite wells were purged and sampled according to the field sampling protocols outlined in Appendix A. The data presented in tables of this report reflect a low flow purge approach, targeted at the upper portion of the saturated portion of each well screen (where the highest concentrations of constituents of concern would be expected). This purging approach has been utilized since the Third Quarter 2004. Other well purging approaches have been utilized during prior events. Appendix D presents the Groundwater Sampling Logs for First Quarter 2005. Following purging activities, groundwater samples were collected and analyzed in accordance with Table 3. In all, 13 groundwater samples, two duplicate groundwater samples, three trip blanks, and three equipment rinsate blanks were collected and analyzed during the First Quarter 2005 sampling event. Samples were submitted daily to Del Mar Analytical in Irvine, California, a State-certified environmental laboratory.

Due to the logistics of the two wells located in the Home Depot and the large volume of generated waste water as a result of purging activities, optimization of the well purging and sampling approach was evaluated during Fourth Quarter 2004. Based on the results, the methodology that was employed during Fourth Quarter 2004 as the standard method (Protocol B, see below, a low flow purge from a depth of 3 to 5 feet below the water table) was considered the most appropriate approach for future sampling. The only exception noted was at well GW-14A, where Protocols A and D resulted in notable higher concentrations (one order of magnitude) for chromium (VOCs showed no difference). Protocols A and D both employed the use of a bailer to collect water from the very top of the water column; however, Protocol A was to sample without any purging and Protocol D was to sample after three casing volumes. The observed higher concentrations may have represented the actual water table concentrations. Note that well GW-14A is the closest well to the source area, so higher water table concentrations likely occur in the area of GW-14A.

\$46 C - 1

Based on the differences in chromium concentrations in GW-14A, further evaluation at GW-14A and GW-14B was conducted during First Quarter 2005. The purging and sampling protocols evaluated for wells GW-14A and -14B during this sampling event include:

Protocol A No purge sample using a bailer from the top of the water column.

Protocol B Purge 3 to 5 feet below top of water and sample through tube after stable (Standard) parameters using modified low flow. (This is the standard protocol currently employed at the Site and used since Third Quarter 2004 sampling.)

Protocol C Purge 5 feet above bottom of casing and sample through tube after stable parameters using modified low flow.

Protocol D Purge starting in the middle of screen, move pump up every so often until 3 to 5 feet below top of water. Sample after parameters and three casing volumes using modified low flow. Sample using a disposal bailer.

Tabulated data for each of the protocols above and analytical laboratory reports for alternate Protocols A, C, and D are included in Appendix E.

This quarters evaluation on GW-14A protocols resulted in similar concentrations for chromium for all protocols used. The elevated chromium concentrations from Fourth Quarter 2004 were likely a result of not purging the zone where the disposable bailer was submerged for sample collection using Protocols A and D. The final analysis of these protocols is that low flow purging from a depth of 3 to 5 feet below the water table is considered the most appropriate approach for future sampling.

3.4 ANALYTICAL RESULTS

The following section describes the results of laboratory analysis for RWQCB-specified analytes for the First Quarter 2005. Laboratory analytical reports are presented in Appendix F. Tables 4 through 7 summarize the analytical results and field parameters for groundwater samples collected during the First Quarter 2005 monitoring event. Tables C-2 through C-4 in Appendix C present historical analytical data summaries. Data validation is discussed in Section 3.4.6 below.

3.4.1 Field Parameters

Groundwater samples from all wells were measured in the field for pH, oxidation-reduction potential (ORP), electrical conductivity (EC), temperature, dissolved oxygen (DO), and turbidity using field instruments. Table 4 presents the results of the field parameters and are summarized below:

- pH ranged from 7.25 to 7.52.
- ORP ranged from 109.1 to 138 millivolts.
- EC ranged from 1,666,000 to 2,029,000 microseimens per centimeter.

- Temperature ranged from 19.27 to 23.66 degrees Centigrade.
- DO ranged from 1.49 to 11.20 milligrams per liter.
- Turbidity ranged from 0 to 27 nephelometric turbidity units.

The field parameters indicate that groundwater quality across the Site is consistent between Site wells.

3.4.2 Total and Hexavalent Chromium

Total chromium was detected in six of the 13 monitoring wells (Table 5). Detected concentrations of total chromium ranged from 0.05 (GW-14B) to 7.0 milligrams per liter (mg/L) (GW-15). Hexavalent chromium was detected in 8 of the 13 monitoring wells at concentrations ranging from 0.002 (GW-1) to 6.4 mg/L (GW-15). Total and hexavalent chromium concentrations decreased or remained about the same in all wells as compared to Fourth Quarter 2004 (see Tables C-2 and C-3 in Appendix C).

The distribution of chromium in groundwater is shown on Figure 4. concentrations in upgradient wells GW-2, GW-5, GW-6, GW-8, and GW-9 remain at or below laboratory method detection levels. Concentrations in wells GW-3, -7, -10, -14A, and -15 continue to exhibit the highest concentrations of chromium. These wells are all located in the south-central portion of the Site, downgradient of the Plant 1 source area (Figure 4). Chromium concentrations in wells GW-3, -7, -10, -14A, and -15 have fluctuated with time since quarterly monitoring began. Concentration changes in these wells may be linked to variations in the well purging approach used prior to sampling, as well as the groundwater level and gradient at the Site and pumping in nearby extraction well fields. During Third Quarter 2004 it was noted that over the previous seven quarters (nearly 2 full hydrologic cycles) of monitoring and sampling (March 2003 through September 2004), there was an apparent trend in chromium concentrations related to groundwater level fluctuations in certain wells. Concentration versus time and groundwater elevation graphs were prepared for wells with the highest hexavalent chromium concentrations (GW-3, GW-7, and GW-10) (Appendix B). Based on these graphs there was a general trend for decreases in hexavalent chromium concentration when the water level rises, and increases in concentration when the water level is lower. These trends were most apparent in the 2003 and 2004 data for wells GW-7 and GW-10. Other wells do not exhibit any notable trend. However, during Fourth Ouarter 2004, this trend was not apparent, as groundwater levels declined slightly and chromium concentrations also declined in all site wells. Trends in concentration will continue to be evaluated for future groundwater sampling event results.

Total and hexavalent chromium concentrations were detected in well GW-14B at concentrations of 0.05 and 0.045 mg/L, respectively. Trends in water levels and concentrations will continue to be evaluated for future groundwater sampling events.

3.4.3 Title 22 Metals

Table 5 also presents the Fourth Quarter 2004 analytical results for the other Title 22 metals. Concentrations of antimony, beryllium, cadmium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc were non-detect in samples collected during the Fourth Quarter 2004 monitoring event. Arsenic was detected in five wells at concentrations ranging from 0.0066 to 0.0082 mg/L, below the MCL of 0.05 mg/L. Barium was detected in all samples at concentrations ranging from 0.26 mg/L to 0.51 mg/L; however, barium concentrations were below the corresponding maximum contaminant level (MCL) of 1,000 μg/L. Zinc was detected in 12 of 13 samples at concentrations of 0.023 mg/L (estimated) in GW-7 to 0.170 mg/L in GW-5.

3.4.4 Volatile Organic Compounds

VOCs were sampled, in accordance with the September 21, 2004 request from the RWQCB (RWQCB 2004). Table 6 presents the First Quarter 2005 analytical results for volatile organic compounds. Ten constituents were detected in groundwater samples collected during First Quarter 20054 and are summarized below:

- 1,1,1-Trichloroethane was detected in well GW-15 at a concentration of 4 μg/L, below the MCL of 200 μg/L.
- 1,1-Dichloroethane (1,1-DCA) was detected in all wells at concentrations ranging from 1.8 to 8 μg/L. Samples from wells GW-5, GW-7, and GW-15 exceeded the MCL of 5 μg/L.
- 1,1-dichloroethene (1,1-DCE) was detected in groundwater samples from GW-7 and -15 at concentrations of 2 and 8 μg/L, respectively. The MCL for 1,1-dichloroethene is 6 μg/L.
- 1,2-DCA was detected in all but one sample collected. Concentrations ranged from 0.64 to 1.9 μg/L, above the MCL of 0.5 μg/L.
- Carbon tetrachloride was detected in well GW-15 at a concentration of 1 μ g/L, above the MCL of 0.5 μ g/L.
- Chloroform was detected in GW-15 and the duplicate sample for GW-7 at a concentration of 2 and 1 μg/L, respectively.
- cis-1,2-Dichloroethene (cis-1,2-DCE) was detected in all groundwater samples at concentrations ranging from 14 to 37 μ g/L, all above the MCL of 6 μ g/L.
- Dichlorodifluoromethane was detected in all samples at concentrations ranging from 4.6 to 18 μg/L. All sample results were below the secondary MCL of 1,000 μg/L.

- Tetrachloroethene (PCE) was detected in all samples at concentrations ranging from 8.7 to 18 μg/L, all above the MCL of 5 μg/L.
- Trichloroethene (TCE) was detected in all wells at concentrations ranging from 8.6 to 160 μg/L. All sample results were above the MCL of 5 μg/L.

Figure 5 illustrates the concentrations of TCE and PCE in groundwater.

3.4.5 Emerging Chemicals

Six wells (GW-2, -3, -6, -7, -10, and -15) were analyzed for 1,4-dioxane and perchlorate with the consent of the RWQCB (Parsons 2004b). Except for GW-10, all wells analyzed contained detectable, low-level concentrations of 1,4-dioxane ranging from 4.1 μ g/L (GW-2) to 16 μ g/L (GW-15) (Table 7). Perchlorate was detected in one well, GW-15, at a concentration of 9 μ g/L. Figure 6 illustrates the concentrations of emerging chemicals in groundwater.

3.4.6 Data Validation Summary

Results were reviewed in accordance with the appropriate methods listed above. In addition, the U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program National Functional Guidelines for Organic (USEPA 1999) and Inorganic (USEPA 2002) Data Review were used to provide overall guidance for the validation process. The data review included an evaluation of the following quality control parameters based on standard performance criteria presented in these documents.

- Analytical Holding Times/Sample Preservation
- · Method Blanks and Field Blanks
- Surrogate Percent Recovery
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Sample Performance
- Field Duplicate Comparison
- Detection Limits

All data submitted for this project are of known and acceptable quality as qualified, based on laboratory-established control limits and the data quality objectives. These data are considered acceptable for their intended purposes. The Data Validation Report is included in Appendix G.

SECTION 4.0

CONCLUSIONS

Conclusions that can be made based on the results of the Fourth Quarter 2004 monitoring event are summarized below:

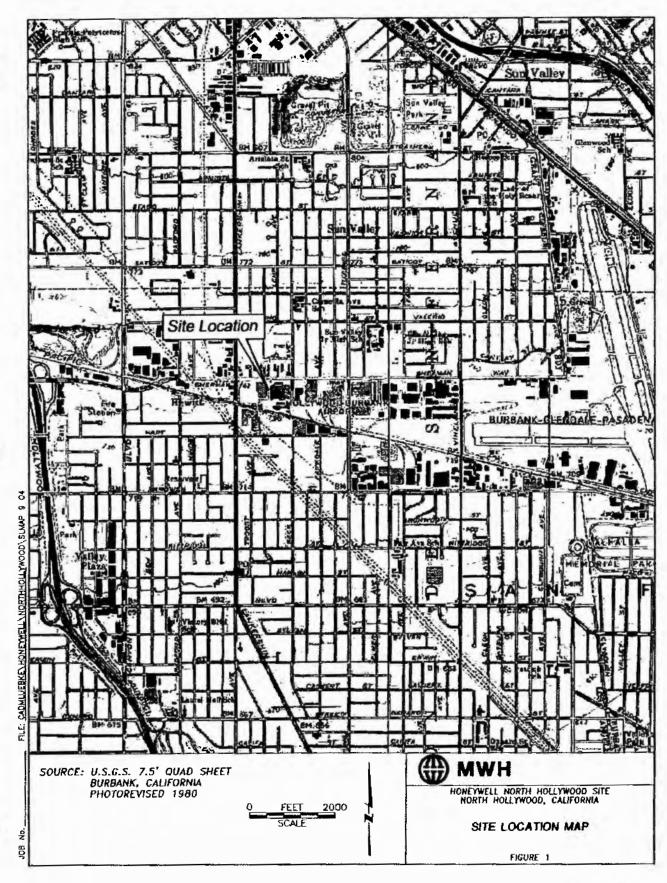
- Groundwater elevations in the unconfined aquifer on February 22, 2005 ranged from 467.07 to 468.72 ft msl. These elevations represent an approximate 5.7 feet increase in the water table when compared to Fourth Quarter 2004 (refer to Tables 2 and Table C-1 in Appendix C for details).
- Groundwater flow direction has not changed since the Third Quarter 2004. The First
 Quarter data indicates an average horizontal gradient of approximately 0.001 feet/foot
 and flow to the northeast. By contrast, the inferred flow direction during the Third
 Quarter 2004 was to the southwest. Flow directions have fluctuated in the past as
 indicated in previous quarterly monitoring events. A comparison of water levels in
 adjacent shallow/deep well pair GW-14A and GW-14B show a 0.013 feet per foot
 upward gradient.
- Detectable total chromium was present in six of the 13 wells at concentrations ranging from 0.05 mg/L (GW-14B) to 7 mg/L (GW-15).
- Hexavalent chromium was detected in 8 of the 13 wells at concentrations ranging from 0.002 mg/L (well GW-1) to 6.4 mg/L (GW-15).
- In general, total and hexavalent chromium concentrations decreased or remained about the same in all wells.
- Concentrations in wells GW-3 -7, -10, -14A, and -15 continue to exhibit the highest
 concentrations of chromium in all wells that are part of the sampling program, but
 remain within historical concentration ranges.
- VOCs were sampled for per RWQCB request. Ten VOCs were detected during the
 First Quarter 2005 sampling event. Of the ten, seven (1,1-DCA, 1,1-DCE, 1,2-DCA,
 carbon tetrachloride, cis-1,2-DCE, PCE, and TCE) were detected above MCLs.
- 1,4-Dioxane was detected in five of the six wells analyzed, at concentrations ranging from 4.1 μg/L (GW-2) to 16 μg/L (GW-15). In general, the levels of this emerging chemical are within the historical range at the Site.
- Perchlorate was detected only in well GW-15, at a concentration of 9 μg/L.

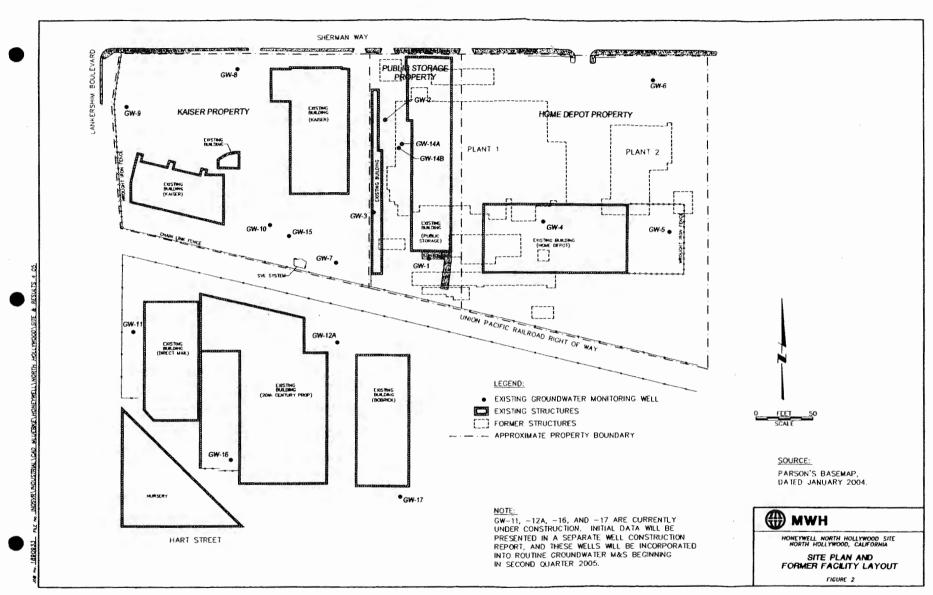
Honeywell has installed water level transducers in the 13 on-site wells during First Quarter 2005. Data recorded by the transducers will be discussed beginning in Second Quarter 2005. The next groundwater monitoring event is scheduled for the Second Quarter 2005 and a report documenting the results of that work will be submitted to the RWQCB by July 15, 2005.

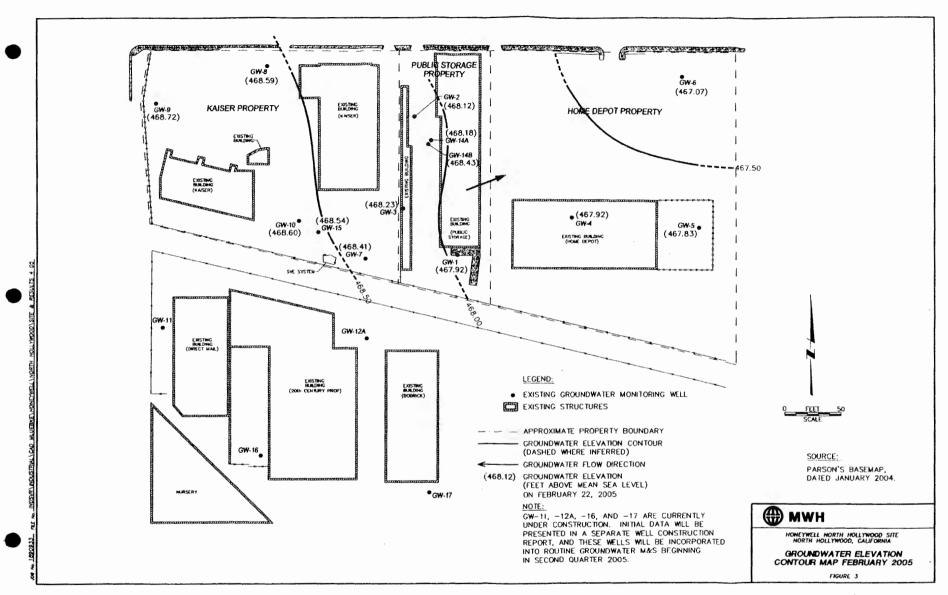
SECTION 5.0

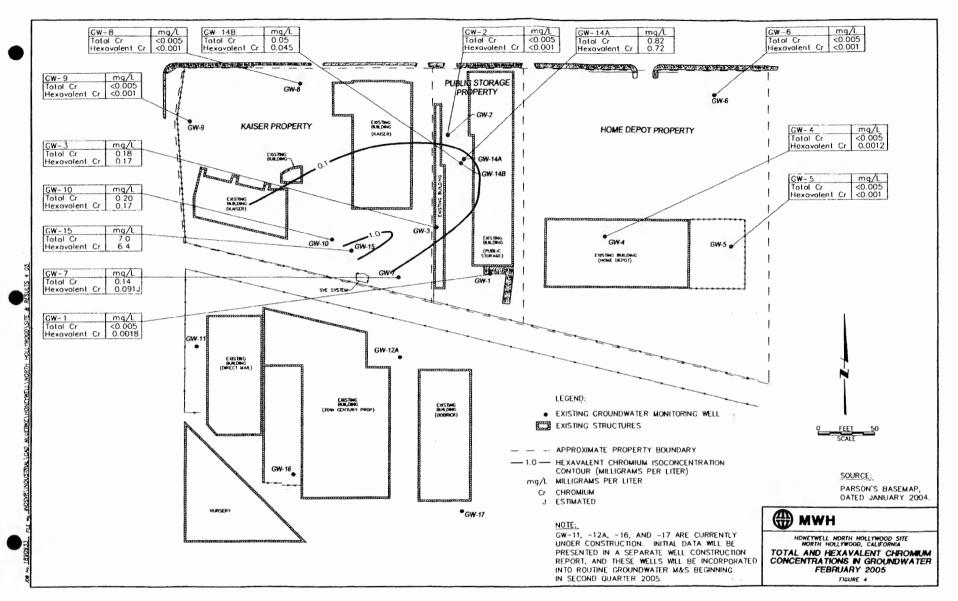
REFERENCES

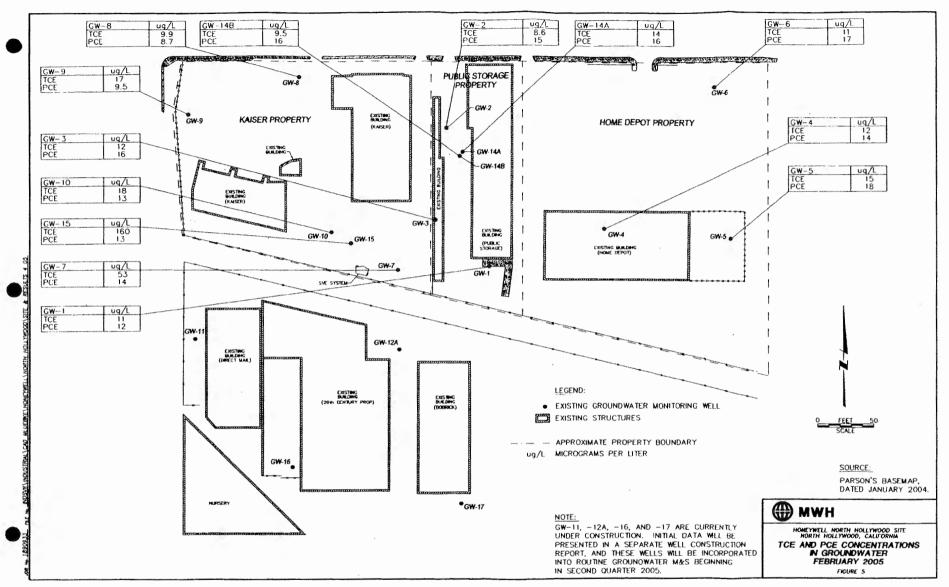
- Earth Tech, 1997. Follow-up Investigative Report, October.
- GSA, 1986. Hydrogeology of Southern California.
- Hydrologue, 1995. Closure Report Excavation and Treatment of Shallow Soil Impacted by Total Petroleum Hydrocarbons, January 28.
- MWH, 2004a. Soil and Interim Groundwater Remedial Action Plan for Reduction of Hexavalent Chromium, Honeywell North Hollywood Site, 11600 Sherman Way, North Hollywood, California, July 30.
- MWH, 2004b. Health and Safety Plan for Remediation and Groundwater Monitoring Activities, Honeywell North Hollywood Site, 11600 Sherman Way, North Hollywood, California, August.
- MWH, 2005. Revised Amendment to Off-Site Groundwater Monitoring Well Installation Workplan and Response to Amended RWQCB CAO No. R4-2003-0037, Honeywell North Hollywood Site, 11600 Sherman Way, North Hollywood, California, January 31.
- Parsons, 2001. Technical Report and Remedial Investigation Workplan for Chromium, Honeywell, 11600 Sherman Way, North Hollywood, California, December 7, 2001.
- Parsons, 2003a. Assessment Workplan Addendum Emerging Chemicals and Chromium in the Unsaturated and Saturated Zones, Honeywell International, Inc., 11600 Sherman Way, North Hollywood, California, March 31.
- Parsons, 2003b. Revised Remedial Investigation Workplan for Chromium and Emerging Chemicals, Honeywell, 11600 Sherman Way, North Hollywood, California, June 30.
- Parsons, 2003c. Interim Groundwater Remedial Action Plan For Chromium, 11600 Sherman Way, North Hollywood, California, June 30.
- Parsons, 2004a. Remedial Investigation Report, Honeywell North Hollywood, February 28.
- Parsons, 2004b. Analytical Program for Groundwater Monitoring, Former Honeywell International, Inc. Facility, 11600 Sherman Way, North Hollywood, California, March 10.
- Parsons, 2004c. Interim Remedial Measures, Former Honeywell International, Inc. Facility, April 15.

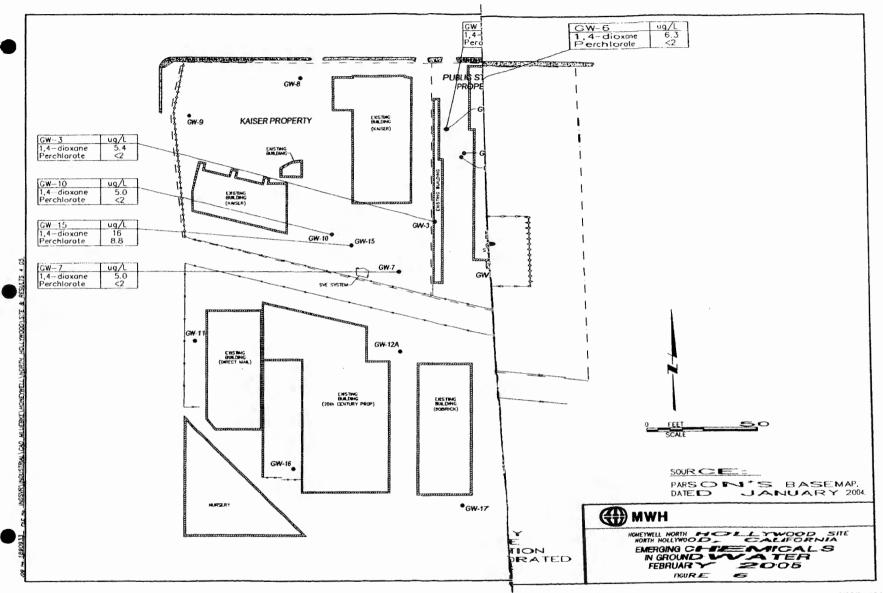


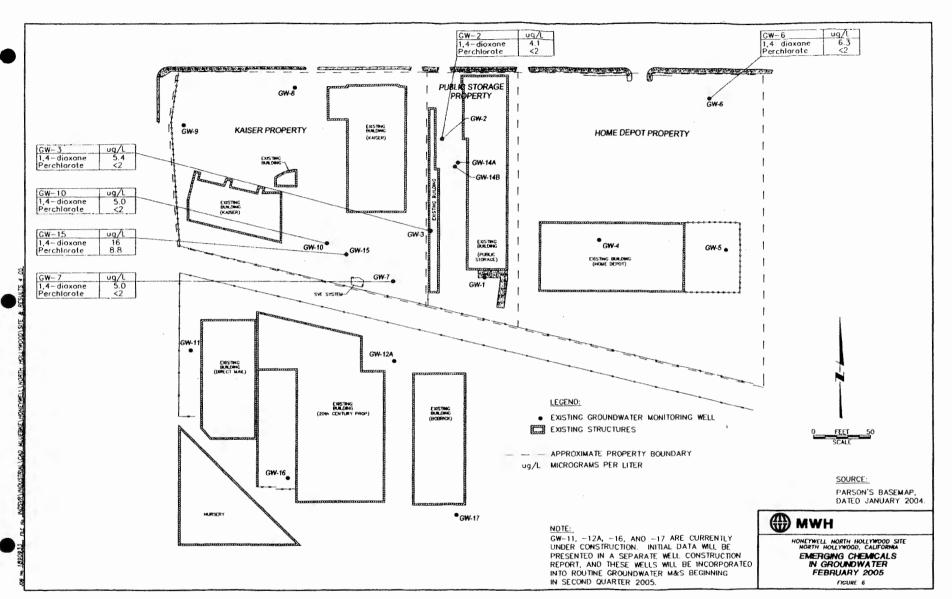

- Parsons, 2004d. Revised Workplan Amending Revised Remedial Investigation Workplan Dated June 2003, Honeywell North Hollywood, 11600 Sherman Way, North Hollywood, California, July 21.
- RWQCB, 1997a. Closure for Allied Signal Western Parcel Allied Signal Inc., 11600 Sherman Way, North Hollywood, California (File No. 111.0180), August 12.
- RWQCB, 1997b. Closure for the Eastern Portion of Allied Signal Property, 11600 Sherman Way, North Hollywood, (File No. 111.0180), August 26.
- RWQCB, 2001. Requirement for a Technical Report Pursuant to California Water Code Section 13267 - Home Depot (Former Allied-Signal/Bendix), 11600 Sherman Way, North Hollywood, CA 91605 (File No. 111.0180), March 9.
- RWQCB, 2003a. Cleanup and Abatement Order No. R4-2003-0037 for Honeywell International Inc. (Formerly Allied Signal Inc.), 11600 Sherman Way, North Hollywood, California (File No. 111.0180), February 21.
- RWQCB, 2003b. Comments on the Technical Report and Remedial Investigation Workplan for Chromium, in Addition to the Assessment Workplan Addendum for Emerging Chemicals in the Unsaturated and Saturated Zones, Honeywell International Inc. (Formerly Allied Signal Inc.), 11600 Sherman Way, North Hollywood, California (File No. 111.0180), Letter dated May 27.
- RWQCB, 2004. Clean and Abatement Order No. R4-2003-0037 for Honeywell (Former Allied-Signal) 11600 Sherman Way, North Hollywood, California (File No. 111.0180), Letter dated September 21.
- USEPA, 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA540/R-99/008. Office of Emergency and Remedial Response U.S. Environmental Protection Agency. Washington, D.C.
- USEPA, 2002. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA540/R-01/008. Office of Emergency and Remedial Response U.S. Environmental Protection Agency. Washington, D.C.


USOCO1S01Projects\Honeywell\North Hollywood\Documents\Quarterly Monitoring\2005Q5\2005Q5 Report




FIGURES





3/28/06 104(e) 0547

TABLES

TABLE 1

WELL CONSTRUCTION DETAILS Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

Well ID	Well Installation Date	Screen Length (feet)	Screen Interval (ft bgs)	Total Depth (ft bgs)	Well Diameter (inches)	Screen Slot Size (inches)	Screen Type
GW-1	07/12/91	60	245-305	305	4	0.030	Sch 80 PVC
GW-2	07/01/91	60	241-301	301	4	0.030	Sch 80 PVC
GW-3	07/09/91	60	245-305	305	4	0.030	Sch 80 PVC
GW-4	07/03/91	60	245-305	305	4	0.030	Sch 80 PVC
GW-5	06/27/91	60	248-308	308	4	0.030	Sch 80 PVC
GW-6	07/16/91	60	245-305	305	4	0.030	Sch 80 PVC
GW-7	07/01/93	80	230-310	310	4	0.030	Stainless Steel
GW-8	07/19/93	80	225-305	305	4	0.030	Stainless Steel
GW-9	07/23/93	80	223-303	303	4	0.030	Stainless Steel
GW-10	07/12/93	80	230-310	310	4	0.030	Stainless Steel
GW-14A	12/04/03	30	255-285	285	4	0.020	Sch 80 PVC
GW-14B	12/12/03	27	285-312	312	6	0.020	Sch 80 PVC
GW-15	04/15/04	85	245-330	335	6	0.020	Stainless Steel

Notes:

ft bgs - Feet below ground surface

NA - Not available

PVC - Polyvinylchloride

Sch - Schedule

TABLE 2

GROUNDWATER ELEVATIONS - FIRST QUARTER 2005

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Well ID	Date Measured	Top of Casing Elevation (ft msl) ¹	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
GW-1	02/22/05	741.90	273.98	467.92
GW-2	02/22/05	741.11	272.99	468.12
GW-3	02/22/05	738.99	270.76	468.23
GW-4	02/22/05	742.83 ²	274.91	467.92
GW-5	02/22/05	742.17 ²	274.34	467.83
GW-6	02/22/05	744.98 ²	277.91	467.07
GW-7	02/22/05	736.95	268.54	468.41
GW-8	02/22/05	744.28	275.69	468.59
GW-9	02/22/05	743.05	274.33	468.72
GW-10	02/22/05	739.91	271.31	468.60
GW-14A	02/22/05	741.59	273.41	468.18
GW-14B	02/22/05	741.13	272.70	468.43
GW-15	02/22/05	738.87 ²	270.33	468.54

Notes:

ft msl - Feet above mean sea level

ft btoc - Feet below top of casing

NA - Not available

NS - Not surveyed

-- - No information

3/28/06 104(e) 0552

¹ Based on June 2003 survey, Calvada Surveying

² Based on December 2004 survey, Calvada Surveying

TABLE 3

ANALYTICAL PROGRAM SUMMARY FIRST QUARTER 2005

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

Well ID	Volatile Organic Compounds (EPA 8260B)	Title 22 Metals ^{1, 2} (EPA 6010B)	Mercury¹ (EPA 7470A)	Chromium ^{v7} (EPA 7199)	1,4-Dioxane (EPA 8270SIM)	Perchlorate (EPA 314)
GW-1	х	х	х	х		
GW-2	х	х	х	х	х	х
GW-3	х	х	х	х	х	х
GW-4	х	х	х	х		
GW-5	х	х	х	Х		
GW-6	Х	х	х	х	· x	х
GW-7	х	х	х	х	х	х
GW-8	х	х	х	х		
GW-9	х	х	х	х		
GW-10	х	х	х	х	х	х
GW-14A	х	х	х	X		
GW-14B	х	х	х	х		
GW-15	х	х	х	х	х	х

Notes:

Collect groundwater duplicates (10% of total) and equipment blanks (1/day)

EPA - U.S. Environmental Protection Agency

¹Filter samples in the field

²Samples were also analyzed using EPA Method 6020 for thallium

TABLE 4

FIELD PARAMETERS - FIRST QUARTER 2005 Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Well ID	Date Measured	рН	ORP	Electrical Conductivity	Temperature	Dissolved Oxygen	Turbidity
			(mV)	(µS/cm)	(°C)	(mg/L)	(NTU)
GW-1	02/23/05	7.39	131.1	1,802,000	20.02	5.47	1
GW-2	02/22/05	7.28	125.3	1,907,000	20.32	1.52	2
GW-3	02/23/05	7.33	130.9	1,789,000	19.27	3.43	1
GW-4	02/25/05	7.50	109.1	1,666,000	21.13	4.89	27
GW-5	02/25/05	7.38	119.5	1,965,000	19.73	3.38	2
GW-6	02/22/05	7.25	134.0	2,029,000	20.01	2.44	4
GW-7	02/24/05	7.40	124.6	1,716,000	20.59	4.82	2
GW-8	02/22/05	7.29	114.6	1,743,000	19.78	5.01	1
GW-9	02/22/05	7.27	124.0	1,776,000	19.80	5.57	2
GW-10	02/24/05	7.41	126.3	1,672,000	20.09	1.49	
GW-14A	02/23/05	7.37	134.0	1,867,000	19.60	11.20	2
GW-14B	02/24/05	7.31	120.8	1,885,000	20.34	7.06	0
GW-15	02/25/05	7.52	138.0	1,810,000	23.66	8.80	4

Notes:

°C - Degrees Centigrade

µS/cm - Microscimens per centimeter

mg/L - Milligrams per liter

mV - Millivolts

NTU - Nephelometric Turbidity Units

GROUNDWATER ANALYTICAL DATA - INORGANICS FIRST QUARTER 2005

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

			(mg/L)																
Well ID	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Total Chromium	Chromium ^{vi}	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
GW-1	02/23/05	<0.01	<0.012 UJ	0.37	<0.004	<0.005	<0.005	0.0018	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	·<0.005	<0.01	<0.001	<0.01	0.055
GW-2	02/22/05	<0.01	<0.005	0.41	<0.004	<0.005	<0.005	<0.001	< 0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.068
GW-3	02/23/05	<0.01	<0.0082 UJ	0.36	<0.004	<0.005	0.18	0.17	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.072
GW-4	02/25/05	<0.01	<0.005	0.51	<0.004	<0.005	<0.005	0.0012	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.10
GW-5	02/25/05	<0.01	0.0069	0.35	<0.004	<0.005	<0.005	<0.001	<0.01	< 0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.17
GW-6	02/22/05	<0.01	<0.005	0.32	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.032
GW-7	02/24/05	<0.01	0.0082	0.26 J	<0.004	<0.005	0.14	0.091 J	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.023 J
GW-7 (duplicate)	02/24/05	<0.01	<0.005	0.39	<0.004	<0.005	0.14	0.13	<0.01	<0.01	<0.005	<0.0002	<0.02	< 0.01	<0.005	<0.01	<0.001	<0.01	0.14
GW-8	02/22/05	<0.01	0.0066	0.45	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.11
GW-9	02/22/05	<0.01	0.0071	0.23	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
GW-10	02/25/05	<0.01	<0.005	0.26	<0.004	<0.005	0.20	0.17	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.024
GW-14A	02/23/05	<0.01	<0.005	0.36	<0.004	<0.005	0.82	0.72	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.058
GW-14B	02/24/05	<0.01	<0.005	0.48	<0.004	<0.005	0.05	0.045	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.12
GW-15	02/25/05	<0.01	0.0066	0.26 J	<0.004	<0.005	7.0	6.4	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.038
GW-15 (duplicate)	02/25/05	<0.01	<0.005	0.18	< 0.004	<0.005	6.7	6.5	<0.01	<0.01	<0.005	< 0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02

Notes:

Samples were analyzed using EPA Method 6010B, except for chromium (EPA Method 7199), mercury (EPA Method 7470A), and thallium (EPA Method 6020)

EPA - U.S. Environmental Protection Agency

J · Estimated

mg/L · Milligrams per liter

UJ · Result is non detected, however, the reporting limit is qualified as estimated

< . Less than listed reporting limit

TABLE 6

GROUNDWATER ANALYTICAL DATA - ORGANICS

FIRST QUARTER 2005

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

			i				z/L	!	·	1	
Well ID	Sample Date	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Carbon Tetrachloride	Chloroform	cis-1,2.Dichloroethene	Dichlorodifluoromethane	Tetrachloroethene	Trichloroethene
GW-1	02/23/05	<1	3.1	<l< td=""><td>0.91</td><td><0.5</td><td><1</td><td>22</td><td>10</td><td>12</td><td>11</td></l<>	0.91	<0.5	<1	22	10	12	11
GW-2	02/22/05	<1	3.5	<l< td=""><td>1.9</td><td><0.5</td><td><i< td=""><td>29</td><td>15</td><td>15</td><td>8.6</td></i<></td></l<>	1.9	<0.5	<i< td=""><td>29</td><td>15</td><td>15</td><td>8.6</td></i<>	29	15	15	8.6
GW-3	02/23/05	<1	3.8	<1	1.3	<0.5	<l< td=""><td>29</td><td>14</td><td>16</td><td>12</td></l<>	29	14	16	12
GW-4	02/25/05	<1	3.9	<1	1.0	<0.5	<1	27	14	14	12
GW-5	02/25/05	<1	5.6	<l< td=""><td>1.3</td><td>< 0.5</td><td><1</td><td>34</td><td>18</td><td>18</td><td>15</td></l<>	1.3	< 0.5	<1	34	18	18	15
GW-6	02/22/05	<1	4.8	<1	1.3	<0.5	<1	28	14	17	11
GW-7	02/24/05	<1	5.2	1.5	1.0	<0.5	<1	27	11	14	53
GW-7 (duplicate)	02/24/05	<1	5.0	1.4	1.1	<0.5	1.0	25	[]	13	51
GW-8	02/22/05	<1	1.8	</td <td>0.66</td> <td><0.5</td> <td><1</td> <td>14</td> <td>4.9</td> <td>8.7</td> <td>9.9</td>	0.66	<0.5	<1	14	4.9	8.7	9.9
GW-9	02/22/05	<1	1.9	<1	0.64	<0.5	<1	14	4.6	9.5	17
GW-10	02/25/05	<1	2.6	<l< td=""><td>1.2</td><td><0.5</td><td><1</td><td>23</td><td>13</td><td>13</td><td>18</td></l<>	1.2	<0.5	<1	23	13	13	18
GW-14A	02/23/05	<1	3.9	<1	1.6	<0.5	<1	31	7.0	16	14
GW-14B	02/24/05	<1	4.3	<i< td=""><td>1.7</td><td><0.5</td><td><1</td><td>37</td><td>16</td><td>16</td><td>9.5</td></i<>	1.7	<0.5	<1	37	16	16	9.5
GW-15	02/25/05	4.0	8.0	7.6	1.2	0.51	2.2	26	8.2	13	160
GW-15 (duplicate)	02/25/05	3,9	7.8	7.4	1.2	<0.5	2.2	25	8.2	13	150
	02/22/05	<1	<1	<1	<0.5	<0.5	<1	<1	<2	<l< td=""><td><1</td></l<>	<1
Trip Blank	02/23/05	<1	<1	<1	<0.5	<0.5	<l< td=""><td><1</td><td><2</td><td><1</td><td><1</td></l<>	<1	<2	<1	<1
	02/24/05	<1	<1	<l< td=""><td><0.5</td><td><0.5</td><td><1</td><td><1</td><td><2</td><td><1</td><td><1</td></l<>	<0.5	<0.5	<1	<1	<2	<1	<1

Notes:

Samples were analyzed using EPA Method 8260 Only detected analytes are shown. EPA - U.S. Environmental Protection Agency µg/L - Micrograms per liter

<- Less than listed reporting limit

TABLE 7

GROUNDWATER ANALYTICAL DATA - EMERGING CHEMICALS FIRST QUARTER 2005

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

			μg/L							
Well ID	Sample Date	Perchlorate	n-Nitrosodi- methylamine	1,4-Dioxane	1,2,3-Trichloropropane					
		(EPA 314.0)	(EPA 1625)	(EPA 8270SIM)	(EPA 8260B)					
GW-2	02/22/05	<2	NA	4.1	NA					
GW-3	02/23/05	<2	NA	5.4	NA					
GW-6	02/22/05	<2	NA	6.3	NA					
GW-7	02/24/05	<2	NA	5.0	NA					
GW-7 (duplicate)	02/24/05	<2	NA	5.1	NA					
GW-10	02/25/05	<2	NA	<5	NA					
GW-15	02/25/05	8.8	NA	16	NA					
GW-15 (duplicate)	02/25/05	8.9	NA	14	NA					

Notes:

EPA - U.S. Environmental Protection Agency

L - Micrograms per liter

- Not Analyzed

< - Less than listed reporting limit

APPENDIX A FIELD SAMPLING PROTOCOL

APPENDIX A

FIELD SAMPLING PROTOCOL

A.1 GROUNDWATER GAUGING

Prior to sampling, groundwater levels were measured with an electric water probe in all groundwater monitoring wells. Measurements were taken from a surveyed reference point marked on the top of the well casing. Water-level measurements were taken within 0.01 ft and recorded on field sampling sheets. The probe was decontaminated between groundwater monitoring wells.

A.2 GROUNDWATER PURGE AND SAMPLING PROCEDURES

Purging

Before sampling each groundwater monitoring well, an initial water level reading was recorded (see Appendix D of this report). A 2-inch diameter submersible Grundfos® Redi-Flo II® pump was used to purge groundwater from each well. The pump was equipped with a check valve to prevent backflow into the well. The pump was placed 3 feet below the top of the water column in all wells (except for one) to collect groundwater from the uppermost portion of the formation. The water table in all of these wells is located within the screened portion of the well casing. Prior evaluations of vertical dissolved chromium stratification in wells across the Site have indicated that the upper portion of the well screen contains the highest concentrations of inorganics. GW-14B is the only well with 10 feet of water above the screen; therefore the pump was placed at 3 feet below the top of screen to ensure purge water is from the formation. Well construction details are presented in Table 1 of this report.

During the purge cycle, groundwater quality parameters of pH, specific conductance (EC), temperature, dissolved oxygen, oxidation-reduction potential, turbidity, water levels, and visual observations were measured using a YSI 556 flow-through cell meter and recorded on MWH sampling data sheets to verify well stabilization (see Appendix D of this report). Instrument calibration was conducted at the beginning of each field day (and thereafter if suspect or erroneous readings were taken).

Wells were purged and sampled in order of lowest to highest hexavalent chromium concentration, to the extent as possible, with the exception of wells GW-4 and GW-5 located within the Home Depot building. Access for sampling these two wells was restricted during normal business hours. Wells were purged at a low flow rate (~1 gallon/minute) to not cause cavitation or significant drawdown (<0.5 feet), until three consecutive measurements (taken at least 5 minutes apart) of pH, temperature, and EC were stabilized to within ±10% of each other, and turbidity was as close to 5 nephelometric turbidity units as possible.

Sampling and Analysis

Once all of the parameters stabilized, indicating stable groundwater conditions, sampling activities commenced. Groundwater samples were collected into appropriate laboratory-provided sample containers via the purge water discharge tube. Samples for Title 22 analysis were filtered in the field. All samples were capped, labeled, sealed in plastic bags, placed in ice-chilled, insulated coolers to maintain a shipping temperature of 4 degrees Centigrade and transported under a chain-of-custody protocol to Del Mar Analytical, a California state-certified laboratory. Table 3 of this report presents the analytical program for First Quarter 2005.

A.3 DECONTAMINATION AND WASTE MANAGEMENT

All sampling equipment (submersible pump and discharge tubing) was cleaned through the tubing using a nonphosphate detergent, rinsed with tap water, and final-rinsed with deionized water before entering each well. Each of the steps in the three-step decontamination procedure was allowed to flow through the tubing for a minimum of 5 minutes each. The outside of the pump and tubing was cleaned using a nonphosphate detergent and rinsed using a steam-cleaner. All equipment was handled in a manner intended to prevent cross-contamination.

Purge water was temporarily contained in the subcontractors truck-mounted holding tank and later transferred to an on-site storage tank pending receipt of analytical certifications. The contents of the tank were profiled and transported by Onyx Environmental to an off-site, permitted disposal facility.

A.4 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The overall QA/QC objective for field activities and laboratory analyses was to produce data of sufficient quality to support an evaluation of the environmental conditions. Standard operating procedures were conducted so that known and sufficient acceptable levels of accuracy, precision, completeness, representativeness, and comparability were achieved for the data. The QA/QC procedures are summarized in the following subsections.

A.3.1 Documentation

As a minimum, the following pertinent field information was recorded in ink onto field log forms:

- (1) Date and time of entries
- (2) Personnel on site (including subcontractors)
- (3) Activity and location
- (4) Field observation (i.e., soil descriptions, direct instrument readings, weather, unusual occurrences, water levels, volume, and types of materials used)

- (5) Sample information (time, depth, location, type of sample, container preservation, and analyses)
- (6) Equipment calibration records
- (7) Observations useful in reconstructing activities
- (8) Documentation of tailgate safety meetings

A.3.2 Field QA/QC Samples

To verify laboratory results, two duplicate samples were collected. One equipment rinsate sample was collected after each day in the field to verify decontamination procedures by pouring laboratory-grade, organic-free water on a decontaminated pump and into sample containers. One trip blank sample was sent to the lab for analysis in every cooler that contained samples for VOC analysis.

Quality control samples were documented and handled according to similar procedures noted in Section A.2. Equipment rinsate blanks were analyzed for the same analyses as groundwater samples.

A.3.3 Laboratory QA/QC

As a minimum, the U.S. Environmental Protection Agency sample holding times and preservation were observed. Specific requirements were followed, including field and reagent blanks, calibration check standards, matrix-spiked duplicates, total recoveries, and laboratory QC samples. The laboratory's QA/QC documentation was reported, and the analytical results indicated the concentrations of analytes detected along with the detection limits.

USOCO1/Projects/Honeywell/North Hollywood/GW Rpts/2005Q1/1Q05_Appendix A

APPENDIX B
HYDROGRAPHS

FIGURE B-1

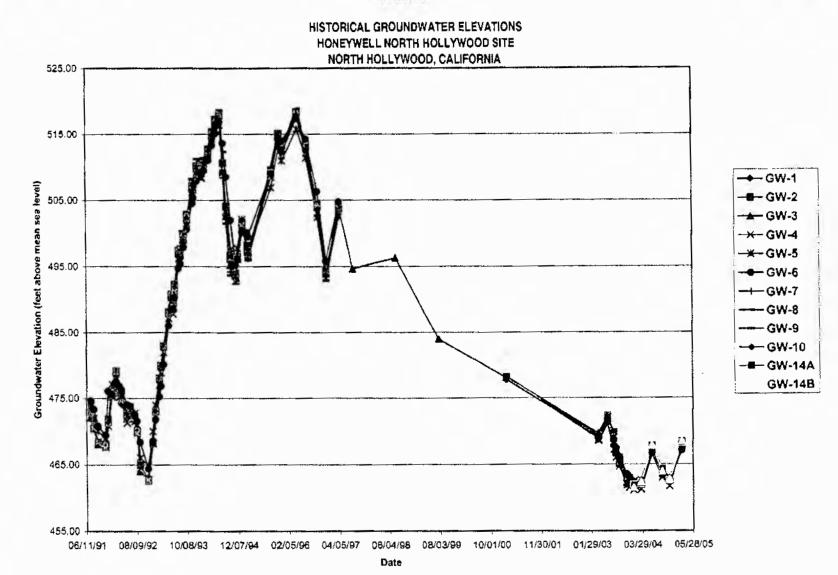


FIGURE B-2

CONCENTRATIONS OF HEXAVALENT CHROMIUM AND GROUNDWATER LEVEL VERSUS TIME - GW-3 HONEYWELL NORTH HOLLYWOOD SITE

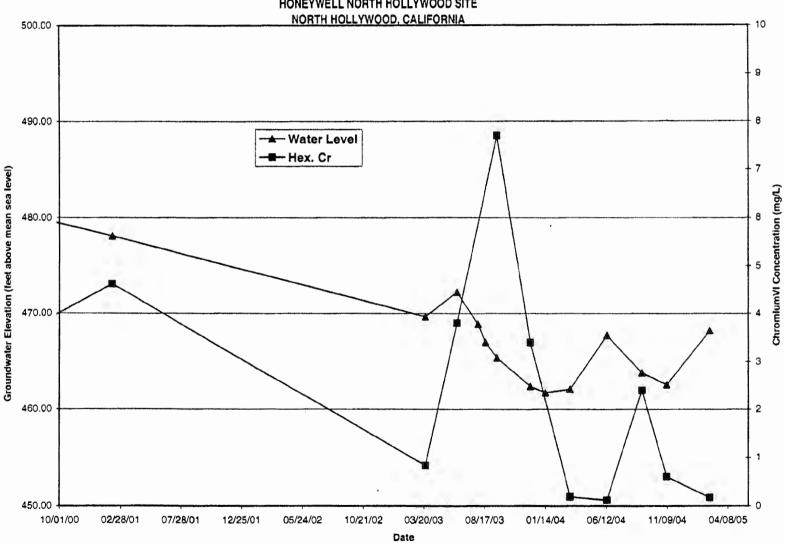


FIGURE B-3

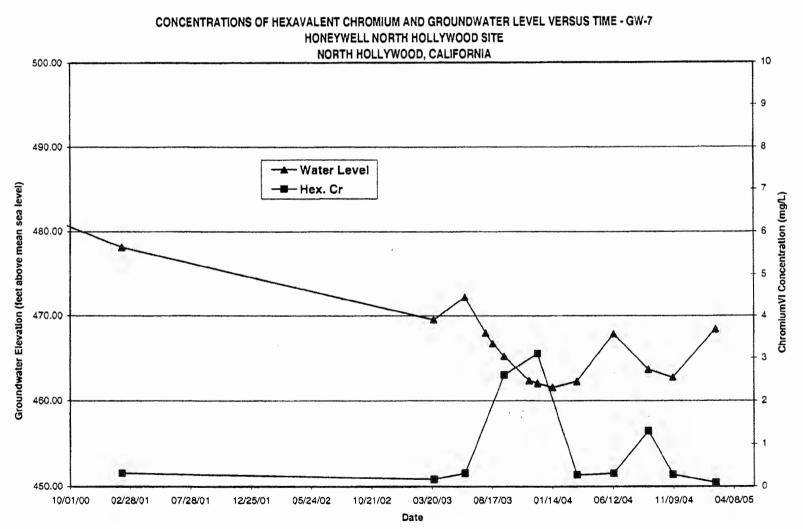
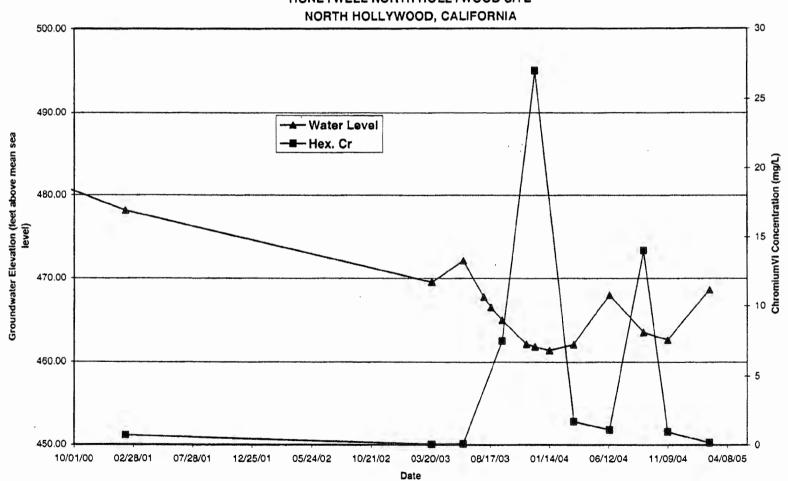



FIGURE B-4

CONCENTRATIONS OF HEXAVALENT CHROMIUM AND GROUNDWATER LEVEL VERSUS TIME - GW-10

HONEYWELL NORTH HOLLYWOOD SITE

APPENDIX C
HISTORICAL DATA SUMMARIES

TABLE C-1

HISTORICAL GROUNDWATER ELEVATIONS FIRST QUARTER 2003 - FIRST QUARTER 2005 Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Well ID	Date Measured	Top of Casing Elevation (ft msl) ¹	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
	03/24/03	741.90	272.73	469.17
	06/10/03	741.90	270.11	471.79
	08/01/03	741.90	274.09	467.81
	08/19/03	741.90	275.15	466.75
	09/16/03	741.90	276.70	465.20
	11/17/03	741.90	279.60	462.30
GW-1	12/08/03	741.90	280.02	461.88
	01/14/04	741.90	280.55	461.35
	03/15/04	741.90	279.93	461.97
	06/14/04	741.90	274.45	467.45
	09/08/04	741.90	278.38	463.52
	11/08/04	741.90	279.43	462.47
	02/22/05	741.90	273.98	467.92
	03/24/03	741.11	271.84	469.27
	06/10/03	741.11	268.86	472.25
	08/01/03	741.11	271.34	469.77
	08/19/03	741.11	273.90	467.21
	09/16/03	741.11	275.46	465.65
	11/17/03	741.11	278.31	462.80
GW-2	12/08/03	741.11	278.74	462.37
	01/14/04	741.11	279.23	461.88
	03/15/04	741.11	279.30	461.81
	06/14/04	741.11	273.42	467.69
	09/08/04	741.11	276.94	464.17
	11/08/04	741.11	278.63	462.48
	02/22/05	741.11	272.99	468.12
	03/24/03	738.99	269.33	469.66
	06/10/03	738.99	266.78	472.21
	08/01/03	738.99	270.10	468.89
	08/19/03	738.99	271.96	467.03
	09/16/03	738.99	273.57	465.42
	11/17/03	738.99	NA	NA
GW-3	12/08/03	738.99	276.56	462.43
	01/14/04	738.99	277.25	461.74
	03/15/04	738.99	276.87	462.12
	06/14/04	738.99	271.24	467.75
	09/08/04	738.99	275.13	463.86
	11/08/04	738.99	276.39	462.60
	02/22/05	738.99	270.76	468.23

TABLE C-1

HISTORICAL GROUNDWATER ELEVATIONS FIRST QUARTER 2003 - FIRST QUARTER 2005 Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

Well ID	Date Measured	Top of Casing Elevation (ft msl) ¹	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
	03/24/03	742.90	274.36	468.54
	06/10/03	742.90	271.86	471.04
	08/01/03	742.90	275.72	467.18
	08/19/03	742.90	276.89	466.01
	09/16/03	742.90	278.26	464.64
	11/17/03	742.90	281.08	461.82
GW-4	12/08/03	742.90	281.47	461.43
3., .	01/14/04	742.90	281.83	461.07
	03/15/04	742.90	281.74	461.16
	06/14/04	742.90	276.41	466.49
	09/08/04	742.90	279.94	462.96
	11/08/04	742.83 ²	281.20	461.63
	02/22/05	742.83 ²	274.91	467.92
	03/24/03	742.23	273.54	468.69
	06/10/03	742.23	270.22	472.01
	08/01/03	742.23	273.90	468.33
	08/19/03	742.23	275.25	466.98
	09/16/03	742.23	276.23	466.00
	11/17/03	742.23	279.04	463.19
GW-5	12/08/03	742.23	279.40	462.83
311 5	01/14/04	742.23	279.87	462.36
	03/15/04	742.23	279.65	462.58
	06/14/04	742.23	274.69	467.54
	09/08/04	742.23	278.07	464.16
	11/08/04	742.17 ²	279.24	462.93
	02/22/05	742.17 ²	274.34	467.83
	03/24/03	745.06	276.21	468.85
	06/10/03	745.06	273.71	471.35
	08/01/03	745.06	276.38	468.68
	08/19/03	745.06	277.68	467.38
	09/16/03	745.06	278.95	466.11
	11/17/03	745.06	281.60	463.46
GW-6	12/08/03	745.06	282.02	463.04
J 11 V	01/14/04	745.06	282.80	462.26
	03/15/04	745.06	283.25	461.81
	06/14/04	745.06	278.42	466.64
	09/08/04	745.06	281.00	464.06
	11/08/04	744.98 ²	282.65	462.33
	02/22/05	744.98 ²	277.91	467.07

TABLE C-1

HISTORICAL GROUNDWATER ELEVATIONS FIRST QUARTER 2003 - FIRST QUARTER 2005 Honeywell North Hollywood Site

Well ID	Date Measured	Top of Casing Elevation (ft msl) ¹	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
	03/24/03	736.95	267.41	469.54
	06/10/03	736.95	264.72	472.23
	08/01/03	736.95	268.99	467.96
	08/19/03	736.95	270.25	466.70
	09/16/03	736.95	271.76	465.19
	11/17/03	736.95	274.61	462.34
GW-7	12/08/03	736.95	274.92	462.03
	01/14/04	736.95	274.41	462.54
	03/15/04	736.95	274.71	462.24
	06/14/04	736.95	269.09	467.86
	09/08/04	736.95	273.30	463.65
	11/08/04	736.95	274.25	462.70
	02/22/05	736.95	268.54	468.41
	03/24/03	744.28	275.00	469.28
	06/10/03	744.28	271.98	472.30
	08/01/03	744.28	276.36	467.92
	08/19/03	744.28	277.66	466.62
	09/16/03	744.28	279.22	465.06
	11/17/03	744.28	282.03	462.25
GW-8	12/08/03	744.28	282.35	461.93
	01/14/04	744.28	282.73	461.55
	03/15/04	744.28	282.58	461.70
	06/14/04	744.28	276.29	467.99
	09/08/04	744.28	280.38	463.90
	11/08/04	744.28	281.89	462.39
	02/22/05	744.28	275.69	468.59
	03/24/03	743.05	273.78	469.27
	06/10/03	743.05	270.77	472.28
	08/01/03	743.05	275.39	467.66
	08/19/03	743.05	276.80	466.25
	09/16/03	743.05	278.41	464.64
	11/17/03	743.05	281.28	461.77
GW-9	12/08/03	743.05	281.48	461.57
	01/14/04	743.05	281.96	461.09
	03/16/04	743.05	281.14	461.91
	06/14/04	743.05	274.96	468.09
	09/08/04	743.05	279.98	463.07
	11/08/04	743.05	280.90	462.15
	02/22/05	743.05	274.33	468.72

TABLE C-1

HISTORICAL GROUNDWATER ELEVATIONS FIRST QUARTER 2003 - FIRST QUARTER 2005 Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

Well ID	Date Measured	Top of Casing Elevation (ft msl) ¹	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)		
	03/24/03	739.91	270.39	469.52		
	06/10/03	739.91	267.78	472.13		
	08/01/03	739.91	272.18	467.73		
	08/19/03	739.91	273.43	466.48		
	09/16/03	739.91	274.97	464.94		
	11/17/03	739.91	277.80	462.11		
GW-10	12/08/03	739.91	278.10	461.81		
	01/14/04	739.91	278.54	461.37		
	03/15/04	739.91	277.83	462.08		
	06/14/04	739.91	271.95	467.96		
	09/08/04	739.91	276.40	463.51		
	11/08/04	739.91	277.31	462.60		
	02/22/05	739.91	271.31	468.60		
	01/14/04	741.59	279.71	461.88		
	03/15/04	741.59	279.58	462.01		
GW-14A	06/14/04	741.59	273.86	467.73		
GW-14A	09/08/04	741.59	277.32	464.27		
	11/08/04	741.59	279.04	462.55		
	02/22/05	741.59	273.41	468.18		
	01/14/04	741.13	279.69	461.44		
	03/15/04	741.13	278.83	462.30		
CW 14D	06/14/04	741.13	273.24	467.89		
GW-14B	09/08/04	741.13	277.27	463.86		
	11/08/04	741.13	278.38	462.75		
	02/22/05	741.13	272.70	468.43		
	06/16/04	NS	270.96			
	09/08/04	NS	275.37			
GW-15	11/08/04	738.87 ²	276.35	462.52		
	02/22/05	738.87 ²	270.33	468.54		

Notes:

ft msl - Feet above mean sea level

ft btoc - Feet below top of casing

NA - Not available

NS - Not surveyed

-- - No information

¹ Based on June 2003 survey, Calvada Surveying

² Based on December 2004 survey, Calvada Surveying

HISTORICAL GROUNDWATER ANALYTICAL DATA - CHROMIUM Honeywell North Hollywood Site

				n	ng/L
Well ID	Sample Date	Samp	le type	Total Chromium	Chromium VI
		Filtration	Collection	Сиголиции	
	02/08/01	NF	Pump	0.174	0.151
	03/25/03	NF	Bailer	0.085	0.081
	03/25/03	NF	Bailer (Dup)	0.081	0.079
	06/16/03	NF	Bailer	0.26	0.22
	06/16/03	NF	Bailer (Dup)	0.23	0.23
GW-1	09/17/03	NF	Bailer	0.25	0.22
GW-1	12/09/03	NF	Bailer	0.021	0.019
	03/17/04	FFVI	Bailer	0.013	< 0.001
	06/15/04	FFVI	Bailer	0.013	0.0035
	09/14/04	FF	Pump	0.26	0.23
	11/09/04	FF	Pump	< 0.005	0.0035
	02/23/05	FFTC	Pump	< 0.005	0.0018
GW-1-S*	12/09/03	NF	Pump	0.0054	0.0037
GW-1-M*	12/09/03	NF	Pump	< 0.005	0.0023
GW-1-D*	12/09/03	NF	Pump	0.005	0.0032
	08/01/93	NF	NS	< 0.010	NA
	02/08/01	NF	Pump	0.0129	< 0.001
	03/25/03	NF	Bailer	0.0063	< 0.001
	06/10/03	NF	Bailer	0.029	0.026
	09/16/03	NF	Bailer	< 0.005	< 0.001
GW-2	12/08/03	NF	Bailer	0.0063	< 0.001
	03/16/04	FFVI	Bailer	0.018	< 0.001
	06/14/04	FFVI	Bailer	< 0.005	< 0.001
	09/16/04	FF	Pump	< 0.005	< 0.001
	11/08/04	FF	Pump	< 0.005	0.0011
	02/22/05	FFTC	Pump	< 0.005	< 0.001

TABLE C-2

				mg/L					
Well ID	Sample Date	Samp	le type	Total Chromium	Chromium VI				
		Filtration	Collection	Cinonaum					
	08/01/93	NF	NS	0.012	NA				
	07/30/97	NF	Bailer	1.4	<2.0				
	07/30/97	NF	Bailer (Dup)	0.93	1.4				
	07/28/98	FF	Bailer	1.1	1.4				
	07/28/98	FF	Bailer (Dup)	1.7	1.7				
	07/28/98	NF	Bailer	0.98	0.99				
	07/28/98	NF	Bailer (Dup)	0.88	0.57				
	07/28/98	LF	Pump	0.17	0.17				
	07/28/98	NF	Pump	0.17	0.18				
	07/23/99	FF	Bailer	1.9	1.8				
GW-3	07/23/99	FF	Bailer (Dup)	2.0	2.0				
	02/08/01	NF	Pump	5.81	4.61				
	03/26/03	NF	Bailer	0.85	0.83				
	06/11/03	NF	Bailer	3.8	3.8				
	09/17/03	NF	Bailer	8.6	. 7.7				
	12/10/03	NF	Bailer	3.7	3.4				
	03/18/04	FFVI	Bailer	0.23	0.19				
	06/15/04	FFVI	Bailer	0.12	0.12				
	09/14/04	FF	Pump	2.5	2.4				
	11/10/04	FF	Pump	0.600	0.630 J				
	02/23/05	FFTC	Pump	0.18	0.17				
GW-3-S*	12/10/03	NF	Pump	0.63	0.58				
GW-3-M*	12/10/03	NF	Pump	0.26	0.22				
CW 2 D*	06/11/03	NF	Pump	2.7	2.7				
GW-3-D*	12/10/03	NF	Pump	0.48	0.44				
	02/27/98	NF	Bailer	0.043	0.048				
	02/27/98	FF	Bailer	0.021	0.019				
	03/27/03	NF	Bailer	0.008	0.0011				
	06/13/03	NF	Bailer	< 0.005	< 0.001				
	09/19/03	NF	Bailer	0.0052	0.0031				
GW-4	12/12/03	NF	Bailer	0.0056	< 0.001				
	03/19/04	FFVI	Bailer	< 0.005	0.0013				
	06/18/04	FFVI	Bailer	< 0.005	0.0024				
	09/16/04	FF	Pump	< 0.005	0.0012				
	11/12/04	FF	Pump	< 0.005	0.0013				
	02/25/05	FFTC	Pump	< 0.005	0.0012				

TABLE C-2

				n	ng/L	
Well ID	Sample Date	Samp	le type	Total Chromium	Chromium VI	
		Filtration	Collection	Cinomun		
	03/24/03	NF	Bailer	0.009	< 0.001	
	06/13/03	NF	Bailer	0.027	0.022	
	09/19/03	NF	Bailer	0.0077	0.0012	
	12/12/03	NF	Bailer	0.0072	< 0.001	
GW-5	03/19/04	FFVI	Bailer	< 0.005	< 0.001	
	06/18/04	FFVI	Bailer	< 0.005	< 0.001	
	09/16/04	FF	Pump	< 0.005	0.001	
	11/12/04	FF	Pump	< 0.005	0.0012	
	02/25/05	FFTC	Pump	< 0.005	< 0.001	
	08/01/93	NF	NS	< 0.010	NÀ	
	02/09/01	NF	Pump	0.0157	0.001	
	03/25/03	NF	Bailer	0.013	0.0012	
	06/10/03	NF	Bailer	< 0.005	< 0.001	
	09/16/03	NF	Bailer	0.0063	0.0013	
GW-6	12/08/03	NF .	Bailer	0.0082	< 0.001	
	03/16/04	FFVI	Bailer	< 0.005	0.0011	
	06/14/04	FFVI	Bailer	< 0.005	< 0.001	
	09/16/04	FF	Pump	< 0.005	0.001	
	11/08/04	FF	Pump	< 0.005	0.0013	
	02/22/05	FFTC	Pump	< 0.005	< 0.001	
	02/09/01	NF	Pump	0.36	0.311	
	03/26/03	NF	Bailer	0.44	0.17	
	06/11/03	NF	Bailer	0.53	0.31	
	09/17/03	NF	Bailer	2.6	2.4	
	09/17/03	NF	Bailer (Dup)	2.7	2.6	
	12/09/03	NF	Bailer	3.1	3.1	
GW-7	03/17/04	FFVI	Bailer	0.33	0.27	
	06/16/04	FFVI	Bailer	0.31	0.31	
	09/14/04	FF	Pump	1.4	1.3	
	09/14/04	FF	Pump (Dup)	1.3	1.3	
	11/11/04	· FF	Pump	0.260	0.280	
	02/24/05	FFTC	Pump	0.14	0.091 J	
	02/24/05	FFTC	Pump (Dup)	0.14	0.13	
GW-7-S*	12/09/03			2.7	2.7	
GW-7-M*	12/09/03	NF	Pump	2.2	2.2	

TABLE C-2

				n	ıg/L		
Well ID	Sample Date	Samp	le type	Total Chromium	Chromium VI		
		Filtration	Collection	Chroman			
GW-7-D*	06/11/03	NF	Pump	0.34	0.28		
GW-/-D*	12/09/03	NF	Pump	2.1	2.0		
	02/09/01	NF	Pump	0.00614	0.001		
	03/24/03	NF	Bailer	0.029	< 0.001		
	06/10/03	NF	Bailer	0.032	< 0.001		
	09/16/03	NF	Bailer	0.036	< 0.001		
	12/08/03	NF	Bailer	0.15	0.001		
GW-8	03/16/04	FFVI	Bailer	0.033	< 0.001		
GW-8	03/16/04	FFVI	Bailer	0.028	< 0.001		
	06/14/04	FFVI	Bailer	0.013	0.0013		
	06/14/04	FFVI	Bailer (Dup)	0.016	< 0.001		
	09/14/04	FF	Pump	< 0.005	0.001		
	11/08/04	FF	Pump	< 0.005	0.0014		
	02/22/05	FFTC	Pump	< 0.005	< 0.001		
	02/09/01	NF	Pump	<0.005	0.001		
	03/24/03	NF	Bailer	0.077	< 0.001		
	06/16/03	NF	Bailer	0.014	0.0013		
	09/17/03	NF	Bailer	0.018	< 0.001		
GW-9	12/08/03	NF	Bailer	0.24	0.0011		
GW-9	03/16/04	FFVI	Bailer	0.15	0.0011		
	06/15/04	FFVI	Bailer	0.0051	0.001		
	09/14/04	FF	Pump	<0.005	0.001		
	11/08/04	FF	Pump	<0.005	< 0.001		
	02/22/05	FFTC	Pump	<0.005	< 0.001		

TABLE C-2

				n	ng/L		
Well ID	Sample Date	Samp	le type	Total Chromium	Chromium VI		
		Filtration	Collection	Curonnum			
	02/09/01	NF	Pump	0.617	0.691		
	03/26/03	NF	Bailer	0.17	0.041		
	06/11/03	NF	Bailer	0.12	0.085		
	09/17/03	NF	Bailer	7.9	7.5		
	12/10/03	NF	Bailer	. 27	26		
	12/10/03	NF	Bailer (Dup)	28	27		
CYN 10	03/17/04	FFVI	Bailer	1.9	1.7		
GW-10	03/17/04	FFVI	Bailer (Dup)	1.9	1.7		
. ·	06/15/04	FFVI	Bailer	1.1	1.1		
	06/15/04	FFVI	Bailer (Dup)	1.1	1.1		
	09/15/04	FF	Pump	15	14		
	11/11/04	FF	Pump	0.920	0.950		
	11/11/04	FF	Pump (Dup)	0.880	0.940 J		
	02/25/05	FFTC	Pump	0.2	0.17		
GW-10-S*	12/10/03	NF	Pump	36	39		
GW-10-M*	12/10/03	NF	Pump	37	35		
CVV 10 Dt	06/11/03	NF	Pump	0.45	0.084		
GW-10-D*	12/10/03	NF	Pump	37	35		
	01/14/04	NF	Bailer	0.013	0.0012		
	01/14/04	NF	Bailer (Dup)	0.014	0.0013		
	03/17/04	FFVI	Bailer	0.1	0.056		
GW-14A	06/15/04	FFVI	Bailer	0.29	0.28		
	09/14/04	FF	Pump	0.83	0.79		
	11/09/04	FF	Pump	0.220	0.210		
	02/23/05	FFTC	Pump	0.82	0.72		
GW-14A-S*	01/13/04	NF	Pump	< 0.005	0.0011		
	01/14/04	NF	Pump	< 0.005	0.0011		
	03/17/04	FFVI	Bailer	< 0.005	< 0.001		
CYVIAN	06/15/04	FFVI	Bailer	< 0.005	< 0.001		
GW-14B	09/14/04	FF	Pump	0.32	0.30		
	11/09/04	FF	Pump	0.300	0.280		
	02/24/05	FFTC	Pump	0.05	0.045		

HISTORICAL GROUNDWATER ANALYTICAL DATA - CHROMIUM Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

				mg/L					
Well ID	Sample Date	Samp	le type	Total Chromium	Chromium VI				
		Filtration	Collection	Chromium					
GW-14B-S*	01/13/04	NF	Pump	< 0.005	0.0011				
GW-14B-M*	01/13/04	NF	Pump	0.0081	0.0011				
GW-14B-D*	01/13/04	NF	Pump	< 0.005	0.0012				
	06/15/04	NF	Bailer	1.8	1.8				
	09/15/04	FF	Pump	8.1	8.8				
	09/15/04	FF	Pump	7.7	8.6				
GW-15	11/10/04	FF	Pump	4.50	4.80				
	11/10/04	FF	Pump (Dup)	4.70	4.80				
	02/25/05	FFTC	Pump	7.0	6.4				
	02/25/05	FFTC	Pump (Dup)	6.7	6.5				

Notes:

Samples were analyzed using EPA Method 6010B for chromium and EPA Method 7199 for chromium VI

Dup - Duplicate sample collected

EPA - U.S. Environmental Protection Agency

FF - Field-filtered

FFTC - Field-filtered for total chromium only

FFVI - Field-filtered for chromium only

LF - Laboratory-filtered

mg/L - Milligrams per liter

NA - Not analyzed

NF - Not filtered

NS - Not specified

* Multi-depth samples designated as - S - Shallow; M - Middle; D - Deep

< - Less than listed reporting limit

HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

	1				A W W					(mg	/L)								
Well ID	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Total Chromium	Chromium ^{v1}	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanzdium	Zinc
	06/16/03	<0.01	<0.005	0.13	<0.004	<0.005	0.26	0.22	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	06/16/03 DUP	<0.01	<0.005	0.13	<0.004	<0.005	0.23	0.23	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	0.044
	09/17/03	<0.01	<0.005	0.13	<0.004	<0.005	0.25	0.22	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	12/09/03	<0.01	<0.005	0.12	<0.004	<0.005	0.021	0.19	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
GW-1	03/17/04	<0.01	<0.005	0.14	<0.004	<0.005	0.013	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	0.029
	06/15/04	<0.01	<0.005	0.13	<0.004	<0.005	0.013	0.0035	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	0.0076	<0.01	<0.02
	09/14/04	<0.01	<0.005	0.13	< 0.004	<0.005	0.26	0.23	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	11/09/04	<0.01	<0.005	0.12	<0.004	<0.005	<0.005	0.0035	< 0.001	0.004	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
	02/23/05	<0.01	<0.012 UJ	0.37	<0.004	<0.005	<0.005	0.0018	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.055
	06/10/03	<0.01	<0.005	0.12	<0.004	<0.005	0.029	0.026	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	09/16/03	<0.01	<0.005	0.14	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	12/08/03	<0.01	<0.005	0.13	<0.004	<0.005	0.0063	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
GW-2	03/16/04	<0.01	<0.005	0.16	<0.004	<0.005	0.018	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
G W - 2	06/14/04	<0.01	<0.005	0.15	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	< 0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	09/16/04	<0.01	<0.005	0.13	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	11/08/04	<0.01	<0.005	0.14	<0.004	<0.005	<0.005	0.0011	<0.001	0.001	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	02/22/05	<0.01	<0,005	0.41	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.068
	06/11/03	<0.01	<0.005	0.15	<0.004	<0.005	3.8	3.8	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	09/17/03	<0.01	<0.005	0.14	<0.004	<0.005	8.6	7.7	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	12/10/03	<0.01	<0.005	0.12	<0.004	<0.005	3.7	3.4	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	0.025
GW-3	03/18/04	<0.01	<0.005	0.18	<0.004	<0.005	0.23	0.19	<0.01	<0.01	<0.005	<0.0002	<0.02	0,01	<0.005	<0.01	0.0055	<0.01	0.098
01110	06/15/04	<0.01	<0.005	0.12	<0.004	<0.005	0.12	0.12	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	09/14/04	<0.01	<0.005	0.12	<0.004	<0.005	2.5	2.4	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.15 UJ
	11/10/04	<0.01	<0.005	0.12	<0.004	<0.005	0.6	0.63 J	<0.001	0.63	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
	02/23/05	<0.01	<0.0082 UJ	0.36	<0.004	<0.005	0.18	0.17	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.072
GW-3-D*	06/11/03	<0.01	<0.005	0.10	<0.004	<0.005	2.7	2.7	<0.01	<0.01	<0.005	<0.0002	< 0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02

HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS HOREYWEII North Hollywood Site

						-				ш)	(7/	L	L	(T/BW)											
aı	Sample Date	Antimony	Arsenic	Bariun	Beryllium	Cadmium	Total Chromium	Chromium ^{VI}	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc						
-				HX-1-1-0			THE RESERVE	-	-			THE REAL PROPERTY AND ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY		-					20.0>						
	£0/£1/90	10.0>	\$00.0>	51.0	100.0>	200.0>	200.0>	100.0>	10.0>	10.0>	200.0>	2000.0>	20.0>	10.0>	200.0>	10.0>	\$00.0> \$00.0>	10.0>	20.0>						
	60/61/60	10.0>	\$00.0>	0.12	100.0>	200.0>	2200.0	0.0031	10.0>	10.0>	200.0>	2000.0>	20.0>	10.0>	₹00.0> ₹00.0>	10.0>	\$00.0>	10.0>	20.0>						
	12/12/03	10.0>	\$00.0>	0.14	\$00.0>	200.0>	300.0	100.0>	10.0>	10.0>	200.0>	2000.0>	20.0>	10.0>	200.0>	10.0>	\$00.0>	10.0>	0.033						
þ-,	03/16/04	10.0>	\$00.0>	0.14	\$00.0>	200.0>	200.0>	6100.0	10.0>	10.0>	\$00.0>	2000.0>	20.0>	10.0>	\$00.0>	10.0>	200.0>	10.0>	20.0						
	\$0 /91/60	10.0>	\$00.0>	150	\$00.0>	200,0>	200.0> ≥00.0>	\$200.0 \$100.0	10.0>	10.0>	\$00.0>	2000.0>	20.0>	10.0>	200.0>	10.0>	200.0>	10.0>	0.0>						
	\$0 /21/11	10.0>	200.0>	0.13	100.0>	200.0>	200,0>	0.0013	100.0>	100.0	\$00.0>	2000.0>	20.0>	10.0>	\$00.0>	10.0>	100.0>	10.0>	0.0>						
	11/15/04	10.0>	200.0>	12,0	\$00°0>	200.0>	200.0>	2100.0	10.0>	10.0>	200.0>	2000.0>	20.0>	10.0>	200.0>	10.0>	100.0>	10.0>	0.1						
	05/25/03	10.0>	200.0>	₽1,0	> 00.0>	200.0>	720.0	220.0	10.0>	10.0>	200.0>	20000.0>	20.0>	10.0>	200.0>	10.0>	200.0>	10.0>	0.0>						
	60/61/60	10.0>	200.0>	0,14	\$00:0>	200.0>	FT00.0	2100.0	10.0>	10.0>	200.0>	20000.0>	20.0>	10.0>	200.0>	10.0>	200.0>	10.0>	0.0>						
	15/15/03	10,0>	200.0>	61.0	\$00.0>	200.0>	2700.0	100.0>	10.0>	10.0>	200.0>	20000.0>	20.0>	10,0>	800.0>	10.0>	₹00.0>	10.0>	0.0>						
	03/16/04	10.0>	\$00.0>	61.0	\$000.0>	200.0>	200.0>	100.0>	10.0>	10.0>	200.0>	2000.0>	\$0.0>	10.0>	200.0>	10.0>	\$00.0>	10.0>).0>						
g-,	\$0 /81/90	10.0>	\$00.0>	51.0	\$00·0>	200.0>	200.0>	100.0>	10.0>	10.0>	200.0>	20000.0>	\$0.0>	10.0>	₹00.0>	10.0>	\$00.0>	10.0>	0.0>						
i	10 /91/60	10.0>	≥00.0>	61,0	} 000'0>	200.0>	200.0>	0.001	10.0>	10.0>	\$00.0>	<0.0002	20.0>	10.0>	\$00.0>	10.0>	800.0>	10.0>	0.0>						
	11/15/04	10,0>	200.0>	0.12	≯00'0>	200.0>	\$00.0>	0.0012	100.0>	100.0	≥00.0>	20000.0>	20.0>	10.0>	200.0>	10.0>	100.0>	10.0>	202						
	\$0/\$2/20	10.0>	6900'0	SE.0	>00.004	\$00.0>	200.0>	100.0>	10.0>	10.0>	\$00.0>	2000.0>	20.0>	10.0>	₹00.0>	10.0>	100.0>	10.0>	.10						
	60/01/90	10.0>	≥00.0>	0.15	\$00,0>	c00.0>	200.0>	100.0>	10.0>	10.0>	\$00.0>	2000.0>	20.0>	10.0>	200.0>	10.0>	200.0>	10.0>	0.0>						
	£0/91/60	10.0>	\$00.0>	61.0	\$00.004	200.0>	£900.0	6100.0	10.0>	0.011	200.0>	20000.0>	20.0>	10.0>	200.0>	10.0>	\$00.0>	0.013	20.0						
	15/08/03	10.0>	200.0>	81.0	\$ 00.0>	\$00.0>	2800.0	100.0>	10.0>	10,0>	200.0>	2000.0>	20.0>	10.0>	\$00.0>	10.0>	\$00.0>	0.013	20.0						
9-/	10/91/60	10.0>	\$00.0>	\$1.0	\$00.0>	200,0>	200.0>	1100.0	10.0>	10.0>	200.0>	Z0000,0>	20.0>	10.0>	200.0>	10.0>	10.0	10.0>	0.0>						
۸.	p0/p1/90	10.0>	200.0>	91.0	1 00.0>	200.0>	\$00.0>	100.0>	10.0>	10.0>	200.0>	2000.0>	20.0>	10.0>	200.0>	10.0>	\$00.0>	10.0>	00>						
	10/91/60	10.0>	\$00.0>	61.0	1 00.0>	200,0>	200.0>	100.0	10.0>	10.0>	\$00.0>	2000.0>	20.0>	10.0>	200.0>	10,0>	200.0>	10.0>	0.0>						
	11/08/04	10,0>	200.0>	61.0	1 00.0>	200.0>	200.0>	100.0	100.0>	100.0	\$00.0>	2000.0>	20.0>	10.0>	200.0>	10.0>	200.0>	10.0>	20.0>						
	50/22/20	10.0>	200.0>	0.32	\$00.0>	200.0>	\$00.0>	100.0>	10.0>	10.0>	200.0>	2000.0>	20.0>	10.0>	200.0>	10.0>	100.0>	10.0>	250.0						
	£0/11/90	10.0>	\$00.0>	41.0	>00'0>	200.0>	£\$.0	15.0	10.0>	10.0>	200.0>	20000.0>	20.0>	0.016	200.0>	10.0>	200.0>	10.0>	20.0>						
	£0/L1/60	10.0>	\$00.0>	91.0	1 00.0>	200.0>	2.6	۵,۵	10.0>	10.0>	200.0>	2000'0>	20'0>	10.0>	\$00.0>	10.0>	\$00.0>	10.0>	820.0						
Į	40g E0/L1/60	10.0>	\$00.0>	71.0	¥00.0>	200.0>	T,S	5.5	10.0>	0.011	200.0>	2000.0>	20.0>	10.0>	\$00.0>	10.0>	\$00.0>	10.0>	3£0.0						
ĺ	15/09/03	10.0>	\$900.0	81.0	¥00'0>	200.0>	1.5	1.5	10.0>	0.015	200.0>	2000.0>	20.0>	0.010	\$00.0>	10.0>	200.0>	610.0	£50.0						
	03/11/04	10.0>	200.0>	81.0	100.0>	200.0>	££.0	LZ.0	10.0>	0.11	\$00.0>	2000.0>	20.0>	10,0>	200.0>	10.0>	200.0>	10.0>	70.0						
L-1	2 0/91/90	10.0>	200.0>	71.0	100.0>	200.0>	15,0	15.0	10.0>	10.0>	200.0>	2000.0>	20.0>	10.0>	\$00.0>	10.0>	200.0>	10.0>	20 0>						
	#0/#1/60	10.0>	\$00,0>	41.0	≯ 00.0>	200,0>	1,4	£,1	10.0>	10.0>	200.0>	200000>	20.0>	10.0>	200.0>	10.0>	200.0>	10.0>	S20.0>						
	4ng #0/#1/60	10.0>	200.0>	\$1.0	\$00.0>	<0,005	£.1	5,1	10,0>	10.0>	200.0>	20000.0>	20.0>	10.0>	200.0>	10.0>	200.0>	10.0>	20.0>						
	1 0/11/0 4	10.0>	\$00,0>	51.0	1 00.0>	\$00.0>	92.0	82.0	100.0>	82.0	\$00.0>	2000.0>	20.0>	10.0>	200,0>	10,0>	100.0>	10.0>	20.0>						
1	02/24/05	10.0>	2800.0	0.26	} 00.0>	200.0>	0.14	1160.0	10.0>	10.0>	200.0>	2000.0>	20.0>	10,0>	200,0>	10.0>	100.0>	10.0>	620.0						

3/28/06 104(e) 0583

HISTORICAL GROUNDWATER ANALYTICAL DATA · METALS

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

								,.~		(ms	/L)								
Well ID	Sample Date	Antimony	Arsenic	Barium	Berylllum	Cadmium	Total Chromium	Chromium vi	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Venadium	Zinc
GW-7-D*	06/11/03	<0.01	<0.005	0.13	<0.004	<0.005	0.34	0.28	<0.01	<0.01	<0.005	<0.0002	<0.02	0.012	<0.005	<0.01	<0.005	<0.01	<0.02
	06/10/03	<0.01	<0.005	0.14	<0.004	<0.005	0.032	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	09/16/03	<0.01	<0.005	0.19	<0.004	<0.005	0.036	<0.001	<0.01	0.014	<0.005	<0.0002	<0.02	0.011	<0.005	<0.01	<0.005	0.014	0.026
	12/08/03	<0.01	<0.005	0.20	<0.004	<0.005	0.15	0.001	<0.01	0.015	<0.005	<0.0002	<0.02	0.030	<0.005	<0.01	<0.005	0.015	0.021
	03/16/04	<0.01	<0.005	0.15	<0.004	<0.005	0.033	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	0.013	<0.005	<0.01	<0.005	<0.01	<0.02
	03/16/04 DUP	<0.01	<0.005	0.15	<0.004	<0.005	0.028	<0.001	<0.01	<0.01	< 0.005	<0.0002	< 0.02	0.013	<0.005	<0.01	<0.005	<0.01	<0.02
GW-8	06/14/04	<0.01	<0.005	0.15	<0.004	<0.005	0.013	0.0013	<0.01	<0.01	<0.005	<0.0002	<0.02	0.012	<0.005	<0.01	<0.005	<0.01	<0.02
	06/14/04 DUP	<0.01	<0.005	0.15	<0.004	<0.005	0.016	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	0.012	<0.005	<0.01	<0.005	<0.01	<0.02
	09/14/04	<0.01	<0.005	0.13	<0.004	<0.005	<0.005	0.001	<0.01	<0.01	<0.005	<0.0002	< 0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	11/08/04	<0.01	<0.005	0.13	<0.004	<0.005	<0.005	0.001	<0.001	0.001	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0,01	<0.02
	02/22/05	<0.01	0.0066	0.45	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.11
	06/16/03	<0.01	<0.005	0.21	<0.004	<0.005	0.014	0.0013	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	0.016	0.028
	09/17/03	<0.01	<0.005	0.23	<0.004	<0.005	0.018	<0.001	<0.01	0.12	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	0.015	0.031
	12/08/03	<0.01	0.011	0.56	<0.004	<0.005	0.24	0.0011	0.020	0.077	0.021	0.0004	<0.02	0.052	<0.005	<0.01	<0,005	0.11	0.16
	03/16/04	<0.01	<0.005	0.32	<0.004	<0.005	0.15	0.0011	<0.01	0.025	0.0064	<0.0002	<0.02	0.033	<0.005	<0.01	<0.005	0.037	0.068
GW-9	06/15/04	<0.01	<0.005	0.16	<0.004	<0.005	0.0051	0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	09/14/04	<0.01	<0.005	0.14	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	< 0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	11/08/04	<0.01	<0.005	0.15	<0.004	<0.005	<0.005	<0.001	<0.001	<0.001	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	02/22/05	<0.01	0.0071	0.23	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
	06/11/03	<0.01	<0.005	0.14	<0.004	<0.005	0.12	0.085	<0.01	<0.01	<0.005	<0 0002	<0.02	0.010	<0.005	<0.01	<0.005	<0.01	0.021
	09/17/03	<0.01	<0.005	0.17	<0.004	<0.005	7.9	7.5	<0.01	<0.01	<0.005	< 0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	0.026
	12/10/03	<0.03	<0.015	0.22	<0.012	<0.015	27.0	26.0	<0.03	<0.03	<0.015	<0.0002	<0.06	<0.03	<0.015	<0.03	<0.015	<0.03	<0.06
	12/10/03 DUP	<0.03	< 0.015	0.23	<0.012	<0.015	28.0	27.0	<0.03	<0.03	<0.015	<0.0002	< 0.06	<0.03	<0.015	<0.03	<0.015	<0.03	<0.06
	03/17/04	<0.01	<0.005	0.19	<0.004	<0.005	1.9	1.7	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	0.0065	<0.01	<0.02
G111 10	03/17/04 DUP	<0.01	<0.005	0.22	<0.004	<0.005	1.9	1.7	<0.01	<0.01	<0.005	<0.0002	<0.02	0.013	<0.005	<0.01	<0.005	0.01	<0.02
GW-10	06/16/04	<0.01	<0.005	0.13	<0.004	<0.005	1.1	1,1	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	06/16/04 DUP	<0.01	<0.005	0.13	<0.004	<0.005	1.1	1.1	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	09/15/04	<0.02	0.009 J	0.14	<0.008	<0.010	15.0	14.0	<0.02	<0.02	<0.01	0.00014 J	0.013 J	<0.02	<0.01	<0.02	0.007 J	<0.02	<0.04 UJ
	11/11/04	<0.01	<0.005	0.12	<0.004	<0.005	0.92	0.95	<0.001	0.94	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
	11/11/04 ^{DUP}	<0.01	<0.005	0.11	<0.004	<0.005	0.88	0.94 J	<0.001	0.95	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
	02/25/05	<0.01	<0.005	0.26	<0.004	<0.005	0.20	0.17	<0.01	<0.01	<0.005·	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.024

HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

			· · · · · · · · · · · · · · · · · · ·							(m)	√L)						1		
Well ID	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Total Chromium	Chromium ^{v1}	Cobalt	Copper	Lead	Meroury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
GW-10-D*	06/11/03	<0.01	<0.005	0.16	<0.004	<0.005	0.45	0.084	<0.01	<0.01	<0.005	<0.0002	<0.02	0.058	< 0.005	<0.01	<0.005	<0.01	<0.02
	01/14/04	<0.01	<0.005	0.10	<0.004	<0.005	0.013	0.0012	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	01/14/04 DUP	<0.01	<0.005	0.10	<0.004	<0.005	0.014	0.0013	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	03/17/04	<0.01	<0.005	0.13	<0.004	<0.005	0.10	0.056	<0.01	0.01	<0.005	<0.0002	<0.02	0.018	<0:005	<0.01	<0.005	0.015	0.22
GW-I4A	06/15/04	<0.01	<0.005	0.098	<0.004	<0.005	0.29	0.028	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	09/14/04	<0.01	<0.005	0.11	<0.004	<0.005	0.83	0.079	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.06 UJ
	11/09/04	<0.01	<0.005	0.11	<0.004	<0.005	0.22	0.021	<0.001	0.21	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
	02/23/05	<0.01	<0.005	0.36	<0.004	<0.005	0.82	0.72	<0.01	₹0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.058
GW-14A-S*	01/13/04	<0.01	<0.005	0.088	<0.004	<0.005	<0.005	0.0011	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	01/14/04	<0.01	<0.005	0.11	<0.004	<0.005	<0.005	0.0011	<0.01	Ø.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	0.0095	<0.01	<0.02
	03/17/04	<0.01	<0.005	0.14	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
GW-14B	06/15/04	<0.01	<0.005	0.12	<0.004	<0.005	<0.005	<0.001	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	0.031
G 111-14B	09/14/04	<0.01	<0.005	0.12	<0.004	<0.005	0.32	0.30	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	11/09/04	<0.01	<0.005	0.13	<0.004	<0.005	0.30	0.28	<0.001	0.28	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
	02/24/05	<0.01	<0.005	0.48	<0.004	<0.005	0.05	0.045	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.12
GW-14B-S*	01/13/04	<0.01	<0.005	0.11	<0.004	<0.005	<0.005	0.0011	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
GW-14B-M*	01/13/04	<0.01	<0.005	0.12	<0.004	<0.005	0.0081	0.0011	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	< 0.005	<0.01	<0.005	<0.01	<0.02
GW-14B-D*	01/13/04	<0.01	<0.005	0.12	<0.004	<0.005	<0.005	0.0012	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	06/16/04	<0.01	<0.005	0.094	<0.004	<0.005	1.8	1.8	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.02
	09/15/04	<0.01	0.0056	0.12	<0.004	<0.005	8.1	8.8	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	0.0052	<0.01	0.078 J
	09/15/04 DUF	<0.01	<0.005	0.12	<0.004	<0.005	7.7	8.6	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.005	<0.01	<0.021 UJ
GW-15	11/10/04	<0.01	<0.005	0.12	<0.004	<0.005	4.5	4.8	<0.001	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
	11/10/04 DUP	<0.01	<0.005	0.12	<0.004	<0.005	4.5	4.8	<0.001	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02
	02/25/05	<0.01	0.0066	0.26 J	<0.004	<0.005	7.0	6.4	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.038
	02/25/05	<0.01	<0.005	0.18	<0.004	<0.005	6.7	6.5	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	<0.02

Notes

Samples were analyzed using EPA Method 6010B, except for chromium (EPA Method 7199) and mercury (EPA Method 7470A) EPA - U.S. Environmental Protection Agency

DUP - Duplicate sample collected

J - Estimated

mg/L - Milligrams per liter

U1 - Result is non detected, however, the reporting limit is qualified as estimated

< - Less than listed reporting limit

*Sample from lower part of well screen interval.

HISTORICAL GROUNDWATER ANALYTICAL DATA ORGANICS

Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

						μg/L					
Well ID	Sample Date	1,1,1-Trichloroethune	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethene	Dichlorodifluoromethane	Tetrachloroethene	Trichloroethene
	11/09/04	<1	1.5	2.3	<0.5	<0.5	<1	10	2	5.6	13
GW-1	02/23/05	<1	3.1	<1	0.91	<0.5	<1	22	10	12	11
GW-2	11/08/04	<1	2.8	<1	0.93	<0.5	<1	20	4.7	10	14
GW-2	02/22/05	<1	3.5	<1	1.9	<0.5	<1	29	15	15	8.6
	06/11/03	6.9	12	8.8	1.20	0.58	2.0	24	7.2	15	20
GW-3	6/11/03 ^{DUP}	3.7	6.8	5.1	0.86	<0.28	1.2	18	<1.1	10	110
GW-3	11/10/04	<1	3.4	<1	0.86	<0.5	<1	23	6.0	14	21
	02/23/05	<1	3.8	<1	1.3	<0.5	<1	29	14	16	12
GW-4	11/12/04	<l< td=""><td>3.7</td><td><1</td><td>1.10</td><td><0.5</td><td><1</td><td>23</td><td>13</td><td>15</td><td>12</td></l<>	3.7	<1	1.10	<0.5	<1	23	13	15	12
GW-4	02/25/05	<l< td=""><td>3.9</td><td><l< td=""><td>1.0</td><td><0.5</td><td><1</td><td>27</td><td>14</td><td>14</td><td>12</td></l<></td></l<>	3.9	<l< td=""><td>1.0</td><td><0.5</td><td><1</td><td>27</td><td>14</td><td>14</td><td>12</td></l<>	1.0	<0.5	<1	27	14	14	12
GW-5	11/12/04	<1	3.9	<1	0.88	<0.5	<1	21	9.3	17	11
GW-5	02/25/05	<1	5.6	<1	1.3	<0.5	<1	34	18	18	1.
GW-6	11/08/04	<1	2.0	<1	0.51	<0.5	<l< td=""><td>13</td><td><<u>2</u></td><td>7.4</td><td>5.2</td></l<>	13	< <u>2</u>	7.4	5.2
G11-0	02/22/05	<1	4.8	<1	1.3	<0.5	<1	28	14	17	11
	6/11/03 ^{DUP}	<0.6	6.7	2.5	1.00	<0.56	2.2	22	<2.2	12	170
GW-7	11/11/04	1.7	5.9	<2.5 UJ	0.68	<0.5	1.2	20	5.8	12	87
GW-/	02/24/05	<1	5.2	1.5	1.0	<0.5	<1	27	11	14	53
	2/24/05 ^{DUP}	<1	5.0	1.4	1.1	<0.5	1.0	25	11	13	51
0111.0	11/08/04	<1	1.5	<1	0.58	<0.5	<1	11	3.4	7.9	14
GW-8	02/22/05	<l< td=""><td>1.8</td><td><1</td><td>0.66</td><td><0.5</td><td><1</td><td>14</td><td>4.9</td><td>8.7</td><td>9.5</td></l<>	1.8	<1	0.66	<0.5	<1	14	4.9	8.7	9.5
CWO	11/08/04	<l< td=""><td>1.6</td><td><1</td><td>0.60</td><td>0.5</td><td><1</td><td>12</td><td>2.6</td><td>7.3</td><td>21</td></l<>	1.6	<1	0.60	0.5	<1	12	2.6	7.3	21
GW-9	02/22/05	<l< td=""><td>1.9</td><td><1</td><td>0.64</td><td><0.5</td><td><1</td><td>14</td><td>4.6</td><td>9.5</td><td>17</td></l<>	1.9	<1	0.64	<0.5	<1	14	4.6	9.5	17
	06/11/03	4.6	<1.1	7.6	<1.1	<1.1	6.3	24	<4.4	20	61
	6/11/03 ^{DUP}	2.3	3.1	<0.64	< 0.56	<0.56	2.8	17	<2.2	13	24
GW-10	11/11/04	<1	2.0	<1	0.84	<0.5	<1	16	9.5	12 J	25
	11/11/04 ^{DUP}	<1	2.0	<1.8 UJ	0.82	<0.5	1.1	17	9.3	16	13
	02/25/05	<1	2.6	<1	1.2	<0.5	<1	23	13	13	18
	11/09/04	<1	2.1	1.8	0.50	<0.5	<1	11	2	8.3	29
GW-14A	02/23/05	<1	3.9	<l< td=""><td>1.6</td><td><0.5</td><td><1</td><td>31</td><td>7.0</td><td>16</td><td>14</td></l<>	1.6	<0.5	<1	31	7.0	16	14
OW - 45	11/09/04	<1	3.6	<1	1.30	<0.5	<1	28	7.0	15	15
GW-14B	02/24/05	<1	4.3	<1	1.7	<0.5	<1	37	16	16	9.
	05/13/04	<1	1.2	<1	<0.5	<0.5	<1	6	<5	2.3	14
	11/10/04	3.5	6.7	6.0	1.30	0.54	1.5	23	7.9	13	12
GW-15	11/10/04 ^{DUP}	3.5	6.5	6.2	1.20	0.57	1.5	22	8.1	12	12
	02/25/05	4.0	8.0	7.6	1.2	0.51	2.2	26	8.2	13	16
	2/25/05 ^{DUP}	3.9	7.8	7.4	1.2	<0.5	2.2	25	8.2	13	150

Samples were analyzed using EPA Method 8260

Only detected analytes are shown.

DUP - Duplicate sample listed immediately below original sample EPA - U.S. Environmental Protection Agency

J - Estimated

µg/L - Micrograms per liter

Ul Result is non detect, however, the reporting limit is qualified as estimated

< - Less than listed reporting limit

TABLE C-5

HISTORICAL GROUNDWATER ANALYTICAL DATA - EMERGING CHEMICALS Honeywell North Hollywood Site

			με	:/L	
Well ID	Sample Date	Perchlorate	n-Nitrosodi- methylamine	1,4-Dioxane	1,2,3- Trichloropropane
		(EPA 314.0)	(EPA 1625)	(EPA 8270C)	(EPA 8260B)
	03/25/03	<2.0	< 0.002	4.4	<0.005
	03/25/03 ^{DUP}	<2.0	< 0.002	3.9	0.0053
GW-1	06/16/03	<2.0	0.0022	4.6	0.007
GW-1	06/16/03 ^{DUP}	<2.0	0.0048	4.4	0.0056
	09/17/03	2.2	<0.002	3.1	< 0.005
	12/09/03	<2.0	0.014	3.7	< 0.005
	03/25/03	<2.0	< 0.002	3.6	0.016
	06/10/03	<2.0	0.025	4.0	0.011
	09/16/03	<2.0	0.043 J	3.6	< 0.005
	12/08/03	<2.0	0.011	5.5	< 0.005
GW-2	03/16/04	<2.0	NA	5.5	NA
	06/14/04	<2.0	NA	5.1	NA
	09/16/04	<2	NA	4.2	NA
	11/08/04	<2	NA	5.0	NA
	02/22/05	<2	NA	4.1	NA
- 1	03/26/03	2.0	<0.002	5.2	0.0083
	06/11/03	4.4	<0.002	20	0.0084
	09/17/03	17.0	<0.0023 J	30	< 0.005
	12/10/03	8.4	0.021	14	< 0.005
GW-3	03/18/04	<2.0	NA	5.9	NA
	06/15/04	<2.0	NA	6.4	NA
	09/14/04	5.3	NA	9.1	NA
	11/10/04	<2	NA	6.2	NA
The second	02/23/05	<2	NA	5.4	NA
	03/27/03	<2.0	<0.002	4.0	0.007
GW-4	06/13/03	<2.0	0.018	4.7	0.0069
GW-4	09/19/03	<2.0	<0.0068 J	3.5	0.0052
	12/12/03	<2.0	0.017	4.1	<0.005
	03/24/03	<2.0	< 0.002	5.5	0.013
CVV	06/13/03	<2.0	0.025	6.4	0.013
GW-5	09/19/03	<2.0	< 0.002	27	<0.005
	12/12/03	<2.0	0.031	4.9	< 0.005

TABLE C-5

HISTORICAL GROUNDWATER ANALYTICAL DATA - EMERGING CHEMICALS Honeywell North Hollywood Site

			με	/L	
Well ID	Sample Date	Perchlorate	n-Nitrosodi- methylamine	1,4-Dioxane	1,2,3- Trichloropropane
	03/25/03	<2.0	0.003	3.5	< 0.005
	06/10/03	<2.0	0.0032	5.2	0.0054
	09/16/03	<2.0	<0.0021 J	5.3	0.005
	12/08/03	<2.0	< 0.002	4.9	0.0056
GW-6	03/16/04	<2.0	NA	5.0	NA
	06/14/04	<2.0	NA	5.8	NA
	09/16/04	<2	NA	4.1	NA
	11/08/04	<2	NA	3.8	NA
	02/22/05	<2	NA	6.3	NA
	03/26/03	<2.0	< 0.002	4.9	0.010
	06/11/03	<2.0	< 0.002	6.5	0.010
	09/17/03	8.9	<0.0028 J	32	< 0.005
	09/17/03 ^{DUP}	9.2	<0.0026 J	35	< 0.05
	12/09/03	10	0.034	23	< 0.005
CONT. M	03/17/04	<2.0	NA	5.2	NA
GW-7	06/16/04	2.1	NA	4.8	NA
	09/14/04	3.7	NA	11	NA
	09/14/04 ^{DUP}	3.9	NA	10	NA
	11/11/04	<2	NA	5.6	NA
	02/24/05	<2	NA	5.0	NA
	02/24/05	<2	NA	5.1	NA
-	03/24/03	<2.0	0.0037	7.3	< 0.005
GW 6	06/10/03	<2.0	< 0.002	5.3	< 0.005
GW-8	09/16/03	<2.0	<0.0064 J	4.1	< 0.005
	12/08/03	<2.0	0.0031	4.2	< 0.005
	03/24/03	<2.0	0.012	2.6	< 0.005
CW 6	06/16/03	2.3	0.0096	1.2	< 0.005
GW-9	09/17/03	2.7	<0.0044 J	1.0	< 0.005
	12/08/03	<2.0	0.0049	1.5	< 0.005

HISTORICAL GROUNDWATER ANALYTICAL DATA - EMERGING CHEMICALS Honeywell North Hollywood Site

11600 Sherman Way, North Hollywood, California

			με	_ž /L	
Well ID	Sample Date	Perchlorate	n-Nitrosodi- methylamine	1,4-Dioxane	1,2,3- Trichloropropane
	03/26/03	<2.0	< 0.002	5.2	0.0063
	06/11/03	<2.0	< 0.002	6.5	<0.005
	09/17/03	19	<0.0021 J	19	< 0.005
	12/10/03	45	0.0043	37	< 0.005
	12/10/03 ^{DUP}	38	0.0043	37	<0.005
	03/17/04	3.4	NA	6.6	NA
GW-10	03/17/04 ^{DUP}	<2.0	NA	5.4	NA
	06/16/04	3.1	NA	7.4	NA
	06/16/04 ^{DUP}	<2.0	NA	6.3	· · NA
	09/15/04	11	NA	17	· NA
	11/11/04	<2	NA	4	NA
	11/11/04 ^{DUP}	<2	NA	4.1	NA
	02/25/05	<2	NA	<5	NA
	06/16/04	2.9	NA	8.1	NA
	09/15/04	13	NA	24	NA
	09/15/04 ^{DUP}	14	NA ·	23	NA
GW-15	11/10/04	6.7	NA	11	NA
	11/11/04 ^{DUP}	6.4	NA	9.2	NA
	02/25/05	8.8	NA	16	NA
	02/25/05	8.9	NA	14	NA NA

Notes:

DUP - Duplicate sample collected

EPA - U.S. Environmental Protection Agency

J - Estimated

μg/L - Micrograms per liter

NA - Not analyzed

< - Less than listed reporting limit

APPENDIX D
GROUNDWATER SAMPLING LOGS

WELL GAUGING FORM

Client: Honeywell - North Hollywood Sites 11600 Sherman Way, North Hollywood Job Number: 1890933.0501

out isp	TATE REPORTED	West absent	TACE	Logian) Markingan			CONTRACTOR OF THE PROPERTY OF
6W-5	274.34	308	TOC	4"	2/22/05		
6W-4	274.91	305		4"		0535	Iven instelling transferer.
6W-8	275.69	705		4*		0545	0
6W-9	274-33	303		4'		0610	
GW-7	268.54	310		4"		0635	download transferre date
GW-10	271.31	3/0		4"		0652	donnload transferre Sate
GW-15	270.33	~300		6"		0715	
6W-6	277.91	305		4"		0735	
GW-2	272.99	301		4"		0800	
6W-I	273.98	305		4"		0815	dountrad transferen data
GW-14A	273.41	282		4"		0825	
3W-14B	272.70	312		#6"	Ý	0827	
GW-3	270.76	305		4"	2/22/05	0905	
GW-124-285	266.10	255		1"	2/23/05	1425	
W-12A-320	265.95	320	V	1"	<u> </u>	1430	
6W-12A-350	264.02	350	Tou		2/23/05	1434	

NOTES

*TOC - Top of Casing

GL. Ground Level

PC - Protective Casing

⊕ mwh		GROU	ND WA	TER PU	RGING (LOW FLO	W) FOR	M	
,	: <u>(5W-2</u>			Site:	Honeywell - Nor 11600 Sheman \ 1890933,0501	th Hollywood Way, North Hollyw	ood	Total well depth (ft) Well Dismeter (in) Barehole Dismeter (in)	<u> </u>
	= 2/22/05 = 2/23/05	* All r	Previous static	e water level (fi); c water level (fi); ater colourn (fi); ken from: X Top			_ Chound leve	Development method: Purging method: Sampling method: ius kreenst sy ST 650	+v6e
Hou, S.	AATGUNG PURGEDINAL							CORDICACION DE SER	WAJER LIVE (II-bgs)
08/2	87-/	1811	7.36	19.74	2	/34.5	5,36	start punging	
0830 0835	18 gal 23 gal	1808	7.36 7.37 7.39	20.04	1 1	132.1 132.2 131.1	5.25 5.53 5.47	DTW = 2	72.99
0 845							>	collect 6W1-02/2 Decon 3 bushet metho	5/0 r
						NGE			
						2.7.			
	1		-						

MWH		GROU	IND WA	TER PUI	RGING (I	LOW FLC	W) FOR	M	
Well Number Purging Date	6W-2 2/LZ/0	53		_		h Hollywood Vay, North Hollyw	eod	Total weil depth (ft). Well Diameter (in) Borehole Diameter (in)	<u>. 4" </u>
	2/22/05	· All	Previous stati Standing v	c water level (ff); c water level (ff); rates column (ft); nken from; X Top			Omund leve	Development method: Porting method: Sampling method: \(\sum \textbf{X} \sum \textbf{I} \) \(6 \sum \textbf{S} \)	tube
pole	ASSOCIO PORGIEDICAD					180 a 180 a	a DO NA Mari	COTORAZONABALA	WATER TEXAL TOTAL
1210 1225 1230	15	1996	7.27	20.16	1 1	126.5	1-63	start gamping	
1235	25 30	1905	7.27	20.23	2	125.3	1.56	DTW = 272	1
12.50		12.						dem > bucket one	
						NEE			

(II) MWH		GRO	JND WA	TER PU	RGING (LOW FLO	W) FOR	M	
	GW-3 2/23/00					h Hallywood Vay, North Hallyw	ood	Total well depth (fi): Well Diameter (in) Borchole Diameter (in),	4"
	2/2/05	• All	Previous stude Standing wa	ster column (fi):			_ Ground leve	Development method: Sampling method: Y-SI (450)	tuba
nau ji	RAIDIKT PORGEDIAN	The state of the s	22	of the manner of the	MANAGER AND TOTAL	GRO.		CORPORATION	MATER HILLYRIA (ELW)
0945 0955 1000 1005	10 gal 15 gal 20 gal	1780 1786 1789	7.33 7.33 7.33 7.33	19.24 19.24 19.27	2 2 1	30.0 30.5 30.9	3.46 3.45 3.43	DTW = 270	76
1015 -								decon 3 Rocket and	5 Had
						10	r.c.		
	<u> </u>								

(I) MWH		GROU	ND WA	TER PU	RGING	(LOW FLO	W) FOF	RM	
Well Number Purging Date	= 6W-4 = 2/25/0	<i>r</i>			1600 Shemu	North Hollywood an Way, North Hollywo	ood	Total well depth (fi Well Diameter (in Borchole Diameter (in):
Gauging Date Bailer ID Sample Date	2/25/05	* All n	Previous static	water level (fi); water level (fi); ater column (fi); ken from Z Top		Protective casing,	Ground leve	Development metho Putging metho Sampling metho	d:
1912	PERCHONNEL	i i	611		1818(811)	is GRP	Doi:	COLORCHAMENTS	WATER LEVIA (ries)
0430 0440 0445 0450 0455 0500	10gd 15gal 20gal 25gal 30gal	1651 1641 1637 1634 1666	7.49 7.50 7.50 7.50 7.50	20.54 20.78 20.82 21.59 21.13	11 16 33 .32 27	110.8 110.9 110.2 109.5 2108.109.1	5.11 4.97 4.89 4.89	DTW=	2/25/05
						NE		deren 3 breket	Shol

MWH		GROU	ND WA	TER PU	RGING (L	.ow FL	OW) FOR	ım	
Weli Number Parging Date	: 6W-5 : 2/25/05			Site	Honeywall - North 11600 Sheaman W 1890933.0501		vood	Total well depth (ft) Well Diameter (in) Borehole Diameter (in)	. 4*
rr -	2/25/05	* All n	Previous static	: water level (f); ster column (f);		- - oteoáve ¤sing, _	Ground leve	Development method Purzing method Sampling method V 5 I 650	tube
10.50	MACO EAL	(riff(cin)	101	7,07	rmunoria ovata,	ORP Text)	196) 1967/15	: COLORGONALENS	METERL LEVEL (ft bps)
0245 0255 0300 0365 0310	10 gal 15 gal 20 gal	2000 1953 1965	7.35 7-38 7-38	19.02 19.53 19.75	2. 2. 2.	116.8	3.77 3.57 3.38	DTW = 274.0	·····
								decor 3 broket on	th.J
					Z				
		•							

MWH		GROU	ND WA	TER PU	RGING (L	OW FLC	W) FOF	RM	·····	
Well Number Purging Date	: GW-6 : 2/22/0	75		Site	Honeywell - North 11600 Sherman W 1890933.0301		ood	Total wall depth (ft): 305 Well Diameter (in): 4* Borchole Diameter (in):		
	2/22/05	* All π	Previous static Standing we neasurements tal		Development method: low flow Purging method: V Sampling method: fibe YSI 650 MDS					
	AMOUNTA SHURGER (pai)	7.7	pit	11.00	THE PARTY	ORP SE	je savoj - j u Grizabili	GEORGOTHESE	WASI LIVI (II.br	
1030	5 901	2029	7.22	11.56	24.9	147.3	2.72	start pumping @ ?	gpm	
1040 2045	15 gal	2026	7.25	20.03	32. 34.1	137.7 132.4	2.45			
1050 2055	20 gal	2019	7.25	20.07	98.0 * 3.0	131.6	2.52	enegat enough	-	
11 00 11/0 —	30 94/	2027	7.25	20.01	4.0	/34.0	2.44	DTW = 2 77.92	1.	
								Secon 3 broket no	the d	
						MES			-	
						27				

MWH		GROU	ND WA	W) FOR	RM					
Well Number Purging Dates	: GW-7 : 2/24/	′o.s		_		Hollywood ay, North Hollyw	00 d	Total well depth (fi): 3/0 Well Diameter (in): 4" Barehole Diameter (in): Development mediod: 10 from 1 Purging method: 1 Sampling method: 106		
Beiler ID	2/22/05	* All #	Previous station Standing W	water level (f); water level (f); afar column (f); ken from: L Top	of carino Pr	- mestive socials	_ Ground leve			
UMEX	i (Molec) Pelitipida	100 (125(511))	P).	ken tronic <u>za</u> rop	708000(3) (50)		ik) Ggli	POLOR COMBINES	VALEA IZVEI Green	
#2155								start gunging		
22/0	15 gal	1708	7.39	20.19	1	126.1	4.96			
2215	20 901	1713	7.39	20.50	2	125.1	5.04			
2220	25 50	1722	7. 39	20.55	2	124.9	4.95	A 77.1 = 0.4		
2225	30 gal	1716	7.40	20.59	2	124-6	4.82	DTW = 26		
2230								desor 3 Surfet		
		-	-	-						
			-				1			
					****** , T-#*				1	
· · · · · · · · · · · · · · · · · · ·										
						NE				
272						3				
			-							
	ļ <u></u>		-							

(II) MWH		GROU	ND WAT	TER PUF	OW) FOR	RM				
	1. 6W-9 1. 2/22/05			_	doneywell - North 1600 Sherman W 1890933.0501		voad	Total vell depth (A) Well Diameter (in) Borehole Diameter (in)	4."	
il .	18: <u>2/22/05</u> D:		Previous static Standing wa	ret colaunt (tt):		_	Development method: <u>law flo</u> Pwzing method: <u>fuke</u> Sampling method: <u>fuke</u> y J T 650 N			
15500 24	-sicultura eri Engletigi (j. j.)							COLOR/STRUENTS	YATER TEVIL	
1330 1340 1345 1350	/o /s 20	1774	7.27 7.27 7.27	19.27	2 1	122 (120.7 120.4	5.22 5.71 5.66	start purping		
[355 1400 1410	3.0	1768	7.27	/9.89 /9.80	1 2	124.0	5.12 3.5?	DTW = 2 collect GW-9-2/22/2 decon > lumbet	2	
					N. S.	£				

mwh		GROU	IND WA	TER PU	RGING (L	OW FLO	W) FOR	М		
Well Number: Purging Date:	(2W-10 2/24/0	· -		Site:	Honeywell - North 11600 Sherman W 1890933.0501		uod	Total well depth (ft): 3/0 Well Diameter (in): 4" Borehole biameter (in):		
Gauging Date: Bailer ID: Sample Date:		4 A11 :	Stade Previous stati Standing w measurements to	Development method: <u>low flow</u> Purping method: <u>low flow</u> Sampling method: <u>lobe</u> Y S I 6 50 MD						
P. Maye	gasjolski Pilkolspæji	DYSENSESSES	A Company of the last	Carried Control	CARL STATE OF THE	1 C C C C C C C C C C C C C C C C C C C	THE THE PARTY OF T		Towns of the	
2340	The state of the s							start purping		
2350	10 308	1675	7.40	19.99		124.7	1.58	, , ,		
2355	15 gal	1676	7.40	19.79		124.8	1.58			
2400	20 gal	1674	7.42	20.07		125.7	1.49			
2/0 2005	25 gel	1672	7.41	20.09		126.3	1.49	DTW = 27%	52	
24/0000								Meet GW-10-	2/24/05	
						<u> </u>		deun 3 bulet no	that	
									<u> </u>	
			-							
					····			<u> </u>		
		 				#				
						FE				
		 	 			20				
	·	 							<u></u>	
		<u> </u>								

(II) MWH		GROU	JND WA	W) FOF	RM					
Well Number Purging Date	: GW-14A : 2/23/05			Site	Honeywell - Nort 11600 Sherman W 1890933.0501	h Hollywood /ay, North Hollywo	od	Total well depth (ft) Well Diameter (in) Borehole Diameter (in)	4	
	= <u>2/22/05</u> :: <u>2/23/05</u>		Previous statio Standing w measurements ta		of casingP	— — motective casing,		Development method: 10 160 Purging method: 166 Sampling method: 1660 VSI 650 MP		
NAME I	Parkora) (pa))	ALCONOMICS (MARK Perce)	1	grave G	TURBIDIET A.B.O.	080 (a)0	76) (12)	a unique de la company de la c	WATER	
1125								start propries		
1135	10 gal	1883	7.37	19.54	4	130.9	11-18	, , ,		
1140	15 sel	1878	7-36	19.4	3	133.0	11.07			
1145	20 0	1873	7.37	19.57	3	133.0	11.07			
1120	25 gel	1867	2:37	17.60		134.0	11.20	DTW = 27.	3.41	
1155								rollect GW-14A-2/2		
					·····			decon 3 bushed not	Craf	
										
				+	-			<u> </u>		
					····				<u></u>	
· · · · · · · · · · · · · · · · · · ·	T.			T		WFE				
		· · · · · · · · · · · · · · · · · · ·				2.0				
		-								

Well Number Purging Date	: GW-14A : 2/25/03	(Proto	10)	_	Honeywell - North 11600 Sherman W 1890933.0501	•	oed	Toul well depth (R): 285 Well Diameter (in): 4° Borehole Diameter (in):		
	: 2/22/05 ::2/25/05	¹ All n	Static Previous static Standing was seasurements to	Development method: /w f/e Purging method: /wbe						
	PHROET (pa)	(1797.59B)		al Ave	PERBINA (KPG)		.00 (ng/13 - 1	EEOLORICOMMEN B	O VE	
1225								start among		
1240	15 gal	1875	7.37	19.77	<u> </u>	133.1	10.98			
1245	20 gel	1878	7.37	19.96	1	133.1	10.90	DTW = 27	פת ז	
1255	-374	1.10	-	-			<i></i> >	edlect 6WHA-PG-2		
_								dean 3 fullet net	Sand .	
								10.1		
						1	<u> </u>			
						110-				
						NHE				
						2.	0			
· · · · · · · · · · · · · · · · · · ·										

(I) MWH	MWH GROUND WATER PURGING (LOW FLOW) FORM										
Well Number Purging Date	: <u>6W-14A</u> (: 2/23/05	Total well depth (fi Well Diameter (in Borehole Diameter (in): 4"								
	2/23/05	* AU	Previous station Standing w	c water level (ft); rater column (ft);		3 C I	Ground leve	Purping method Sampling method \$\forall 5T 6.50	: 3CV: : beilec : MDS		
	freister paton	1198/40		12.31	prikalistis Gal	UKP (ja)	1¥3 30g/14	coffsucontails :	WATER LEVIX. (It bus		
1310								start purping			
13 40	10 00	1887	7.40	21.25		132.8	10.21	, , ,			
1325	15 gel	1885	7.38	20.69		133.3	10.57				
1330	2000	1885	7.38	2047	2	133,5	11.30		ļ.,		
1335	2571	1881	7.39	21.44	2	134.3	11.33	DTW = 273	36 40 °/ C		
1345-								- Clar GW-14A-1	10-42301		
	<u> </u>							de con 3 limbet me	They		
		 	-	-	 						
	-						 				
			 								
						4/2					
				1		NE					
						120					
									<u> </u>		
		L									

Well Number Parging Date	6W-14 2/24/	B os		-	Honeywal) - North 11600 Sherman W 1890933.0501		vçəd	Total well depth (f Well Diameter (in Borehole Diameter (in	a): & ''
				c water level (fl): ater column (fl):		3 c Vi	×37.3 = 57. = ×3 = 177. Oround leve		d: <u>L</u> d: Lube
nar.	MODEL MARGEDIES		7) 1 3 3 3 3 3 3 3 3 3	38/19/0	horania ma	(P)	007/3	COROBIO OPENS	WATES 14102 16102
1728								start pumping	
1740	12	1837	7.10	20.14	5.8	121.8	7. 38	1 1 0	
1745	17	1836	7.30	20.11	1	121.9	6.60		1
1750	22	12 73	7.31	20.32	1	121.5	7.18		-
1755	27	1872	7.31	20.72	0	121.4	7.40	N.T. 1 = 22	2 0 -
1800	32-	1882	7.31	20.34		120.8	7.06	DTW = 27	
1810 -							_	collect 6W-14B	
			-				 	dem 3 bestet	and the
			-	-			-		
						 			
					WI	F			
			111			20			
						,			
							ļ <u> </u>		

⊕ MWH		GROU	IND WA	TER PU	RGING (I	LOW FLO	W) FOR	W) FORM			
Well Number Purging Date	: 6W-14B : 2/24/0	(Protocol	<i>د</i>)	Sites	Honeywell - Nart 11600 Shennan W 1890933.0501	h Hollywood /ay, North Hollyw	oud	Well Dismeter (in): 6" Borehole Diameter (in):			
	: 2/22/05 :- ::2/24/05	* All 1	Previous static Standing wa	ater column (fi):		 Tolective cesing, _	Ground levr	Development method: Purping method: Sampling method: YSI650	tube > MDS		
TIAN	edrous () Poroed (pa)	io Eli	o)e	777.12	tokulory 65 U	(98) (m)	160 1997	coroniconarses.	THEFT		
1835 1845	10 gal	1881	7. 19	(7.94	2 1	134.7	7.53	start grouping			
1850 1855 1900	20 gel	1888	7.37 7.34 7.34	20.27	1 1	122. 20. 120.0	7.38	DTW = 27	7 74		
1905-	2-74	(B)	7:21	20.34				select 6W-14B	Col		
						VEE					
4	I										

MW (и	GROU	ND WA	TER PU	RGING (L	OW FLO	OW) FOR	RM
Well Nu Parging	mber: <u>GW-14</u> Date: <u>2/24</u>	700 d	Total well depth (ft): 312 Well Diameter (in): 6" Borehole Diometer (in):					
	Boiler ID: Previous Sample Date: 2/24/05 Stand			e water level (fi): vater column (fi):		-	. 47 × 39.5 = 17 57.7 × 3= 17	
185	AMOUNT PURCERO (EN	l me m		40 AV	TOTAL TOTAL	(BR)	(mg(1))	COLORADOR SERVICE TANKS
1935 1945 2000 2020 2040 2040	15 gal 45 gal 103 gal 165 gal	1839 1829 1892 1892 1748	7.34 7.37 7.35 7.35	19.46 19.49 19.49 19.49 19.36	1 1 1 1	123.2 117.1 118.8 118.8 121.0	7.79 7.26 7.31 7.31 7.29	inuse from to 3.0 ggs
2050								Lecon 3 bushed without
						E.E.		

APPENDIX E
PURGING AND SAMPLING EVALUATION

TABLE E-1

PURGING PROTOCOLS SUMMARY OF INORGANIC ANALYTICAL DATA FIRST QUARTER 2005

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

											a)	ng/L)								
Well ID	Purging Protocol	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Total Chromium	Chromium VI	Cobalt	Соррег	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
		11/09/04	<0.01	<0.005	0.089	<0.004	<0.005	1.7	1.8	< 0.01	<0.01	<0.005	< 0.0002	<0.02	<0.01	<0.005	<0.01	<0.01	< 0.01	<0.02
	Α	02/23/05	<0.01	<0.005	0.38	<0.004	<0.005	0.43	0.39	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	< 0.001	<0.01	0.15
	В	11/09/04	<0.01	<0.005	0.11	<0.004	<0.005	0.22	0.21	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	< 0.005	<0.01	<0.01	<0.01	<0.02
GW-14A	Р	02/23/05	<0.01	<0.005	0.36	<0.004	<0.005	0.82	0.72	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.058
GW-14A	С	11/09/04	<0.01	<0.005	0.11	<0.004	<0.005	0.17	0.18	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.01	<0.01	<0.02
		02/23/05	< 0.01	<0.005	0.39	<0.004	<0.005	1.1	1.1	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.086
	D	11/09/04	<0.01	<0.005	0.092	<0.004	<0.005	1.5	1.6	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.01	<0.01	<0.02
		02/23/05	<0.01	<0.005	0.39	<0.004	<0.005	1.1	3.4 J	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.086
	Α	11/09/04	< 0.01	<0.005	0.13	<0.004	<0.005	0.3	0.35	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.01	<0.01	<0.02
	A	02/23/05	< 0.01	<0.005	0.61	<0.004	<0.005	0.046	0.048	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.13
	В	11/09/04	<0.01	<0.005	0.13	<0.004	<0.005	0.3	0.28	<0.01	<0.01	<0.005	< 0.0002	<0.02	<0.01	<0.005	<0.01	<0.01	<0.01	<0.02
GW-14B		02/24/05	<0.01	<0.005	0.48	<0.004	<0.005	0.05	0.045	<0.01	<0.01	<0.005	< 0.0002	<0.02	< 0.01	<0.005	<0.01	<0.001	<0.01	0.12
J 145	l c	11/09/04	<0.01	<0.005	0.13	<0.004	<0.005	0.29	0.36	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.01	<0.01	<0.02
		02/24/05	<0.01	<0.005	0.49	<0.004	<0.005	0.052	0.045	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.093
	D	11/09/04	<0.01	<0.005	0.13	<0.004	<0.005	0.3	0.39	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	<0.005	<0.01	<0.01	<0.01	<0.02
		02/24/05	<0.01	<0.005	0.6	<0.004	<0.005	0.049	0.045	< 0.01	<0.01	<0.005	< 0.0002	<0.02	<0.01	<0.005	<0.01	<0.001	<0.01	0.13

Notes

Samples were analyzed using EPA Method 6010B, except for chromium^{VI} (EPA Method 7199), mercury (EPA Method 7470A), and thallium (EPA Method 6020) EPA • U.S. Environmental Protection Agency

J · Estimated

mg/L · Milligrams per liter

< - Less than listed reporting limit

Protocol A - No purge sample using a baller from the top of the water column.

Protocol B - Purge 3-5 feet below top of water and sample through tube after stable parameters using modified low flow.

Protocol C - Purge 5 feet above bottom of casing and sample through tube after stable parameters using modified low flow.

Protocol D - Purge starting in the middle of screen, move pump up every so often until 3-5 feet below top of water. Sample after stable parameters and 3 casing volumes using modified low flow. Sample using a disposable bailer.

TABLE E-2

PURGING PROTOCOLS SUMMARY OF ORGANIC ANALYTICAL DATA FIRST QUARTER 2005

Honeywell North Hollywood Site 11600 Sherman Way, North Hollywood, California

Γ	Account to the second s							μg	/L				
	Well ID	Purging Protocol	Sample Date	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethene	Dichlorodifluoromethane	Tetrachloroethene	Trichloroethene
	A	А	11/09/04	1.7	2.3	3	<0.5	<0.5	1.2	6.8	<2	3.3	54
		Α	02/23/05	<1	3.9	1.1	1.5	<0.5	<1	31	5.8	17	24
		В	11/09/04	<1	2.1	1.8	0.5	<0.5	<1	11	<2	8.3	29
	C397 1.4A	В	02/23/05	<1	3.9	<1	1.6	<0.5	<1	31	7	16	14
ı	GW-14A	С	11/09/04	<1	2.1	1.6	0.5	<0.5	<1	10	2	7.4	26
		C	02/23/05	<1	4	<1	1.6	<0.5	<1	31	6.3	16	14
		D	11/09/04	1.7	2.3	3	0.51	0.56	1.2	7.7	<2	4.9	47
		ע	02/23/05	<1	3.5	1.1	1.3	<0.5	< 1	25	3.8	14	24
		A	11/09/04	<1	3.9	<1	1.3	<0.5	<1	30	6.4	17	15
		A	02/23/05	<1	4	<1	1.6	<0.5	<1	33	14	18	8.7
		В	11/09/04	<1	3.6	<1	1.3	<0.5	<1	28	7	15	15
	GW-14B	ь	02/24/05	<1	4.3	<1	1.7	<0.5	<1	37	16	16	9.5
	GW-14D	С	11/09/04	<1	4.2	<1	1.4	<0.5	<1	33	7.2	15	15
			02/24/05	<1	4.8	<1	1.9	<0.5	<1	40	18	18	10
		D	11/09/04	<1	3.2	<1	1.1	<0.5	<1	25	4.6	14	13
			02/24/05	<1	4.5	<1	1.8	<0.5	<1	37	16	19	9.7

Notes:

Samples were analyzed using EPA Method 8260

Only detected analytes are shown.

EPA · U.S. Environmental Protection Agency

µg/L - Micrograms per liter

< - Less than listed reporting limit

Protocol A - No purge sample using a bailer from the top of the water column.

Protocol B - Purge 3-5 feet below top of water and sample through tube after stable parameters using modified low flow.

Protocol C - Purge 5 feet above bottom of casing and sample through tube after stable parameters using modified low flow.

Protocol D - Purge starting in the middle of screen, move pump up every so often until 3-5 feet below top of water. Sample after stable parameters and 3 casing volumes using modified low flow. Sample using a disposable bailer.

APPENDIX F
LABORATORY ANALYTICAL REPORTS

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chespeake Dr., Suite 805, Sim Diego, CA 92123 (838) 305-8596 FAX (828) 305-9669 9830 South 514 St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (400) 785-0851 2520 E, Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (400) 785-0851

LABORATORY REPORT

Prepared For: MWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project: Honeywell, North Hollywood

Sampled: 02/22/05 Received: 02/23/05

Issued: 03/08/05 16:48

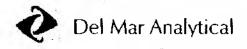
NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
1OB1727-0I	GW-6-2/22-05	Water
1OB1727-02	GW-2-2/22-05	Water
IOB1727-03	GW-9-2/22-05	Water
IOB1727-04	EB-01-2/22-05	Water
IOB1727-05	GW-8-2/22-05	Water
IOB1727-06	TB	Water
IOB1727-07	GW-6-2/22-05-F	Water
IOB1727-08	GW-2-2/22-05-F	Water
IOB1727-09	GW-9-2/22-05-F	Water
IOB1727-10	GW-8-2/22-05-F	Water


Reviewed By:

Mar Analytical, Irvine

ls Roberts Project Manager

IOB1727 < Page 1 of 44>

3/28/06 104(e) 0615

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 161-1022 FAX (949) 260-3297 1814 E. Cookly Dr., Suite A. Colton, CA 93334 (909) 170-4667 FAX (949) 370-1046 9484 Chelapanke Dr., Suite 805, San Ofego, CA 97123 (858) 505-4596 FAX (858) 505-9669 9830 South 51-4 Sr., Suite 8-120, Phiresix, AZ 85044 (440) 785-0041 FAX (460) 785-0051 1530 E. Suitet Rd. 43, Ltd Vego. NV 89120 (707) 798-3670 FAX (707,796-367)

MWH Americas - Brea

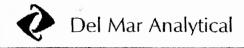
3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honcywell, North Hollywood

Report Number: 10B1727

Sampled: 02/22/05 Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)


Anniyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1727-01 (GW-6-2/22	-05 - Water)							
Reporting Units: ug/	,							
Benzene	EPA 8260B	5C03016	0,50	ND	ī	3/3/2005	3/3/2005	
Bromobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromochloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromodichloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromoform	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	R
Bromomethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
n-ButyIbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
sec-ButyIbenzene	EPA 8260B	5C03016	0.1	ND.	1	3/3/2005	3/3/2005	
tert-Butylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Carbon tetrachloride	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Chlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Chloroethone	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Chloroform	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Chloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
2-Chlorotoluene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
4-Chlorotoluene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dibromochloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5C03016	5.0	ND	1	3/3/2005	3/3/2005	R.
1,2-Dibromoethane (EDB)	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dibromomethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2-Dichlorobenzene	EPA 8260B	5C03016	1,0	ND	1	3/3/2005	3/3/2005	
1,3-Dichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,4-Dichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dichlorodifluoromethane	EPA 8260B	5C03016	2.0	14	1	3/3/2005	3/3/2005	
1,1-Dichloroethane	EPA 8260B	5C03016	0.1	4.8	ī	3/3/2005	3/3/2005	
1,2-Dichloroethane	EPA 8260B	5C03016	0.50	1.3	1	3/3/2005	3/3/2005	
1,1-Dichloroethene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
cis-1,2-Dichloroethene	EPA 8260B	5C03016	1.0	28	1	3/3/2005	3/3/2005	
trans-1,2-Dichloroethene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2-Dichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,3-Dichloropropane	EPA 8260B	5C03016	1.0	ИD	1	3/3/2005	3/3/2005	
2,2-Dichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1-Dichloropropene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
cis-1,3-Dichloropropene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
trans-1,3-Dichloropropene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Ethylbenzene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Hexachloroburadiene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Isopropylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
p-Isopropyholuene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Methylene chloride	EPA 8260B	5C03016	5.0	ND	1	3/3/2005	3/3/2005	
Methyl-test-butyl Ether (MTBE)	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
N 116 1 1 2 1 7 1								

Del Mar Analytical, Irvine

Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1727 < Page 2 of 44>

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapcake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Report Number: IOB1727

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
•		24104	23,122			24-14-1-1	, 200	Qualities
Sample ID: IOB1727-01 (GW-6-2/22-05 - Wat	er) - cont.							
Reporting Units: ug/l	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	R
Naphthalene					1			K
n-Propylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Styrene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	_
1,1,2,2-Tetrachloroethane	EPA 8260B	5C03016	1.0	ND	I	3/3/2005	3/3/2005	R
Tetrachloroethene	EPA 8260B	5C03016	1.0	17	l	3/3/2005	3/3/2005	
Toluene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5C03016	1.0	ND	ì	3/3/2005	3/3/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,1-Trichloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,2-Trichloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Trichloroethene	EPA 8260B	5C03016	1.0	11	1	3/3/2005	3/3/2005	
Trichlorofluoromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2,3-Trichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	R
1,2,4-Trimethylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
3,5-Trimethylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
nyl chloride	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
o-Xylene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
m,p-Xylenes	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Surrogate: Dibromofluoromethane (80-120%)				110 %				
Surrogate: Toluene-d8 (80-120%)				105 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				108 %				

12461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3292 1014 €. Cooley Dr., Suite A. Colton, CA 93334 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 80S, San Diego, CA 92123 (858) 505-8596 FAX 1858) 505-9689 9830 South 514 St., Suite 8-120, Phoenix, AZ 85044 (4807 785-0043 FAX 1480 785-0651 2520 €. Suite 8-120, Phoenix, AZ 85044 (4807 785-0043 FAX 1480 785-0651 2520 €. Suite 8-120, Phoenix, AZ 85044 (4807 785-0043 FAX 1407 785-0651

MWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Sampled: 02/22/05

Report Number: IOB1727

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1727-02 (GW-2-2/22-05 - V	Vater)							
Reporting Units: ug/l								
Benzene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Bromobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromochloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromodichloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromoform	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromomethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
n-Butylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
sec-Butylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
tert-Butylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Carbon tetrachloride	EPA 8260B	. 5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Chlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Chloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Chloroform	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Chloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
2-Chlorotoluene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
4-Chlorotoluene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dibromochloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	,
1,2-Dibromo-3-chloropropane	EPA 8260B	5C03016	5.0	ND	1	3/3/2005	3/3/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dibromomethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2-Dichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,3-Dichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,4-Dichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dichlorodifluoromethane	EPA 8260B	5C03016	2.0	15	1	3/3/2005	3/3/2005	
1,1-Dichloroethane	EPA 8260B	5C03016	1.0	3.5	1	3/3/2005	3/3/2005	
1,2-Dichloroethane	EPA 8260B	5C03016	0.50	1.9	1	3/3/2005	3/3/2005	
1,1-Dichloroethene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
cis-1,2-Dichloroethene	EPA 8260B	5C03016	1.0	29	1	3/3/2005	3/3/2005	
trans-1,2-Dichloroethene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2-Dichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,3-Dichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
2,2-Dichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1-Dichloropropene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
cis-1,3-Dichloropropene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
trans-1,3-Dichloropropene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Ethylbenzene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Hexachlorobutadiene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/200 5	
Isopropylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
p-Isopropyltoluene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/200 5	
Methylene chloride	EPA 8260B	5C03016	5.0	ND	1	3/3/2005	3/3/200 5	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dalle and Array Torrest								

Del Mar Analytical, Irvine

Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1727 < Page 4 of 44>

17461 Denan Ave., Suite 100, Irvine, CA 92614 (949) 261-1022. FAX (949) 260-3297. 1014 E. Cooley Dr., Suite A. Colton, CA 92324. (969) 370-4667. FAX (949) 370-1046. 9484 Chesapeake Dr., Suite 805, San Diego, CA 92323. (056) 505-8596. FAX (888) 505-9669. 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044. (440) 785-0043. FAX (460) 785-0851. 2500 E. Surset Rd. #3, Las Vegas, NN 89120. (702) 798-3620. FAX (702) 798-3621.

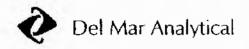
AWH Americas · Brea

Project ID: Honeywell, North Hollywood

3050 Saturn St., Suite 205 Brea, CA 92821

Report Number: IOB1727

Sampled: 02/22/05


Received: 02/23/05

Attention: Lisa Hall

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1727-02 (GW-2-2/22-05 - Wat	er) - cont.							
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
n-Propylbenzene	EPA 8260B	5C03016	1.0	ND	ì	3/3/2005	3/3/2005	
Styrene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Tetrachloroethene	EPA 8260B	5C03016	1.0	15	1	3/3/2005	3/3/2005	
Toluene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,1-Trichloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,2-Trichloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Trichloroethene	EPA 8260B	5C03016	1.0	8.6	1	3/3/2005	3/3/2005	
Trichlorofluoromethane	EPA 8260B	5C03016	1.0	ND	ı	3/3/2005	3/3/2005	
1,2,3-Trichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
,5-Trimethylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
myl chloride	EPA 8260B	5C03016	0.50	ND	.1	3/3/2005	3/3/2005	
o-Xylene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
m,p-Xylenes	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Surrogate: Dibromofluoromethane (80-120%)				109%				
Surrogate: Toluene-d8 (80-120%)				104%				
Surrogate: 4-Bromofluorobenzene (80-120%)				104 %				

17461 Derian Ave., Scite 100, Traine, CA 92/114 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Cohon, CA 97324 (909) 370-4667 FAX (919) 370-1046 9484 Chesapesike Dr., Swite 805, San Cliego, CA 97123 (858) 505-8596 FAX (858) 505-9609 5830 South 51st St., Suite B-120, Phoemis, AZ 85044 (480) 785-0043 FAX (480) 785-0651 7520 E. Surem Rd. #3, Las Vegas, NV 89120 (707) 798-3620 FAX (707) 798-3621

MWH Americas - Brea

3050 Saum St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Report Number: 10B1727

Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

	M-41-3		Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1727-03 (GW-9-2/22-05	5 - Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	5C01024	0.20	ND	ι	3/1/2005	3/1/2005	
Bromobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromochloromethane	EPA 8260B	5C01024	1.0	ND	ŀ	3/1/2005	3/1/2005	
Bromodichloromethane	EPA 8260B	5C01024	1.0	ND	ŧ.	3/1/2005	3/1/2005	
Bromoform	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromomethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
n-Butylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
sec-Butylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
tert-Butylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Carbon tetrachloride	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
Chlerobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Chloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Chleroform	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Chloromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
2-Chlorotoluene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
4-Chlorotoluene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	1.4
Dibromochloromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5C01024	5.0	ND	1	3/1/2005	3/1/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5C01024	1.0	ND ,	1	3/1/2005	3/1/2005	
Dibromomethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2-Dichlorohenzenc	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,3-Dichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,4-Dichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Dicklorodifluoromethane	EPA 8260B	5C01024	2.0	4.6	ı	3/1/2005	3/1/2005	
!,!-Dichloroethane	EPA 8260B	5C01024	1.0	1.9	1	3/1/2005	3/1/2005	
1,2-Dichloreethane	EPA 8260B	5C01024	0.50	0.64	1	3/1/2005	3/1/2005	
1,1-Dichloroethene	EPA 8260B	5€01024	1.0	ND	1	3/1/2005	3/1/2005	
cls-1,2-Dichloreethene	EPA 8260B	5C01024	1.0	14	1	3/1/2005	3/1/2005	
trans-1,2-Dichloroethene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2-Dichloropropene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,3-Dichloropropane	EPA \$260B	5C01024	1.0	ND	L	3/1/2005	3/1/2005	
2,2-Dichloropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1-Dichloropropene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
cis-1,3-Dichloropropene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
trans-1,3-Dichloropropene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
Ethylbenzene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
Hexachlorobutadiene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Isopropylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
p-1sopropyltoluene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Methylene chloride	EPA 8260B	SC01024	5.0	ND	1	3/1/2005	3/1/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	

Del Mar Analytical, Irvine

Chris Roberts

Project Manager

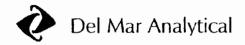
The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from Del Mar Analytical.

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1066 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (888) 505-9669 9830 South \$14 St., Suite 8-120, Phoenia, AZ 85044 (480) 785-0043 FAX (440) 785-0851 2520 E. Suitset Rd. #3, Lar Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

IWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood


Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Report Number: 10B1727

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1727-03 (GW-9-2/22-05 - Wat	ter) - cont.							
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
n-Propylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Styrene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Tetrachloroethene	EPA 8260B	5C01024	1.0	9.5	1	3/1/2005	3/1/2005	
Toluene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,1-Trichloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,2-Trichloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Trichloroethene	EPA 8260B	5C01024	1.0	17	1	3/1/2005	3/1/2005	
Trichlorofluoromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2,3-Trichloropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1.2.4-Trimethylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
5-Trimethylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
myl chloride	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
o-Xylene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
m,p-Xylenes	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Surrogate: Dibromofluoromethane (80-120%)				110%				
Surrogate: Toluene-d8 (80-120%)				108 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				102 %				

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 52123 (858) 505-8596 FAX (858) 505-9689 9830 South 514 SL, Suite 8-120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2570 E. Sunset Rd, #3, Las Vegas, NW 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

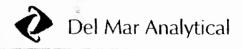
3050 Saturn St., Suite 205 Brea, CA 92821

Report Number: IOB1727

Sampled: 02/22/05 Received: 02/23/05

Attention: Lisa Hall

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)


Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1727-04 (EB-01-2/22-0	5 - Water)							
Reporting Units: ug/l	•							
Benzene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Bromobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromochloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromodichloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromoform	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Bromomethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
n-Butylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
sec-Butylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
tert-Butylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Carbon tetrachloride	EPA 8260B	5C03016	0.50	ND	1.	3/3/2005	3/3/2005	
Chlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Chloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Chloroform	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Chloromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
2-Chlorotoluene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
4-Chlorotoluene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dibromochloromethane	· EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	`
1,2-Dibromo-3-chloropropane	EPA 8260B	5C03016	5.0	ND	1	3/3/2005	3/3/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dibromomethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2-Dichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,3-Dichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,4-Dichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Dichlorodifluoromethane	EPA 8260B	5C03016	2.0	ND	1	3/3/2005	3/3/2005	
1,1-Dichloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2-Dichloroethane	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
1, 1-Dichloroethene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
cis-1,2-Dichloroethene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
trans-1,2-Dichloroethene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2-Dichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,3-Dichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
2,2-Dichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1-Dichloropropene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
cis-1,3-Dichloropropene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
trans-1,3-Dichloropropene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Ethylbenzene	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
Hexachlorobutadiene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Isopropylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
p-Isopropyltoluene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Methylene chloride	EPA 8260B	5C03016	5.0	ND	1	3/3/2005	3/3/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	

Del Mar Analytical, Irvine

Chris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

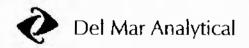
17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Or., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suites Rd. #3, Lix Vegas, NV 89120 (702) 738-3670 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood


Report Number: 10B1727


Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1727-04 (EB-01-2/22-05 - Was	ter) - cont.							
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
n-Propylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Styrene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5C03016	1.0	ND	ı	3/3/2005	3/3/2005	
Tetrachloroethene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Toluene	EPA 8260B	5C03016	0.50	1.0	ı	3/3/2005	3/3/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5C03016	1.0	ND	ł	3/3/2005	3/3/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,1,1-Trichloroethane	EPA 8260B	5C03016	1.0	ND	l	3/3/2005	3/3/2005	
1,1,2-Trichloroethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Trichloroethene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Trichlorofluoromethane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2,3-Trichloropropane	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5C03016	1.0	ND	ì	3/3/2005	3/3/2005	
3,5-Trimethylbenzene	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
myl chloride	EPA 8260B	5C03016	0.50	ND	1	3/3/2005	3/3/2005	
o-Xylene	EPA 8260B	5C03016	0.50	ND	ì	3/3/2005	3/3/2005	
m,p-Xylenes	EPA 8260B	5C03016	1.0	ND	1	3/3/2005	3/3/2005	
Surrogate: Dibromofluoromethane (80-120%)				110%				
Surrogate: Toluene-d8 (80-120%)				103 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				108 %				

17461 Derian Ave., Suite 100, Invine, CA 92614- (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Smite A., Celton, CA 92324- (909) 370-4667 FAX (949) 270-1046 9404 Cheapeake Dr., Suide 865, San Diego, CA 92122- (1958) 505-3696 FAX (958) 505-3699 9830 South 51st Sa., Svite 8-120, Phoenin, AZ 85044 (460) 785-0047 FAX (460) 785-0611 2520 F. Smith Rd. #3, Cas Vegas, NV 89170 (702) 794-3620 FAX (702) 793-3621

MWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Report Number: IOB1727

Sampled: 02/22/05 Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Aлаlyte	Method	Batch	Reporting Limit	Sample Result	Dilution	Date Extracted	Date Analyzed	Data Qualifiers
V -		Dates	Lipin	кезші	Pactor	DAILACICO	ARAIYZEU	Quantiers
Sample ID: IOB1727-05 (GW-8-2/72-0 Reporting Units: ug/l	o - water)							
Benzene	EPA 8260B	5C01024	0,50	ND	1	3/1/2005	3/1/2005	
Bromobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromochioromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromodichloromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromoform	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromomethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
n-Butylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
sec-Butylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
tert-Butylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Carbon tetrachloride	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
Chlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Chloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Chloroform	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Chloromethane	EPA 8260B	5C01024	1.0	ND	.1	3/1/2005	3/1/2005	
2-Chlorotoluene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
4-Chlorotoluene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Dibromochioromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5C01024	5.0	ND	1	3/1/2005	3/1/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Dibromomethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2-Dichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,3-Dichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,4-Dichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
DichlorodiΩuoromethane	EPA 8260B	5C01024	2.0	4.9	1	3/1/2005	3/1/2005	
1,1-Dichloroethane	EPA 8260B	5C01024	1.0	1.8	ł	3/1/2005	3/1/2005	
1,2-Dichloroethane	EPA 8260B	5C01024	0.50	0_66	ì	3/1/2005	3/1/2005	
1,1-Dichloroethene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
cis-1,2-Dichloroethene	EPA 8260B	5C01024	1.0	14	ı	3/1/2005	3/1/2005	
trans-1,2-Dichloroethene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2-Dichleropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,3-Dichleropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
2,2-Dichloropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1-Dichleropropene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
cis-1,3-Dichloropropene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
trans-1,3-Dichloropropene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
Ethylbenzene	EPA 8260B	5C01024	0_50	ND	1	3/1/2005	3/1/2005	
Hexachlorobutadiene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Isopropylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
p-isopropyltoluene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Methylene chloride	EPA 8260B	5C01024	5.0	ND	1	3/1/2005	3/1/2005	
Methyl-tert-buryl Ether (MTBE)	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
5114 4 1 2 1 7 4	-							-

Del Mar Analytical, Irvine

Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

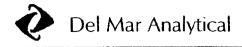
10B1727 <Page 10 of 44>

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Cokun, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, Sau Diego, CA 92123 (858) 505-8596 FAX (868) 505-9689 9830 South 514 St., Suite 8-120, Phoeniu, AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 E. Suinste Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood


Report Number: 10B1727

Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		1	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1727-05 (GW-8-2/22-05 - Wat	er) - cont.							
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
n-Propylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Styrene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Tetrachloroethene	EPA 8260B	5C01024	1.0	8.7	1	3/1/2005	3/1/2005	
Toluene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,1-Trichloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,2-Trichloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Trichloroethene	EPA 8260B	5C01024	1.0	9.9	1	3/1/2005	3/1/2005	
Trichlorofluoromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2,3-Trichloropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
,5-Trimethylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
inyl chloride	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
o-Xylene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
m,p-Xylenes	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Surrogate: Dibromofluoromethane (80-120%)				102 %				
Surrogate: Toluene-d8 (80-120%)				107 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				100 %				

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Cokon, CA 92124 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 865, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51tt St., Suite 8-170, Phoenix, AZ 85044 (480) 785-0043 FAX (440) 785-0851 1250 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn St., Suite 205 Brea, CA 92821

Report Number: IOB1727

Sampled: 02/22/05 Received: 02/23/05

Attention: Lisa Hall

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1727-86 (TB - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
Bromobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromochloromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromodichloromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromoform	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Bromomethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
n-Butylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
sec-Butylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
tert-Butylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Carbon tetrachloride	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
Chlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Chloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Chloroform	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Chloromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
2-Chlorotoluene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
4-Chlorotoluene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Dibromochloromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	,
1,2-Dibromo-3-chloropropane	EPA 8260B	5C01024	5.0	ND	1	3/1/2005	3/1/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Dibromomethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2-Dichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,3-Dichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,4-Dichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Dichlorodifluoromethane	EPA 8260B	5C01024	2.0	ND	1	3/1/2005	3/1/2005	
1,1-Dichloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2-Dichloroethane	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
1,1-Dichloroethene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
cis-1,2-Dichloroethene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
trans-1,2-Dichloroethene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2-Dichloropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,3-Dichloropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
2,2-Dichloropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1-Dichloropropene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
cis-1,3-Dichloropropene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
trans-1,3-Dichloropropene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
Ethylbenzene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
Hexachlorobutadiene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Isopropyibenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
p-Isopropyltoluene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Methylene chloride	EPA 8260B	5C01024	5.0	ND	1	3/1/2005	3/1/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Del Mar Applytical Irrine								4

Del Mar Analytical, Irvine

Chris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1727 < Page 12 of 44>

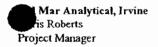
17461 Derian Ave., Suite 100, Inrine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4567 FAX (949) 370-1046 9484 Chesapeaic Orr., Suite 805, San Diego, CA 97123 (838) 505-8596 FAX (8188) 505-9669 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suntset Rd. #3, Las Vegas, NV 89170 1702) 798-3620 FAX (702) 798-3621

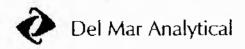
AWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn St., Suite 205 Brea, CA 92821

Attention: Lisa Hall


Report Number: 10B1727


Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1727-06 (TB - Water) - cont.								
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
n-Propylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Styrene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Tetrachloroethene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Toluene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,1-Trichloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,1,2-Trichloroethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Trichloroethene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Trichlorofluoromethane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2,3-Trichloropropane	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
,5-Trimethylbenzene	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
nyl chloride	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
o-Xylene	EPA 8260B	5C01024	0.50	ND	1	3/1/2005	3/1/2005	
m,p-Xylenes	EPA 8260B	5C01024	1.0	ND	1	3/1/2005	3/1/2005	
Surrogate: Dibromofluoromethane (80-120%)				108 %				
Surrogate: Toluene-d8 (80-120%)				108 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				101%				

17463Denian Ave., Sode 300, Invine, CA 92834 (949) 261-1022 1-AX (949) 160-3297 2014 E. Cooley Dr., Suite A. Collon, CA 92324 (909) 370-4667 EAX (949) 370-1466 9484 Obersprake Dr., Suite 805, San Diego, CA 92323 (858) 505-8596 EAX (856) 505-9669 9830 South Shr Sk., Suite 8-120, Phoenia, AZ 85044 (460) 785-0043 FAX (460) 785-0653 3530 E. Suinet Ref. #3, Lax Wegar, NV 89120 (703) 798-3620 EAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn St., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Report Number: 10B1727

Sampled: 02/22/05

Received: 02/23/05

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/8270C MOD)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Datu Qualifiers
Sample ID: YOB1727-01 (GW-6-2/22-05	Water)	-						
Reporting Units: ug/l								
1,4-Dioxane	EPA 8270C MOD	5B24040	1.0	6.3	1	2/2 4/2005	2/25/2005	
Surrogate: 1,4-Dioxane-d8 (35-120%)				68 %				
Sample ID: IOB1727-02 (GW-2-2/22-05	Water)							
Reporting Units: ug/l								
1,4-Dioxane	EPA 8270C MOD	5B24040	1.0	4.1	0.98	2/24/2005	2/25/2005	
Surrogate: 1,4-Dioxane-d8 (35-120%)				60 %				
Sample ID: IOB1727-04 (EB-01-2/22-05	- Water)							
Reporting Units: ug/l								
1.4-Dioxane	EPA 8270C MOD	5B24040	1.0	ND	1.05	2/24/2005	2/25/2005	
Surrogate: 1,4-Dioxane-d8 (35-120%)				57 %				

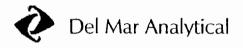
17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dr., Suite A. Cakton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesspeake Cr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9669 9830 South 51tt St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

/IWH Americas - Brea

3050 Saturn St., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Project ID: Honeywell, North Hollywood


Report Number: 10B1727

Sampled: 02/22/05

Received: 02/23/05

METALS

		1411	ALS					
			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	F2ctor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1727-04 (EB-01-2/2	22-05 - Water)							
Reporting Units: mg/l								
Antimony	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/26/2005	
* Arsenic	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/26/2005	
Barium	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/26/2005	
Beryllium	EPA 6010B	5B25103	0.0040	ND	1	2/25/2005	2/26/2005	
Cadmium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/26/2005	
Chromium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/26/2005	
Cobalt	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/26/2005	
Copper	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/26/2005	
Lead	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/26/2005	
Mercury	EPA 7470A	5B24082	0.00020	ND	1	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B25103	0.020	ND	1	2/25/2005	2/26/2005	
Nickel	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/26/2005	
Selenium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/26/2005	
Silver	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/26/2005	
Thallium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
nadium	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/26/2005	
de	EPA 6010B	5B25103	0.020	ND	1	2/25/2005	2/26/2005	
Sample ID: IOB1727-07 (GW-6-2/)	22-05-F - Water)							
Reporting Units: mg/l								
Antimony	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Arsenic	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	3/1/2005	
Barium	EPA 6010B	5B25103	0.010	0.32	1	2/25/2005	2/27/2005	
Beryllium	EPA 6010B	5B25103	0.0040	ND	1	2/25/2005	2/27/2005	
Cadmium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Chromium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Cobalt	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Copper	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Lead	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Mercury	EPA 7470A	5B24082	0.00020	ND	1	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B25103	0.020	ND	1	2/25/2005	2/27/2005	
Nickel	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Selenium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Silver	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Thallium	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/28/2005	
Vanadium	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Zinc	EPA 6010B	5B25103	0.020	0.032	i	2/25/2005	2/27/2005	
Sample ID: IOB1727-07 (GW-6-2/)	22-05-F - Water)						*.	
Reporting Units: ug/l	,							
Thallium	EPA 6020	5C02082	1.0	ND	1	3/2/2005	3/3/2005	
					_			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dr., Suite A. Colton, CA 92134 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8966 FAX (858) 505-9699 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-003 FAX (480) 785-0651 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Report Number: 10B1727

Sampled: 02/22/05 Received: 02/23/05

METALS

		MI	ETALS					
			Reporting	Sample	Dilution	Date	Date .	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1727-08 (GW-2-2/22-05-F - V	Water)							
Reporting Units: mg/l								
Antimony	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Arsenic	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/28/2005	
Barium	EPA 6010B	5B25103	0.010	0.41	1	2/25/2005	2/27/2005	
Beryllium	EPA 6010B	5B25103	0.0040	ND	ı	2/25/2005	2/27/2005	
Cadmium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Chromium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Cobalt	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Copper	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Lead	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Mercury	EPA 7470A	5B24082	0.00020	ND	1	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B25103	0.020	ND	1	2/25/2005	2/27/2005	
Nickel	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Selenium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Silver	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Thallium	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/28/2005	
Vanadium	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	(
Zinc	EPA 6010B	5B25103	0.020	0.068	1	2/25/2005	2/27/2005	
Sample ID: IOB1727-08 (GW-2-2/22-05-F - V	Water)							
Reporting Units: ug/l								
Thallium	EPA 6020	5C02082	1.0	ND	1	3/2/2005	3/3/2005	
Sample ID: IOB1727-09 (GW-9-2/22-05-F - V	Water)							
Reporting Units: mg/l								
Antimony	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Arsenic	EPA 6010B	5B25103	0.0050	0.0971	1	2/25/2005	2/28/2005	
Barium	EPA 6010B	5B25103	0.010	0.23	1	2/25/2005	2/27/2005	
Beryllium	EPA 6010B	5B25103	0.0040	ND	1	2/25/2005	2/27/2005	
Cadmium	EPA 6010B	5B25103	0.0050	ND	ı	2/25/2005	2/27/2005	
Chromium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Cobalt	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Copper	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Lead	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Mercury	EPA 7470A	5B24082	0.00020	ND.	ì	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B25103	0.020	ND	1	2/25/2005	2/27/2005	
Nickel	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Selenium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Silver	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Thallium	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/28/2005	
Vanadium	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Zinc	EPA 6010B	5B25103	0.020	ND	1	2/25/2005	2/27/2005	

Del Mar Analytical, Irvine Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1727 <Page 16 of 44>

17461 Derinn Ave., Suite T00, Ivána, CA 92614 (949) 761-1022 IAX (949) 260-3297 1014 E. Conley Dr., Suite A. Colton, CA 92324 (969) 370-4667 FAX (949) 370-1046 9484 Overspeake Dr., Sante 805, San Olega, CA 97123 (850138)-8596 FAX (858) 505-969 9830 South S1/8 St., Soite 8-120, Phoemis, AZ 85044 (4807 785-9043 FAX (480) 785-9651 2520 E. Sumer Ril, #3, Las Vegas, NV 89120 (702) 798-3620 FAX (902) 798-3621

AWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project 1D: Honeywelf, North Hellywood

Report Number: 10B1727

Sampled: 02/22/05

Received: 02/23/05

METALS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Dats Qualifiers
Sample ID: 10B1727-09 (GW-9-2/2)	2-05-F - Water)					3		
Reporting Units: ug/l								
Thallium	EPA 6020	5C02082	0.1	ND	3	3/2/2005	3/3/2005	
Sample ID: 10B1727-10 (GW-8-2/2)	2-05-F - Water)							
Reporting Units: mg/l			-					
Antimony	EPA 6010B	5B25103	0.010	ND	ţ	2/25/2005	2/27/2005	
Arsenic	EPA 6010B	5B25103	0.0050	0.0066	1	2/25/2005	2/28/2005	
Barium	EPA 6010B	5B25103	010.0	0.45	1	2/25/2005	2/27/2005	
Beryllium	EPA 6010B	5B25103	0.0040	ND	i	2/25/2005	2/27/2005	
Cadmium	EPA 6010B	5B25103	0.0050	ND	ţ	2/25/2005	2/27/2005	
Chromium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	-
Cobalt	EPA 6010B	5B25103	0.010	ND	ţ	2/25/2005	2/27/2005	
Copper	EPA 6010D	5B25103	0.010	ND	ţ	2/25/2005	2/27/2005	
Lead	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Mercury	EPA 7470A	5B24082	0.00020	ND	1	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B25103	0.020	ND	ţ	2/25/2005	2/27/2005	
ckel	EPA 6010B	5B25103	010.0	ND	1	2/25/2005	2/27/2005	
enium	EPA 6010B	5B25103	0.0050	ND	1	2/25/2005	2/27/2005	
Silver	EPA 6010B	5B25103	0.010	ND	ŗ	2/25/2005	2/27/2005	
Thallium	EPA 6010B	5B25103	0.010	ND	ţ	2/25/2005	2/28/2005	
Vanadium	EPA 6010B	5B25103	0.010	ND	1	2/25/2005	2/27/2005	
Zinc	EPA 6010B	5B25103	0.020	0.11	ţ	2/25/2005	2/27/2005	
Sample ID: IOB1727-10 (GW-8-2/2)	2-05-F - Water)							
Reporting Units: ng/l								
Thallium	EPA 6020	5C02082	1.0	ND	ţ	3/2/2005	3/3/2005	

17461 Denian Ave., Suite 100, Ilvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92024 (909) 370-4667 FAX (949) 370-1066 9484 Chesipeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (868) 505-9669 9830 South 51x St., Suite 8-120, Phoenix, AZ 85044 (460) 785-0043 FAX (460) 785-0851 2520 E. Surtect Rd. #3, Las Vegax, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Report Number: 10B1727

Sampled: 02/22/05

Received: 02/23/05

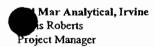
		INOR	GANICS					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1727-01 (GW-6-2/22-05 - Wa Reporting Units: mg/l Chromium VI	eter) EPA 7199	5B23063	0.0010	ND	1	2/23/2005	2/23/2005	
Sample ID: IOB1727-01 (GW-6-2/22-05 - Wa Reporting Units: ug/l								
Perchlorate Sample ID: IOB1727-02 (GW-2-2/22-05 - Wa	EPA 314.0	5B28103	2.0	ND	1	2/28/2005	3/1/2005	
Reporting Units: mg/l Chromium VI	EPA 7199	5B23063	0.0010	ND	1	2/23/2005	2/23/2005	
Sample ID: IOB1727-02 (GW-2-2/22-05 - Wa Reporting Units: ug/l Perchlorate	EPA 314.0	5C02057	2.0	ND	1	3/2/2005	3/3/2005	
Sample ID: IOB1727-03 (GW-9-2/22-05 - Wa Reporting Units: mg/l Chromium VI	EPA 7199	5B23063	0.0010	ND	1	2/23/2005	2/23/2005	
Sample ID: IOB1727-04 (EB-01-2/22-05 - Wa Reporting Units: mg/l		3B23003	0.0010	ND	'		2/23/2003	
Chromium VI	EPA 7199	5B23063	0.0010	ND	1	2/23/2005	2/23/2005	н
Sample ID: IOB 727-04 (EB-01-2/22-05 - Wa Reporting Units: ug/l Perchlorate	eter) EPA 314.0	5C02057	2.0	ND	1	3/2/2005	3/3/2005	
Sample ID: IOB1727-05 (GW-8-2/22-05 - Wa Reporting Units: mg/l	ter)							
Chromium VI	EPA 7199	5B23063	0.0010	ND	1	2/23/2005	2/23/2005	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 760-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

IWH Americas - Brea 050 Saturn St., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Project ID: Honeywell, North Hollywood


Sampled: 02/22/05

Report Number: 10B1727

Received: 02/23/05

SHORT HOLD TIME DETAIL REPORT

	1	Hold Time (In days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
	Sample ID: GW-6-2/22-05 (IOB1727-01) - Wate	er				
	EPA 7199	1	02/22/2005 11:10	02/23/2005 10:50	02/23/2005 11:11	02/23/2005 11:27
	Sample ID: GW-2-2/22-05 (IOB1727-02) - Water	er				
٠	EPA 7199	1	02/22/2005 12:50	02/23/2005 10:50	02/23/2005 11:11	02/23/2005 11:37
	Sample ID: GW-9-2/22-05 (IOB1727-03) - Wat	er				
	EPA 7199	1	02/22/2005 14:10	02/23/2005 10:50	02/23/2005 11:11	02/23/2005 11:47
	Sample ID: EB-01-2/22-05 (IOB1727-04) - Wat	er				
	EPA 7199	1	02/22/2005 10:00	02/23/2005 10:50	02/23/2005 11:11	02/23/2005 11:57
	Sample ID: GW-8-2/22-05 (IOB1727-05) - Wat	er				
	EPA 7199	1	02/22/2005 16:00	02/23/2005 10:50	02/23/2005 11:11	02/23/2005 12:08

174610-rian Ave., Suite 100, Irvine, CA 92514 [949] 261-1022 FAX (949) 260-) 297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4567 FAX (949) 370-1046 9464 Chesipeake Dr., Suite 805, See Olego, CA 92123 (854) 505-8596 FAX (858) 505-9689 9830 South \$1st St., Suite 8-120, Phornic, AZ 85044 (4805 785-1043 FAX (480) 785-0651 2520 E. Sunset Rd. #3, Lis Vegas, NV 89120 (202) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hali Project ID: Honeywell, North Hollywood

Report Number: IOB1727

Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

•		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Ratch: 5C01024 Extracted: 03/01/	05										
Rlank Analyzed: 03/01/2005 (5C01	024-BLK1)										
Beuzene	ND	0.50	ug/l								
Bromobenzene	ďΩ	0.1	ug/I								
Bromochloromethane	ND	1.0	ug/I								
Bromodichloromethane	ND	1.0	աց/1								
Bromoform	ND	1.0	ug/I								
Bromomethane	ND	1.0	ug/I								
n-Butylbenzene	ďΩ	1.0	նg/I								
sec-Butylbenzene	ND	1.0	ug/I								
tert-Butylbenzene	ďΩ	1.0	ug/I								
Carbon tetrachloride	ND	0.50	ug/I								
Chlorobenzene	ďΩ	0.1	ug/i								
Chloroethauc	ND	1.0	ug/I								ò
Chloroform	ND	1.0	ug/i								
Chloromethane	ИĎ	1.0	ng/I								
2-Chlorotolucue	ND	1.0	ug/I								
4-Chlorotoluene	ND	1.0	ng/l								
Dibromochloromethaue	ďΩ	1.0	ng/l								
1,2-Dibromo-3-chloropropane	ďΩ	5.0	ug/I								
1,2-Dibromoethane (EDB)	ND	1.0	ug/I								
Dibromomethane	ND	1.0	ug/I								
1,2-Dichlombenzene	ND	1.0	ug/I								
1,3-Dichlorobenzene	ďΝ	1.0	ն g/]								
1,4-Dichlorobenzene	ND	1.0	սջ/1								
Dichlorodifluoroaethane	ND	2.0	սջ/1								
1,1-Dichloroothane	ND	1.0	ug/I								
1,2-Dichloroethane	DM	0.50	ug/I							H	
1,1-Dichloroethene	ND	1.0	ug/I								
cis-1,2-Dichloroethene	ND	1.0	սջ/1								
trans-1,2-Dichloroethene	ND	1.0	υgΛ								
1,2-Dichloropropane	ND	1.0	υջ/ 1								
1,3-Dichloropropane	ďΩ	1.0	ug/I								
2,2-Dichloropropane	ND	1.0	ug/I						*		
I,I-Dichloropropeze	ND	1.0	ug/I								
cis-1,3-Dichloropropeae	ďΩ	0.50	ug/I								
trans-1,3-Dichloropropene	ďΩ	0.50	ug/i								
• •											

Del Mar Analytical, Irvine

Chris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1727 <Page 20 of 44>

17461/Jerian Ave., Suitr 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 268-3797 1014 E. Cooley Dr., Sake A. Cotton, CA 92124 (909) 370-4667 FAX (949) 370-1069 9484 Chesaposke Dr., Suize 807, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9649 9830 Smith S14 St., Suize 8120, Phorent, AZ 85044 (4807 785-0043 FAX (4807 785-0651 2520 E. Suizet Rd. #3, Lus Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Attention: Lisa Hall

3050 Saturn St., Suite 205 Brea, CA 92821 Project ID: Honeywell, North Hollywood

Sampled: 02/22/05

Report Number: 10B1727

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Hatch: 5C01024 Extracted:	03/91/05									
Blank Analyzed: 03/01/2005	(5C01024-BLK1)									
Ethylbenzene	ND	0.50	ug/I							
Hexachlorobutadiene	ND	1.0	ug∕l							
Isopropylbenzene	dи	1.0	սջ∕1							
p-Isopropyltohiene	ND	1.0	սջ/1							
Methylene chloride	ND	5.0	ug∕l							
Methyl-tert-butyl Ether (MTBE)	DM	1,0	ug/1							
Naphthalene	dи	1.0	128/1							
n-Propylbenzene	ND	1.0	ug/l							
Styrene	МD	0.1	սց∕1							
1,2-Tetrachloroethane	ИD	1.0	ug/l							
2,2-Tetrachloroethane	dИ	0.1	ս ջ∕1							
Tetrachloroethene	dи	0.1	ug/I							
Tolume	ND	0.50	υgA							
1,2,3-Trichlombenzene	ФD	1.0	ug/l							
1,2,4-Trichlorobenzene	dИ	1.0	աջ/1							
1,1,1-Trichloroethane	ND	1.0	ս ջ/1							
1,1,2-Trichloroethane	ND	0.1	υgA							
Trichloroethene	ďИ	1.0	ug/I							
Trichkrofhoromethane	, MD	1.0	ug/1							
1,2,3-Trichloropropane	ND	0.1	ug/1							
1,2,4-Trimethylbenzene	ND	1.0	ug/1							
1.3.5-Trimethylbenzene	ND	1.0	ug/l							
Vinyl chloride	dи	0.50	ug/l							
o-Xylene	dи	0.50	ug/l							
m,p-Xylenes	ND	0.1	ug/1							
Surrogate: Dibramofluoromethan	ne 27.6		ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	27.7		ug/I	25.0		111	80-120			
Surrogate: 4-Bromafluarobenzen	e 26.3		ugA	25.0		105	80-120			

17461 Derian Ave. Suite 100, Inine, CA 92614 (949) 761-1022 FAX (949) 260-3297 1014 E Cooley Dr., Sinte A Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapenke Orl, Seite 805, San Olego, CA 92123 (854) 505-8596 FAX (858) 505-9689 5830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (490) 785-0043 FAX (460) 785-0851 2520 E. Survet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 796-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

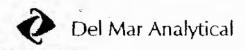
3050 Saturn St., Suite 205

Sampled: 02/22/05

Втев, СА 92821 Attention: Lisa Hall Report Number: 10/01727 Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: SC01024 Extracted: 03/01/05										
LCS Analyzed: 03/03/2005 (5C01024-k	BS1)									
Benzene	26.0	0.50	ug/l	25.0		104	70-120			
Bromobenzene	27.0	1.0	ug/l	25.0		108	80-120			
Bromochlorumethane	27.5	1.0	ug/1	25.0		110	65-135			
Bromodichloromethane	26.2	1,0	ug∕l	25.0		105	70-140			
Вготобопи	20,6	1.0	ug/1	25.0		82	55-135			
Bromomethane	29.6	1.0	ug/I	25.0		118	60-140			
n-Burylbenzeue	27.2	1,0	ug/I	25.0		109	75 -130			
sec-Bucylbenzepe	25.7	1.0	սց⁄1	25.0		103	75-125			
tert-Bulylbenzene	26.6	1.0	ug/l	25.0		106	75-125			
Carbon tetrachleside	26.9	0.50	ug/i	25.0		108	70-140			
Chlorobenzene	25.4	1.0	ug/I	25.0		102	80-125			
Chloroethane	31.9	1.0	ug/l	25.0		128	60-145			
Chloroform	28.0	1.0	ug/l	25.0		112	75-130			
Chloromethane	27.2	1.0	ug/I	25.0		109	40-145			
2-Chlorotoluene	27.0	1.0	ug/I	25.0		108	75 -125			
4-Chlorotoluene	27.2	1.0	ug/I	25.0		109	75-12 5			
Dibromochloromethane	26.5	1.0	ug/I	25.0		106	65-145			
1,2-Dibrorno-3-chloropropane	18.9	5.0	ug∕i ∙	25.0		76	50-135			
1,2-Dibromoethane (EDB)	25.1	1.0	ug/I	25.0		100	75-125			
Dibromomethane	24.8	1.0	ug/I	25.0		99	75-130			
1,2-Dichlorobeazene	25.7	1.0	ug/l	25.0		103	80-120			
1,3-Dichlorobenzeoe	25.7	1.0	ug/I	25.0		103	80-120			
1,4-Dichlorobenzene	25.2	1.0	ug/l	25.0		101	80-120			
Dichlorodifhoromethane	27.0	2.0	ug/l	25.0		108	10-160			
1, 1-Dichloroethanc	27.9	1.0	ng/1	25.0		112	70-135			
1,2-Dichloroethane	25.6	0_50	og∕l	25.0		102	60-150			
1,1-Dichloroethene	29.0	1.0	tig/I	25.0		116	75-135			
eis-1,2-Dichk roetheae	28.7	1.0	ug/l	25.0		115	70-125			
trans-1,2-Dichloroethene	28.4	1.0	ug/I	25.0		114	70-130			
1,2-Dichloropropane	27.8	1.0	ug/I	25.0		111	70-120			
1,3-Dichloropropane	25.8	1.0	ug/l	25.0		103	70-130			
2,2-Dichloropropane	28.2	1.0	ug/I	25.0		113	65-150		4	
1,1 Dichloropropene	28.4	1.0	ug/l	25.0		114	75-130			
cis-1,3-Dichloropropene	28.1	0.50	ug/I	25.0		112	75 130			
trans-1,3-Dichloropropene	27.0	0.50	ug/l	25.0		108	75-135			


Del Mar Analytical, Irvine

Chris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1727 <Page 22 of 44>

17461 Derian Ave., Suite 100, (triine, CA 92614 (949) 261-1022 FAX (949) 260-) 297 1014 E. Cookey Dx., Swite A. Cohini, CA 92824 (909) 370-4667 FAX (649) 370-1046 9484 Chengeake Dx., Swite 805, Swi Diego, CA 9214,1 (838) 905-8596 FAX (668) 505-906 9630 South 519 St., Swite 8-120, Phoenik, AZ 85044 (480) 765-0043 FAX (490) 765-48651 220E, Swite Rd. #3, Eas (vegas, RN 89120 (702) 798-3626 FAX (702) 798-3621

AWH Americas - Brea 3050 Saturn St., Suite 205 Brea CA 92823 Project ID: Honeywell, North Hollywood

Sampled: 02/22/05

Brea, CA 92821 Attention: Lisa Hall Report Number: 10B1727

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier s
Batch: 5C01024 Extracted: 03/01/	<u>05</u>									
LCS Analyzed: 03/01/2005 (5C010)	24-BS1)									
Erhylbenzene	27.1	0.50	ug∕1	25.0		108	80-120			
Hexachlorobutadiene	25.0	1.0	ug/I	25.0		100	65-140			
Isopropylbenzene	27.8	1.0	ug/l	25.0		111	75-125			
p-lsopropyltoluene	25.4	1.0	ug∕l	25.0		102	75-125		8	
Methylene chloride	28.4	5.0	ug∕l	25.0		114	60-135			
Methyl-cert-butyl Ether (MTBE)	25.4	1.0	ug/l	25.0		102	55-145			
Naphthalene	24.5	1.0	ug/l	25.0		98	50-145			
a-Propylbenzene	26.8	1.0	og∕l	25.0		107	75-130			
Styrene	28.3	1.0	ag/I	25.0		113	80-135			
1,1,2-Tetrachloroethane	26.9	1.0	ug/l	25.0		168	70-145			
2,2-Tetrachloroethane	24.8	1.0	υg/l	25.0		99	60-135			
retrachloroethene	25.4	1.0	ug/I	25.0		102	75-125			
Toluene	26.6	0.50	աջ/I	25.0		106	75-120			
1,2,3-Trichlorobenzene	25.7	1.0	ug/ 1	25.0		103	65-135			
1,2,4-Trichlarobenzene	27.1	1.0	ug/l	25.0		108	70-140			
1,1,1-Trichloroethane	27.5	1.0	սջ/1	25.0		110	75-140			
1,1,2-Trichloroethane	25.6	1.0	ug/I	25.0		102	70-125			
Trichloroethene	26.8	1.0	ug∕l	25.0		107	80-120			
Trichlerofluoromethane	24.7	1.0	ug/l	25.0		99	65-145			
1,2,3-Trichloropropane	24.9	1.0	ug/l	25.0		100	60-130			
1,2,4-Trimethylbenzene	26.3	1.0	ug/l	25.0		105	75-125			
1,3,5-Trimethylbenzene	27.5	1.0	ug/l	25.0		110	75-125			
Viny! chloride	26.8	0.50	ug/l	25.0		107	50-130			
o-Xyleac	24.6	0.50	ug/1	25.0		98	75-125			
m.p-Xylenes	48,7	1.0	ns/J	500		97	75-120			
Surrogate: Dibromofluoromethane	27.7		ug/I	25.0		111	80-120			
Surrogote: Toluene-d8	27.6		ugA	25,0		110	80-120			
Surrogate: 4-Bromofluorobenzene	27.2		ug∕l	25.0		109	80-120			

17461Derian Are "Skitz 103, Irone, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Cir., Suite A. Catrar, CA 92274 (949) 370-4667 FAX (949) 370-1046 9464 Chespeake Dr., Suite 805, San Diego, CA 92123 (659) 505-6596 FAX (959) 9689 9430 Souds Stat St., Suite 8-170, Phoenix, AZ 85044 (46th 765-004) FAX (460) 765-0651 250 F. Surset Rd. #3. Lus Vega, NN 89120 (702) 736-3620 FAX (702) 736-3621

MWH Americas - Brea

3050 Saturn St., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

Report Number: IOB1727

Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
<u>Batch: 5C01024 Extracted: 03/01</u>	/05									
Matrix Spike Analyzed: 03/01/200	5 (5C01024-MSI)				Source: 1	OB1727-0	3			
Вермере	25.0	0.50	ug/I	25.0	ND	100	70-120			
Втоторениете	25.3	1.0	ug/I	25.0	ND	101	65-130			
Bromochloromethane	25.9	1.0	ս ց/1	25.0	ИD	104	65-140			٠.
Bromodichloromethane	24.3	1.0	ug/I	25.0	ND	97	70-140			-
Bromoform	19.4	1.0	ug/l	25.0	ND	78	55-140			
Bromomethene	28.I	1.0	υg/I	25.0	ND	112	50-145			
n-Butylbenzene	25.9	0.1	ag/l	25.0	ND	104	70-140			
sec-Butylbenzene	24.6	1.0	ug/I	25.0	ND	98	70-130			
tert-Butylbenzene	25.3	1.0	ug/l	25.0	ND	101	70-130			
Carbon tetrachloride	25.7	0.50	սց/ն	25.0	0.34	101	70-145			
Chiorobenzeae	24. I	1.0	ug/I	25,0	ND	96	80-125			
Chlorocthase	29.7	1.0	ug/I	25.0	ND	119	50-145			
Chloroform	27.0	1.0	υg/l	2 5.0	0.59	106	70-135			
Chloromethine	24.3	1.0	ug/l	25.0	ND	97	35-145			
2-Chlorotoluene	25.5	1.0	ug/I	25.0	ND	102	70-140			
4-Chlorotoluene	25.4	0.1	աջ/Լ	25.0	ND	102	70-140			
Dibramachloromethane	24.9	0.1	ug/ī	25.0	ND	100	65-145			
1,2-Dibromo-3-chloropropane	18.3	5.0	ag/I	25.0	ND	73	45-155			
1,2 Dibromoethane (EDB)	24.1	I-0	ս ջ/I	25.0	ND	96	70 -130			
Dibromomethane	23.8	1.0	ug/i	25.0	ND	95	65-140			
1,2-Dichlorobenzene	24.1	1.0	ug/l	25.0	ND	96	75-130			
1,3-Dichlorobenzene	23.8	1.0	ug/I	25.0	ND	95	75-130			
1,4-Dichlorobenzene	23.9	1.0	ug/l	25.0	ND	96	80-120			
Dichlorodifluoromethane	29.4	2.0	ng/I	25.0	4.6	99	10-160			
1,1-Dichloroethane	28.2	1.0	ng/I	25.0	1.9	105	65-135			
1,2-Dichlorocthage	24.8	0.50	ug/1	25.0	0.64	97	60-150			
I,1-Dichloroethene	27.8	0,1	og/I	25.0	0.35	110	65-140			
cis-1,2-Dichloroethene	39.0	1.0	ug/l	25.0	14	100	65-130			
trans-1,2-Dichloroethene	26.8	1.0	ug/I	25.0	ND	107	65-135			
I,2-Dichloropropane	26.I	1.0	ug/I	25.0	ND	104	65-130			
1,3-Dichloropropane	24.6	1.0	11g/1	25.0	ND	98	65-140			
2,2-Dichloropropane	26.4	1.0	ug/I	25.0	ND	106	60-150		4.	
I, I -Dichloropropene	26.8	1.0	ug/l	25.0	ND	107	65-140			
cis-1,3-Dichloropropene	26.4	0.50	ug/1	25.0	ND	106	70-140			
truns-1,3-Dichloropropene	25.7	0.50	ие/1	25.0	ND	103	70-140			

Del Mar Analytical, Irvine

Chris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1727 <Page 24 of 44>

17461 Denian Ave., Suite 100, finine, CA 97614 (949) 261-1022 FAX (949) 260-3297 1014 E. Coolley Ch., Swite A. Colon, CA 92324 (909) 370-4667 FAX (949) 370-1046 9464 Chesapeake Dr., Suite 895, San Dingn. CA 92123 (856) 505-856 FAX (858) 505-9689 9830 South STA 9., Suite 8-120, Phoenix, AZ 65044 (460) 765-0043 FAX 1460) 765-0651 2520 E. Switel Rd. #3, Las Virgas, NV 89120 (702) 798-3620 FAX (702) 798-3621

AWH Americas - Brea 3050 Saturn St., Suite 205 Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Sampled: 02/22/05

Report Number: 10B1727

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5C01024 Extracted: 03/01/0:	<u>5</u>									
Matrix Spike Analyzed: 03/01/2005	(5C01024-MS1)				Source: I	OB1727-0	3			
Ethylbeazene	26.0	0.50	ug/l	25.0	ND	104	70-130			
Hexachlorobutzdiene	23.5	1.0	ug/I	25.0	ND	94	65-140			
Isopropylbenzene	26.1	1.0	ag/I	25.0	ND	104	70-130			
p-Isopropylioluene	24.0	1.0	ug/l	25.0	ND	96	70-130			
Methylene chloride	26.7	5.0	ug/I	25.0	ND	107	60-135			
Methyl-tert-buryl Ether (MTBE)	24.3	1.0	ag∕l	25.0	ND	97	50-155			
Naphthalene	22,8	1.0	ug/I	25.0	ND	91	50-150			
n-Propylbenzene	25,3	1.0	ug/1	25.0	ND	101	70-135			
Styrene	24.6	1.0	ng/I	25.0	ND	98	55-145			
1,1,1,2-Tetrachioroethane	25.6	1.0	ug/I	25.0	ND	102	70-145			
2,2-Tetrachloroethane	24.0	1.0	ug/I	25.0	ND	96	60-145			
cirachlorocthene	32.4	1.0	ug/I	25.0	9.5	92	70-130			
Tolucue	25.3	0.50	ug/I	25.0	ND	101	70-120			
1,2,3-Trichlorobenzene	24.3	1.0	ug/l	25.0	ND	97	60-140			
1,2,4-Trichlorobenzene	24.9	1.0	ug/l	25.0	ND	100	60-140			
1,1,1-Trichlaroethane	26.5	1.0	ug/I	25.0	ND	106	75-140			
1,1,2-Trichloroethane	24,7	1.0	ug/l	25.0	ND	99	60-135			
Trichloroetheae	39.3	1.0	ug/I	25.0	17	89	70-125			
Trichlorofluoromethene	23.7	1.0	ug/I	25.0	ND	9\$	55-145			
1,2,3-Trichloropropane	23.7	1.0	ug/I	25.0	ND	95	55-140			
1,2,4-Trimethylbenzene	23.9	1,0	ug/I	25.0	ND	96	60-125			
1,3,5-Trimethylbenzene	26.1	1.0	ug/I	25.0	ND	104	70-130			
Vinyl chloride	24.8	0.50	ug/l	25.0	ND	99	40-135			
o-Xylene	23.4	0.50	ug/I	25.0	ND	94	65-125			
m,p-Xykmes	46.8	1.6	ug/l	50.0	ND	94	65-130			
Surrogate: Dibromofluoromethane	27.0		ug/l	25.0		108	80-120			
Surrogate: Toluene-d8	27.1		ug/l	25.0		108	80-120			
Surrogate: 4-Bromoftwordbenzene	26.3		⊔g/ I	25.0		105	80-120			

17461Derun Ave., Suite 180, I-vine, CA 92614 (949) 261-1022 FAX (949) 260-3292 1014 E. Cooley Dr., Suite A. Cotton, CA 92224 (909) 370-4667 FAX (949) 370-1046 3484 Cheupelah Ch., Suite 605, San Diego, CA 92123 (858) 505-3594 FAX (4858) 805-3689 9830 South 51s Sui, Suite B-120, Phoenia, AZ 85044 MR0 785-0083 FAX (480) 786-0851 2570 E. Suiner Rd. (2), 12s Vegas, PM 99120 (702) 796-3620 FAX (702) 796-3621

MWH Americas - Brea

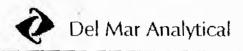
3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hail Project ID: Honeywell, North Hollywood

Report Number: 10B1727

Sampled: 02/22/05 Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)


•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Levei	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5C01024 Extracted: 03/01/05										
Matrix Spike Dup Analyzed: 03/01/20	005 (5C01024-N	ISD1)			Source: I	OB1727-0	3			
Beuzene	25.8	0.50	ug∕I	25.0	ND	103	70-120	3	20	
Bromebenzene	25.7	1.0	ug/I	25.0	ND	103	65:130	2	20	
Bromochloromethane	25.0	1.0	ug/I	25.0	ND	100	65-140	4	25	
Bromodichloromethace	25.6	1.0	ug/I	25.0	ND	102	70-140	5	20	
Bromoform	20.7	1.0	ug/I	25 0	ND	83	55-140	6	25	
Bromomethane	26.1	1.0	ug/l	25.0	ND	104	50-145	7	25	
n-Burylbenzene	26.0	1.0	ug/I	25.0	ND	104	70-140	0	20	
sec-Butylbenzene	24.8	1.0	ug/l	25.0	ND	99	70-130	1	20	
tert-Butylbenzene	25.6	1.0	ug/I	25.0	ND	102	70-l 3 0	1	20	
Carbon tetrachloride	27.2	0.50	ug/I	25.0	0.34	107	70-145	6	25	
Chlorobenzene	24.5	1.0	ug/I	25.0	ND	98	80-125	2	20	
Chloroethane	28.4	1.0	ng∕1	25.0	ND	114	50-145	4	25	
Chloroform	27.5	1.0	ag/i	25.0	0.59	108	70-135	2	20	
Chloromethene	24.3	1.0	ng/t	25.0	ND	97	35-145	0	2 5	
2-Chlorotohiene	25.4	1.0	ug/I	25.0	ИĎ	102	70-140	0	20	
4-Chlorotohiene	25.8	1.0	ug/I	25.0	ND	103	70-140	2	20	
Dibromochloromethane	25.8	1.0	ug/I	25.0	ND	103	65-145	4	25	
1,2-Dibromo-3-chloropropane	19.9	5.0	ug/l	25.0	ИD	80	45-155	8	30	
1,2-Dibromoethane (EDB)	25.0	I ₋ O	ug/l	25.0	ND	100	70-130	4	25	
Dibronumethane	24.8	1.0	ug/I	25.0	ND	99	65-140	4	25	
1,2-Dichlorobenzene	24.9	1.0	ug/I	25.0	ND	100	75-130	3	20	
1,3-Dichlorobenzene	24.4	1.0	ug/I	25.0	ND	98	75-130	2	20	
1,4-Dichlorobeazene	24.2	1.0	ug/I	25.0	ND	97	80-120	1	20	
Dichlorodifluoromethane	27.6	2.0	ug/I	25.0	4.6	92	10-160	6	30	
1,1-Dichloroethane	28.6	1.0	ug/l	25.0	1.9	107	65-135	1	20	
1,2-Dichloroethane	25.8	020	ug/I	25.0	0.64	101	60-150	4	20	
1,1-Dichloroethene	27.9	1.0	ug/I	25.0	0.35	110	65-140	0	20	
cis-1,2-Dichlorombene	38.E	1.0	ug/l	25.0	14	99	65-130	i.	20	
trans-1,2-Dichloroethene	27.6	1.0	ug/1	25.0	ND	110	65-135	3	20	
1,2-Dichloropropane	27.3	1.0	ug∕l	25.0	ND	109	65-130	4	20	
1,3-Dichloropropune	25.6	1.0	11g/l	25.0	ND	102	65-140	4	25	
2,2-Dichlоторгорале	26.6	1.0	υ g/ 1	25.0	ND	106	60-150	1	. 25	
1,1-Dichloropropose	27.8	1.0	ug∕l	25.0	ND	111	65-140	4	20	
cis-1,3-Dickloropropene	27.8	0.50	ug⁄l	25.0	ИD	111	70-140	5	20	
trans-1,3-Dichloropropene	27.0	0,50	ug⁄l	25.0	ND	108	70-140	5	25	

Del Mar Analytical, irvine

Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1727 < Page 26 of 44>

17461 Dentan Ave., Suite 100, Iovaie, CA 97914, (949) 261-1022, FAX (949) 260-12-97, 1014 E. Conkly, Or., Soite, A. Collon, CA 93374, (909) 370-4667, FAX (949) 370-1046, 9484 Chemprole Dr., Suite 0675, Sun Diego, CA 97171, (858) 505-6596, FAX (858) 505-9689, 9830 South 51x St., Suite 0-120, Phoenor, AZ 85844, (440), 785-0043, FAX (400) 785-0651, 2520 E. Suitset R., #3, tas Vegas, NV 19310, (702) 798-3620, FAX (702), 785-3621

MWH Americas - Brea 3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Half Project ID: Honeywell, North Hollywood

Report Number: 10B1727

Sampled: 02/22/05

Received: 02/23/05

METHOD BLANK/OCDATA

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
* Analyte	Result	Limit	Units	Level	Result	%REC	Limiu	RPD	Limit	Qualifiers
Batch: 5C01024 Extracted: 03/01/6	<u>95</u>									
Matrix Spike Dup Auslyzed: 03/01/	/2005 (5C01024-N	(SDI)			Source: 1	OB1727-0	3			
Ethylbenzenc	26.2	0.50	սջ/1	25.0	ND	105	70-130	1	20	
Hexachlorobutadiene	24.4	1.0	ug/l	25.0	ND	98	65-140	4	20	
Isopropylbenzene	26.6	1.0	ug/l	25.0	ИD	106	70-130	2	20	
p-Isopropyltoluene	23.9	1.0	ug/l	25.0	ND	96	70-130	0	20	
Methylene chloride	27.8	5.0	ug/l	25.0	ND)11	60-135	4	20	
Methyl-tert-butyl Ether (MTBE)	25.9	1.0	ug/l	25.0	ΝD	104	50-155	6	25	
Naphtralcue	24.1	1.0	ug/l	25.0	ND	96	50-159	6	30	
n-Propylbenzene	25.3	1.0	ug/l	25.0	ИD	101	70-135	0	20	
Styrene	20.8	1.0	ug/I	25.0	ND	83	55-145	17	30	
1,1,1,2-Tetrachloroethane	26.0	1.0	ug/l	25.0	ND	104	70-145	2	20	
2,2 Tetrachloroethane	25.1	1.0	ug/l	25.0	ИD	100	60-145	4	30	
trachloroethene	32.5	1.0	ug/l	25.0	9.5	92	70-130	0	20	
Toluenc	26.3	0.50	ug/l	25.0	ND	105	70-120	4	20	
1,2,3-Trichlorobenzene	25.2	1.0	ug/l	25.0	ND	101	60-140	4	20	
1,2,4-Trichloroborzeoc	26.0	1.0	ug/I	25.0	ND	104	60-140	4	20	
1,1,1-Trichforoethane	27.1	1.0	ug/I	25.0	ND	108	75-140	2	20	
1,1,2-Trichloroethane	25.7	1.0	ug/I	25.0	ND	103	60-135	4	25	
Trichlomethene	39.8	1.0	ug/I	25.0	17	91	70-125	1	20	
Trichlorofluoromethane	26.7	1.0	ug/l	25.0	ND	107	55-145	12	25	
1,2,3-Trichloropropane	25.0	1.0	ug/l	25.0	ND	100	55-140	5	30	
1,2,4-Trimethylbenzene	22.0	1.0	⊎ g/I	25.0	ИD	88	60-125	8	25	
1,3,5-Trimethylbenzene	25.5	1.0	ug/l	25.0	ND	102	70-130	2	20	
Vinyt chloride	26.0	0.50	ug/l	25.0	ND	104	40-135	5	30	
o-Xylenc	23.7	0.50	ug/l	25.0	ND	95	65-125	ı	20	
m.p-Xylenes	47.0	1.0	นะ/โ	50.0	ND	94	65-130	0	25	
Surrogate: Dibronofluoromethane	26.9		ugA	25,0		108	80-120			
Surrogate: Toluene-d8	27.0		ug/l	25.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	26.3		ug/I	25.0		105	80-120			

17461 Derlan Ave., Suite 100, twine, CA 92614 (949) 761-1072 FAX (949) 260-3292 1014 L. Cooky Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeuke Or., Suire 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenia, AZ 85044 (480) 785-9043 FAX (480) 785-9651 2520 E. Sunore Rd. #3. Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Report Number: IOB1727

Sampled: 02/22/05 Received: 02/23/05

RPD

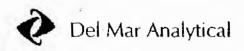
Limit

Data

Qualifiers

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD
Batch: 5C03016 Extracted: 03/03/	05							
Di-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ALC DI WIL							
Blank Analyzed: 03/03/2005 (5C03 Benzene	ND	0.50	ug/l					
Bromobenzene	ND	1.0	•					
		1.0	⊔g/l /1					
Bromochloromethane Bromodichloromethane	ND ND	1.0	11g/I			*		
Вготобит	ND	1.0	υg/1 /1					
	ND	1.0	ug/l u=/l					
Bromomethane	ND	1.0	ug/l ⊔g/l					
n-Butylbenzene	ND	1.0	-					
sec-Butylbenzene	ND	1.0	ug/l					
ters-Butyfbenzene	ND	0.50	ng∕l ug∕l					
Carbon tetrachloride	ND	1.0	_					
Chlorobenzene			ug/l					
Chloroethane	ND ND	1.0 3.0	ug/l					
Chloroform Chloromethane	ND	1.0	ug/I					
	ND	1.0	ug/l 2					
2-Chlorotolucae			11g/l					
4-Chlorotoluene	ND ND	1.0	ug/1					
Dibromochloromethans		1.0	ug/l ⊄					
1,2-Dibrotso-3-chloropropane	ND	5.0 . 1.0	ug∕l					
1,2-Dibromoethane (EDB)	ND		ug/l					
Dibromomethane	ND	1.0	ug/l					
1,2-Dichlorobenzene	ND	1.0	ეგ∕ 1					
1,3-Dichlorobeazene	ND	1.0	ug/l					
1,4-Dichlorobenzene	ND	1.0	ug/I					
Dichlorodifluoromethane	ND	2.0	ug/l					
1,1-Dichloroethme	ND	1.0	ug/I					
1,2-Dichloroethane	ND	0,50	ug/I					
1,1-Dichloroethene	ND	1.0	աջ∕Լ					
cis-1,2-Dichloroethene	ND	1,0	ug/l					
trans-1,2-Dichloroethene	ND	1.0	սց/յ					
1,2-Dichloropropane	ND	1.0	υg⁄I					
1,3-Dichloropropane	ND	1.0	யத∕1					
2,2-Dichloropropane	ND	1.0	ug/l					'e
1,1-Dichloropropene	ND	1.0	ug/l			0.0		
cis-1,3-Dichloropropene	ND	0.50	ug∕I					
trans-1,3-Dichloropropene	ND	0.50	ug/1					


Del Mar Analytical, Irvine

Chris Roberts

Project Manager

The results pertain only to the samples rested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analyticol.

10B1727 < Page 28 of 44>

F2461Derian Ave., Suite 100, Inrine, CA-92614 (949) 261-1022 FAX (949) 260-3297 1014 €, Coolley Dr., Soier A. Collan, CA-92124 (959) 379-4567 FAX (949) 370-1045 (949) 470-

AWH Americas - Brea

3050 Saturn St., Suite 205 Brea, CA 92821 Project ID: Honeywell, North Hollywood

Sampled: 02/22/05

Attention: Lisa Hall

Report Number: IOB1727

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte Result Limit Units Lavel Result %REC Limits RPD Limit Qualifiers			Reporting		Spike	Source		%REC		RPD	Data
Blank Analyzed: 03/03/2005 (5C03016-BLK1)	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Ethyfbenzeae	Batch: 5C03016 Extracted: 03/03/0	5_									
Ethyfbenzeae	Blank Analyzed: 03/03/2005 (5C030	016-BLX1)									
Hexachdorobutadiene		,	0.50	ug/l							
Isopropy/Itelizene	Hexachlorobotadiene	ND		_							
Methylene chloride ND 5.0 ug/f Methyl-tert-butyl Ether (MTBE) ND 1.0 ug/f Nephthalene ND 1.0 ug/f n-Propylbenzene ND 1.0 ug/f Styrene ND 1.0 ug/f 1,1,1,2-Teunchloroethane ND 1.0 ug/f 1,1,1-Teunchloroethane ND 1.0 ug/f 2,2-Tetrachloroethane ND 1.0 ug/f 1,2,3-Trichloroethane ND 1.0 ug/f 1,2,4-Trichloroethane ND 1.0 ug/f 1,1,2-Trichloroethane ND 1.0 ug/f Trichloroethane ND 1.0 ug/f Trichloroethane ND 1.0 ug/f Trichloroethane ND 1.0 ug/f Trichloroethene ND 1.0 ug/f Trichloroethene ND 1.0 ug/f 1,2,3-Trichloroethene ND 1.0 ug/f 1,3,5-Trimethylb	Isopropylbenzene	סא	0.1	ug/l	* .						
Methyl-tert-butyl Ether (MTBE) ND 1.0 ug/f Naphthalene ND 1.0 ug/f n-Propylbenzzae ND 1.0 ug/f Styrene ND 1.0 ug/f 1,1,1,2-Teuachloroethame ND 1.0 ug/f 1,2,2-Teuachloroethame ND 1.0 ug/f Tothene ND 0.50 ug/f 1,2,3-Trickloroethame ND 1.0 ug/f 1,2,4-Trickloroethame ND 1.0 ug/f 1,1,1-Trickloroethame ND 1.0 ug/f 1,1,2-Trickloroethame ND 1.0 ug/f Trickloroethame ND 1.0 ug/f Trickloroethame ND 1.0 ug/f Trickloropapame ND 1.0 ug/f 1,2,3-Trickloropapame ND 1.0 ug/f 1,2,4-Trimethylbenzene ND 1.0 ug/f Vinyl chloride ND 0.50 ug/f Vinyl chloride	p-isopropyitaluene	ND	0.1	ug/l	*			-			
Naphthalene	Methylene chloride	ND	5,0	ug/Ī							
ND 1.0 ag/l	Methyl-tert-butyl Ether (MTBE)	סא	1.0	ug/f							
Styrene	Naphthalene	ND	1.0	ug/l							
1,1,2-Teurschloroethane	n-Propylbenzene	ND	0.1	ag∕I							
1.0	Styrene	ND	1.0	ug/I							
Tohene	1,1,1,2-Terrachloroethane	ND	1.0	ng/I							
Tohiene ND 0.50 ug/l 1,2,3-Trichlorobenzene ND 1.0 ug/l 1,2,4-Trichloroethane ND 1.0 ug/l 1,1,1-Trichloroethane ND 1.0 ug/l 1,1,2-Trichloroethane ND 1.0 ug/l Trichloroethane ND 1.0 ug/l Trichlorofkoromethane ND 1.0 ug/l 1,2,3-Trichloropropane ND 1.0 ug/l 1,2,4-Trimethylbenzene ND 1.0 ug/l Vinyl chloride ND 0.50 ug/l o-Xylene ND 0.50 ug/l mp-Xylenes ND 1.0 ug/l	2,2-Tetrachloroethane	מא	1.0	ug/l							
1,2,3-Trichlorobenzene ND 1,0 ug/l 1,2,4-Trichlorobenzene ND 1,0 ug/l 1,1,1-Trichloroethane ND 1,0 ug/l 1,1,2-Trichloroethane ND 1,0 ug/l Trichloroethane ND 1,0 ug/l Trichlorofluoromethane ND 1,0 ug/l 1,2,3-Trichloropropane ND 1,0 ug/l 1,2,4-Trimethylbenzene ND 1,0 ug/l Vinyl chloride ND 0.50 ug/l o-Xylene ND 0.50 ug/l m.p-Xylenes ND 1.0 ug/l	trachloroethene	ND .	1.0	wg/I							
1,2,4-Tricklorobenzene ND 1.0 ug/t 1,1,1-Trickloroethane ND 1.0 ug/t 1,1,2-Trickloroethane ND 1.0 ug/t Trickloroethane ND 1.0 ug/t Trickloroethane ND 1.0 ug/t 1,2,3-Trickloropropane ND 1.0 ug/t 1,2,4-Trimethylbenzene ND 1.0 ug/t 1,3,5-Trimethylbenzene ND 1.0 ug/t Vinyl chloride ND 0.50 ug/t o-Xylene ND 0.50 ug/t mp-Xylenes ND 1.0 ug/t	Tohiene	ND	0.50	ug/l							
1,1,1-Trickloroethane ND 1.0 ug/l 1,1,2-Trickloroethane ND 1.0 ug/l Trickloroethane ND 1.0 ug/l Trickloroethane ND 1.0 ug/l 1,2,3-Trickloropropane ND 1.0 ug/l 1,2,4-Trimethylbenzene ND 1.0 ug/l 1,3,5-Trimethylbenzene ND 1.0 ug/l Vinyl chloride ND 0.50 ug/l o-Xylene ND 0.50 ug/l m.p-Xylenes ND 1.0 ug/l	1,2,3-Trichlorobenzene	ND	1.0	ug/l							
1,1,2-Trickloroethane ND 1.0 ug/f Trickloroethane ND 1.0 ug/f Tricklorofluoromethane ND 1.0 ug/f 1,2,3-Trickloropropane ND 1.0 ug/f 1,2,4-Trimethylbenzene ND 1.0 ug/f 1,3,5-Trimethylbenzene ND 1.0 ug/f Vinyl chloride ND 0.50 ug/f o-Xylene ND 0.50 ug/f m.p-Xylenes ND 1.0 ug/f	1,2,4-Trichlorobeazene	ND	1.0	ug/l							
Trichloroethene ND 1.0 ug/l Trichlorofluoromethane ND 1.0 ug/l 1,2,3-Trichloropropane ND 1.0 ug/l 1,2,4-Trimethylbenzene ND 1.0 ug/l 1,3,5-Trimethylbenzene ND 1.0 ug/l Vinyl chloride ND 0.50 ug/l o-Xylene ND 0.50 ug/l m.p-Xylenes ND 1.0 ug/l	1,1,1-Trichloroethane	ND	1.0	ug/I							
Trichlorofluoromethane ND 1.0 ug/l 1,2,3-Trichloropropane ND 1.0 ug/l 1,2,4-Trimethylbenzene ND 1.0 ug/l 1,3,5-Trimethylbenzene ND 1.0 ug/l Vinyl chloride ND 0.50 ug/l o-Xylene ND 0.50 ug/l m,p-Xylenes ND 1.0 ug/l	1,1,2-Trichloroethane	ND	1.0	ug/î							
1,2,3-Trichloropropane ND 1,0 ug/l 1,2,4-Trimethylbenzene ND 1.0 ug/l 1,3,5-Trimethylbenzene ND 1.0 ug/l Vinyl chloride ND 0.50 ug/l o-Xylene ND 0.50 ug/l m,p-Xylenes ND 1.0 ug/l	Trichlorocations	ND	1.0	ug/I							
1,2,4-Trimethylbenzene ND 1.0 ug/f 1,3,5-Trimethylbenzene ND 1.0 ug/f Vinyl chloride ND 0.50 ug/f o-Xylene ND 0.50 ug/f m,p-Xylenes ND 1.0 ug/f	Trichtorofluoromethane	ND	1.0	ug/I							
1,3,5-Trimethylbenzene ND 1.0 ug/l Vinyl chloride ND 0.50 ug/l o-Xylene ND 0.50 ug/l m,p-Xylenes ND 1.0 ug/l	1,2,3-Trichloropropme	ND	1.0	սջ/1							
Vinyl chloride ND 0.50 ug/l o-Xylene ND 0.50 ug/l m.p-Xylenes ND 1.0 ug/l	1,2,4-Trimethylbenzene	סא	1.0	ug/î							
o-Xylene ND 0.50 ug/l m,p-Xylenes ND 1.0 ug/l	1,3,5-Trimethylbenzene	מא	1.0	ug/î							
m_p-Xylenes ND 1.0 ug/t	Vinyl chloride	ND	0_50	ug/1							
	o-Xylene	ND	0.50	ug/l							
a an a l	m,p-Xylenes	ND	1.0	ug/I							
Surrogate: Dibromofluoromethane 28.1 ug/t 25.0 112 80-120	Surrogate: Dibromofluoromethane	28.1		ug/l	25.0		112	80-120			
Surrogate: Toluene-d8 26.0 ug/l 25.0 104 80-120	Surrogate: Toluene-d8	26.0			25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene 27.2 ug/l 25.0 109 80-120	Surrogate: 4-Bromofluorobenzene	27.2		ug/I	25.0		109	80-120			

17461 Derian Ave., Suite 100, Irrae., CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 C. Cockey Dr., Skite A. Colton, CA 927224 (1909) 370-14667 FAX (949) 370-1046 9484 Chesapeake Dr., Skite 805, San Diego, CA 92723 (858) 905-4969 FAX (949) 805-9696 9830 South Staf St., Skite 81-120, Phrenia, AZ 85044 (480) 795-4003 FAX (480) 785-0851 2520 E. Sueset Itd. #3, 4s-Veggs, IVV 89720 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn St., Suite 205 Brea, CA 92821

Attention: Lisa Hall

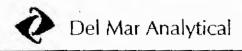
Project ID: Honeywell, North Hollywood

Report Number: IOB1727

Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)


Analyte Batch: 5C03016 Extracted: 03/03		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Bulling Description and the second	i/05	,								\
LCS Analyzed: 03/03/2005 (5C03)	016-RS1)									
Benzeue	25.8	0.50	11g/l	25.0		103	70-120			
Bromobenzene	26.2	1.0	ug/l	25.0		105	80-120			
Bromochioromethane	25.1	1.0	ug/l	25.0		100	65-135		-	
Bromodichloromethane	29.0	1.0	ug/l	25.0		116	70-140			
Bromoferm	27.7	1.0	цg/I	25.0		111	55-135			
Bromomethane	24.5	1.0	υ g/1	25.0		98	60-140			
u-Burylbenzene	29.1	1.0	иg/I	25.0		116	75-130			
sec-ButyRenzene	27.8	1.0	±g/l	25.0		111	75-125			
ten-Butylbenzene	27.6	1.0	ug/I	25.0		110	75-125			
Carbon ten schlonde	31.6	0.50	ug/1	25.0		126	70-140			
Chlorobenzene	26.1	1.0	ug/l	25.0		104	80-125			
Chloroethane	24.3	1.0	ug/ 1	25.0	•	97	60-145			
Chlareform	27.4	1.0	νg/I	25.0		110	75-130			
Chloromethane	23.4	1.0	пд∕1	25.0		94	40-145			
2-Chlorotoluene	26.4	1.0	ag/ I	25.0		106	75-125			
4-Chlorotolpene	27.5	1.0	ug/I	25.0		110	75-125			
Dibromochloromethane	29.9	1.0	eg/l	25.0		120	65-145			
1,2-Dibromo-3-chloropropane	29.7	5.0	14g/l	25.0		119	50-135			
1,2-Dibromoethane (EDB)	28.0	1.0	ng/I	25.0		112	75-125			
Dibromomethane	29.9	1.0	ug/I	25.0		120	75-130			
1,2-Dichlorobeauene	27.3	1.0	ug/I	25.0		109	80-120			
1,3-Dichlorobenzene	26.2	1.0	11g/l	25.0		105	80-120			
1,4-Dichlorobenzene	26.5	1.0	ug/I	25.0		106	80-120			
Dichlorodifluoromethane	26.0	2.0	υgΛ	25,0		104	10-160			
1,1-Dichloroethane	25.4	1.0	1/ga	25.0		102	70-135			
1,2-Dichloroethane	33.6	0.50	υgΛ	25.0		134	60-150			
1,1-Dichloroethene	24.5	0.1	ug/I	25.0		98	75-135			
cis-1,2-Dichloroethene	24.1	1.0	ug/I	25.0		96	70-125			
trans-1,2-Dichloroethene	24.5	1.0	ug/I	25.0		98	70-130			
1,2-Dichloropropage	25.3	0.1	пgЛ	25.0		101	70-120			
1,3-Dichioropropase	27.7	1.0	υgΛ	25.0		111	70-130			
2,2-Dichloropropane	30.4	1.0	ngΛ	25,0		122	65-150		8	
1,1-Dichloropropene	27.6	1.0	υgA	25.0		110	75-130			
cis-1,3-Dichloropropene	28.0	0_50	ug/I	25.0		112	75-130			
trans-1,3-Dichloropropene	30.1	0.50	ug/l	25.0		120	75-135			

Del Mar Analytical, Irvine Chris Roberts

Project Manager

The results pertain only to the samples rested in the loboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1727 <Page 30 of 44>

17467 Derian Ave., Skilte 100, Irvine, CA 92614 1949); 261-1022 FAX (949); 260-3297 1014 E. Cooley Dr., Switz A. Collon, CA 92124 1909); 379-4667 FAX (949); 370-1046 9484 Chempeake Dr., Skilte 805, Sarr Diego, CA 92721 1958; SUI-8596 FAX (980); 505-9689 9830 South S14 St., Skilte 8-120, Phoenic, AZ 85044 4900; 765-0643 FAX (460); 765-0631 2506 E. Sunset Rd. #3, Exs. Vegel, NY #9120 (702); 798-3420 FAX (702); 798-3421

MWH Americas - Brea 3050 Saturo St., Suite 205

Brea, CA 92821 Attention: Lisa Halt Project ID: Honeywell, North Hollywood

Report Number: 10B1727

Sampled: 02/22/05

Received: 02/23/05

METHOD BLANK/OC DATA:

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualiflers
Batch: 5C03016 Extracted: 03/03/0	15_									
LCS Analyzed: 63/03/2005 (5C630)	6-BS1)									
Éthylbenzene	29.1	0.50	ng/I	25.0		116	80-120			
Hexachlorobutadiene	26.6	0.1	ug/I	25.0		106	65-140			
Isopropylbenzene	27.8	1.0	ug/l	25.0		111	75-125			
p-!sopropyltoluene	27.4	1.0	ug/l	25.0		110	75-125			
Methylene chloride	23.3	5.0	ug/J	25.0		93	60-135			
Methyl-tert-batyl Ether (MTBE)	28.7	1.0	ug/l	25.0		115	55-145			
Naphthalene	27.9	1.0	ug/l	25.0		112	50-145			
n-Propylbenzene	28,1	0.1	սջ/1	25.0		112	75-130			
Stytene	29.9	1.0	ug/I	25.0		120	80-135			
1,1,2-Tetrschloroethane	27.9	1.0	ъg∕l	25.0		112	70-145			
2,2-Tetrachloroethane	25.6	1.0	ug/l	25.0		102	60-135			
Tetrachlorocthene	25.5	1.0	ນຊ/1	25.0		102	75-125			
Toluene	26.6	0.50	սջ/Լ	25.0		106	75-120			
1,2,3-Trichlorobenzene	26.9	1.0	ug/l	25.0		108	65-135			
1,2,4-Trichlorobenzene	27.9	1.0	ນຂ/1	25.0		112	70-140			
1,1,1-Trichloroethane	29.8	1.0	ug/l	25.0		119	75-140			
1,1,2-Trichloroethane	25.2	1,0	ug/l	25.0		101	70-125			
Trichloroethene	26.3	0.1	ug/1	25.0		105	80-120			
Trichlorofluoromethase	30.2	1.0	ug/l	25.0		121	65-145			
1,2,3-Trichlorogropane	25.8	1.0	սց/Լ	25.0		103	60-130			
1,2,4-Trimethylbenzene	28.4	1.0	ug/l	25.0		114	75-125			
1.3.5-Trimethylbenzene	28.7	1.0	ug/l	25.0		115	75-125			
Vinyl chloride	24.0	0.50	ag/l	25.0		96	50-130			
o-Xylene	27.7	0.50	ug/l	25.0		111	75-125			
m,p-Xylenes	55.6	1,0	ug∕l	50.0		111	75-120			
Surrogate: Dibromoflworomethane	27.1	-1	ug/l	25.0		108	80-120			
Surrogate: Tohuene-då	26.7		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	29.4		ugA	25.0		118	80-120			

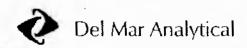
17461 Derian Ave., Switz 100, Invaer, CA 92614 (949) 261-1027 PAX (949) 260-3297.
1014 E. Cooley Ch., Switz A. Colton, CA 92824 (909) 370-4667 EAX (949) 370-1046.
9404 Chesapeuke Ch., Switz Ost, San Diego, CA 92824 (909) 370-4667 EAX (949) 370-1046.
9010 Soudh 514 Sr., Switz 8-120, Phoenic, AZ 45044 (400) 785-0041 EAX (440) 785-061.
2570 E. Switzer Rd. #1, Lax Vegas. NV 69120 (702) 798-3620 EAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn St., Suite 205

Report Number: IOB1727


Sampled: 02/22/05

Brea, CA 92821 Attention: Lisa Hall Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

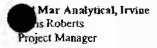
Accelode	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	DDD	RPD Limit	Data Qualifiers
Analyte		Limit	Ошез	Level	Keut	MREA.	Limits	КID	Little	Опиппета
Batch: 5C03016 Extracted: 03/03	<u>/05</u>									
Matrix Spike Analyzed: 03/03/200	5 (5C03016-MS1)				Source: I	OB1727-0	1			
Benzenc	26.2	0.50	ug/I	25.0	ND	105	70-120			
Bromobenzene	26.5	1.0	ug/l	25.0	ND	106	65-130			
Bromochloromethane .	26.9	1.0	ug/I	25.0	ND	108	65-140			
Bromodichloromethane	29.1	. 1,0	սց∕Ո	25.0	ND	116	70-140			
Bromoform	29.0	1.0	ug/l	25.0	ND	116	55-140			
Bromomethane	24.7	1.0	ug/l	25.0	ИD	99	50-145			
n-Butylbenzene	28.4	1.0	ug/l	25.0	ND	114	70-140			
sec-Burylbenzene	27.8	1.0	ug/I	25.0	ND	111	70-130			
tert-Butylbenzene	27.6	1.0	ug/l	25.0	ND	110	70-130			
Carbon tetrachloride	30.9	0.50	ug/l	25,6	ND	124	70-145			
Chlorobenzene	26,5	1.0	սաջ∕1	25.0	ND	106	80-125			
Chlorocthane	24.5	1.0	υ g/1	25.0	ND	98	50-145			
Chloroform	28.5	1.0	ug/l	25.0	0.42	112	70-135			
Chloromethane	23.6	1.0	ug/I	25.0	ИD	94	35-145			
2-Chlorosolucue	26.8	1.0	ug/I	25.0	ND	107	70-140			
4-Chlamoluene	27.3	1.0	ug/l	25.0	ND	109	70-140			
Dibromochloromethage	30.8	1.0	ug∕i	25.0	ND	123	65-145			
1,2-Dibromo-3-chloropropane	33.3	5.0	ug/I	25.0	ND	133	45-155			
1,2-Dibromoethane (EDB)	30.5	1.0	ug/l	25.0	ND	122	70-130			
Dibromomethane	30.5	1.0	ug/1	25.0	ND	122	65-140			
1,2-Dichlorobenzene	27.7	1.0	ug/I	25.0	ИD	111	75-130			
1,3-Dichiorobenzeue	26.8	1.0	ug/l	25.0	ИD	107	75-130			
1,4-Dichlorobenzene	27.0	1.0	ug/l	25.0	ND	108	B0-120			
Dichlerodifluoromethage	36.9	2.0	ug/l	25.0	14	92	10-160			
1, I-Dichloroethane	30.1	1.0	սց∕1	25 0	4.8	101	65-135			
1,2-Dichloroethane	35.0	0.50	ււթ∕1	25.0	1.3	135	60-150			
1,1-Dichloroethene	24.6	1.0	ug/l	25.0	ND	98	65-140			
cis-1,2-Dichloroethene	48.5	1.0	ug/I	25.0	28	82	65-130			
truns-1,2-Dichloroethene	25.8	1.0	ug/l	25.0	ND	103	65-135			
1,2-Dichloropropane	26.0	1.0	ug/l	25.0	0.55	102	65-130			
1,3-Dichloropropane	29.0	1.0	ug/l	25.0	ND	116	65-140			
2,2-Dichloropropane	30.7	1.0	ug/I	25.0	ND	123	60-150			
1,1-Dichloropropene	27.6	1.0	υ ջ/1	25.0	ND	110	65-140			
cis-1,3-Dichloropropene	28.6	0,50	ug/I	25.0	ND	114	70-140			
trans-1,3-Dichloropropene	30.7	0.50	ս ք/1	25.0	ND	123	70-140			
- Francisco Programme			•	-						

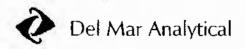
17463Drian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 760-3297 101+ E. Cooley Or., Saise A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chrispeake Dr., Suite 80S, San Olego, CA 92723 (858) 505-8596 FAX (858) 50S-9689 9610 South 514 St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0051 2570 E. Sunset Rd. #3. Las Vegas, NV 89170 (702) 798-3620 FAX (702) 798-3621

WH Americas - Brea 050 Saturn St., Suite 205

Brea, CA 9282I Attention: Lisa Hall Project ID: Honeywell, North Hellywood

Report Number: 10B1727


Sampled: 02/22/05


Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC			RPD
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	•	Limit
atch; 5C03016 Extracted: 03/03/0	5_									
atrix Spike Analyzed: 03/03/2005	(5C03016-MS1)				Source: I	OB1727-0	1			
hylbenzene	29.2	0.50	ug/I	25,0	ND	117	70-130			
xachloroburadiene	25.3	0.1	ug/l	25.0	ND	101	65-140			
ropylbenzene	28.3	6.1	ug/l	25,0	ND	113	70-130			
opropyltoluene	27.7	0,1	ug/l	25.0	ND	111	70-130			
hylene chloride	23.8	5.0	ug/I	25.0	ND	95	60-135			
hyl-tert-buryl Ether (MTBE)	0.18	1.0	ug/l	25.0	ND	124	50-155			
Mhalene	31.2	1.0	ug/I	25.0	ND	125	50-150			
opylbenzene	28.3	0,1	ug/l	25.0	ND	113	70-135			
ene	29.4	1.0	ug/I	25,0	ND	118	55-145			
2-Tetrachloroethane	27.9	1.0	ug/l	25.0	ND	112	70-145			
,2-Tetrachloroethane	29.6	1.0	ug/ Ι	25.0	ND	118	60-145			
achloroethene	40.9	E,O	ugΛ	25.0	17	96	70-130			
anc ·	26.4	0.50	ug/l	25.0	ND	106	70-120			
-Trichlombenzene	27.6	1,0	ug/l	25.0	ND	011	60-140			
Trichlorobenzene	27.5	1.0	ug/l	25,0	ND	110	60-140			
Trichloroethaue	29.1	1.0	ug/l	25.0	ND	116	75-140			
-Trichloroethane	26.7	1.0	ug/l	25.0	ND	107	60-135			
aloroethene	35.3	0.1	ug/l	25.0	n	97	70-125			
hlorofluoromethane	29.3	0.1	ug/1	25.0	ND	117	55-145			
-TrichIoropropage	28.8	1.0	ug/l	25.0	ND	115	55-140			
1-Trimethylbenzene	28.1	0.1	ug/l	25.0	ND	E12	60-125			
5-Trimethylbenzene	28.6	1.0	ug/l	25.0	ND	114	70-130			
yl chloride	25.3	0.50	ug/l	25.0	ND	101	40-135			
lene	27.6	0.50	mg/l	25,0	ND	011	65-125			
Xylenes	55.4	1.0	ug/I	50.0	ND	111	65-130			
gate: Dibromofluoromethane	27.6		ид/1	25.0		110	80-120			
ogate: Toluene-d8	26.7		ugA	25.0		107	80-120			
rogate: 4-Bromofluorobenzene	28.4		ид/1	25.0		114	80-120			

12461 Dezian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cuoley Dr., Suite A. Colton, CA 92124 (909) 370-4667 FAX (949) 370-1046 9494 Ovempeake Orr, Swite 805, San Diego, CA 921123 (858) 505-8506 FAX (858) 505-9689 94930 South 51 a St., Swire 8-120, Phoenia, AZ 85044 FAX0 761-003 FAX (460) 955-0613 2520 E. Surset Rd. #3, Use Vegas, NV 89120 (202) 798-3620 FAX (202) 798-3621

MWH Americas - Brea 3050 Saturn St., Suite 205

3050 Saturn St., Suite 205 Brea, CA 92821

Brea, CA 92821 Attention: Lisa Half Project ID: Honeywell, North Hollywood

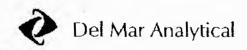
Report Number: IOB1727

Sampled: 02/22/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

	Reporting			Spike	Source		%REC	RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5C03016 Extracted: 03/03	<u>/05</u>									
Matrix Spike Dup Analyzed: 03/0:	3/2005 (5C03016-M	(SD1)			Source: I	OB1727-0	1			
Benzene	26.6	0.50	υ ջ/ Ι	25.0	ND	106	70-120	2	20	
Bromobenzene	26.2	1.0	ug/l	25.0	ND	105	65-130	1	20	
Bromochloromethanc	24.8	1.0	ug/I	25,0	ND	99	65-140	8	25	
Bromodichloromethane	27.3	1.0	ug/I	25.0	ND	109	70-140	6	20	
Bromoform	21.9	1.0	ս ը/1	25.0	ND	88	55-140	28	25	R
Bromomethaue	26.2	1.0	ug/I	25.0	ND	105	50-145	6	25	
n-Butylbenzene	2 8.7	1.0	ug/I	25.0	ND	115	70-140	1	20	
sec-Burylbenzene	28.6	0.1	ug/I	25.0	ND	114	70-130	3	20	
tert-Burylbenzeue	28.4	1.0	ug/I	25.0	ИD	114	70-130	3	20	
Carbon tetrachloride	30.6	0_50	ug/I	25.0	ND	122	70-145	1	25	
Chlorobenzene	26.5	1.0	υg/]	25.0	ND	106	80-125	0	20	
Chloroethane	26.0	1.0	սց/I	25.0	ND	104	50-145	6	25	
Chloreform	28.2	1.0	ug/l	25.0	0.42	111	70-135	1	20	
Chlmomethane	24.7	1.0	ug/l	25.0	ND	99	35-145	5	25	
2-Chlorotoluene	27.3	1.0	ug/I	25.0	ND	109	70-140	2	20	
4-Chlorocoluene	27.7	1.0	ug/I	25.0	ND	111	70-140	1	20	
Dibromochloromethane	26.7	1.0	ug/I	25.0	ND	107	65-145	14	25	
1,2-Dibromo-3-chloropropane	21.4 .	5.0	ug/I	25.0	ND	38	45-155	44	30	R
1,2-Dibromocthane (EDB)	24.7	1.0	ug/I	25.0	MD	99	70-130	21	25	
Dibromomethane	25.4	1.0	ug/I	25.0	ND	102	65-140	18	25	
1,2-Dichlorobenzene	26.2	1.0	ug/I	25.0	ИD	105	75-130	6	20	
1,3-Dichlorobenzene	26_3	1.0	ug/I	25.0	ND	105	75-130	2	20	
1,4-Dichlorobenzene	26.6	1.0	ug/I	25.0	ND	106	80-120	1	20	
Dichlorodiflatoromethane	38.8	2.0	ug/I	25.0	14	99	10-160	5	30	
1, 1-Dichloroethuse	30.8	1.0	ug/I	25.0	4.8	104	65-135	2	20	
1,2-Dichloroethune	30.2	0.50	ug/I	25.0	1.3	116	60-150	15	20	
1,1-Dichloroethene	26.1	1.0	ug/I	25.0	ND	104	65-140	6	20	
cis-1,2-Dichlaroethene	49.8	1.0	ng/I	25.0	28	87	65-130	3	20	
trans-1,2-Dichloroethene	26.1	1.6	ng/I	25,0	ИD	104	65-135	1	20	
1,2-Dichleropropane	25.3	1.0	ug/I	25.0	0.55	99	65-130	3	20	
1,3-Dichloropropane	24,2	1.0	ug/I	25.0	ND	97	65-140	18	25	
2,2-Dichloropropane	31.1	1.0	ug/I	25.0	ND	124	60-150	1	. 25	
1,1-Dichloropropene	27.7	1.0	ug/I	25.0	ND	111	65-140	0	20	
cis-1,3-Dichloropropene	26.3	0.50	wg/I	25.0	ND	105	70-140	8	20	
trans-1,3-Dichleropropene	26.7	0.50	սբ∕≀	25.0	ND	107	70-140	14	25	


Dei Mar Analytical, Irvine

Chris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Max Analysical.

10B1727 <Page 34 of 44>

17461 Derian Ave., Suite 100. Invise. CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Callon, CA 92124 (969) 370-4647 FAX (949) 370-1046 9484 Chesspeake Dr., Suite 805, Sair Dergo, CA 97121 (858) 505-8596 FAX (848) 305-9669 9830 South 51 st St., Suite 8-120, Procedul AZ 85044 (488) 705-0043 FAX (880) 705-0851 2506 E. Suitet Rd. #3, Law Vegas, NV 69120 (702) 798-3420 FAX (707) 796-3621

AWH Americas - Brea 3050 Saturn St., Suite 205

3050 Saturn St., Suite 205 Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Report Number: IOB1727

Sampled: 02/22/05


Received: 02/23/05

METHOD BLANK/OG DATA

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualiflers
Ratch: 5C03016 Extracted: 03/03/0	<u>5</u>									
Matrix Spike Dup Analyzed: 03/03/	2005 (5C03016-N	(SD1)			Source: I	OB1727-0	t			
Ethylbenzene	29.3	0.50	ug/l	25.0	ND	117	70-130	0	20	
Hexachlorobutadiene	25.0	1.0	ug/1	25.0	ИD	001	65-140	t	20	
Isopropylbenzene	28.4	0.1	ug/l	25.0	ND	114	70-130	0	20	
p-Isopropyttoluene	28.2	1.0	ug/l	25.0	ND	113	70-130	2	20	
Mediyl∈ne chloride	24.0	5.0	ug/I	25.0	ND	96	60-135	1	20	
Methyl-tert-buryl Ether (MTBE)	24.2	0.1	ag/l	25.0	DИ	97	50-155	25	25	
Naphthalene	22.9	1.0	սը/1	25.0	ИD	92	50-150	18	30	R
n-Prepylbenzene	28.6	1.0	αg/l	25,0	ND	114	70-135	1	20	
Styreae	29.3	0.1	ag/l	25.0	ND	117	55-145	9	30	
1,1,2-Tetrachloroethane	27.2	1.0	ug/l	25.0	ND	109	70-145	3	20	
2,2-Tetrachloroethene	21.0	. 0.1	ug/l	25.0	ND	84	60-145	34	30	R
Tetrachloroethene	41.8	0.1	ng/l	25.0	17	99	70-130	2	20	
Tolucne	26.3	0.50	ug/l	25.0	מא	105	70-120	0	20	
1,2,3-Trichlorobenzene	23.8	1.0	ug/l	25,0	ND	95	60-140	15	20	
1,2,4-Trichlorobenzene	25.5	0.1	ag/l	25.0	ND	201	60-14 0	8	20	
I, i, I-Trichloroethane	29.5	1.0	ug/I	25.0	ND	811	75-140	1	20	
1,1,2-Trichloroethane	22,4	1.0	ug/I	25.0	ND	90	60-135	18	25	
Trichloroethene	35.9	1.0	ug/l	25.0	11	100	70-125	2	20	
Trichlorofluoromethane	1.08	0.1	ug/l	25.0	ΝD	120	55-145	3	25	
1,2,3-Trichloropropane	20.8	1.0	υg/I	25.0	ND	83	55-140	32	30	R
1,2,4-Trimethylbenzene	28.8	1.0	ug/l	25.0	ND	115	60-125	2	25	
1,3,5-Trimethylbenzene	29.5	0.1	ug/l	25.0	ND	118	70-130	3	20	
Virgl chloride	26.5	0.50	ug/I	25.0	ND	106	40-135	5	30	
o-Xylone	27.6	0.50	ug/l	25.0	ND	110	65-125	0	20	
m.p-Xylenes	56.2	0.1	ug/I	50.0	ND	112	65-130	1	25	
Surrogate: Dibromofluoromethane	26.5		ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	26.4		ще∕1	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	28. I		ug/I	25.0		112	80-120			

17461Derüsin Ave., Suine 100, Immir. CA 92674 (949) 261-1022 (FAX (949) 268-) 297 1014 E. Gooley Dr., Suite A. Ciston, CA 92334 (969) 370-4667 (FAX (949) 370-1066 9484 Chesipealae Dr., Suite 865, San Drego, CA 92123 (488) 505-4896 (FAX (858) 505-9669 9630 Souds 51st St., Suite 8-170, Procesis, AZ 85044 (480) 785-0043 (FAX (460) 785-0651 2520 E. Sumirat Rd. #3, Las Vegas, INV 89120 (702) 796-3620 (FAX (202) 796-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1727

Sampled: 02/22/05

Received: 02/23/05

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/8270C MOD)

Qualiliers

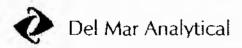
17461 Deniza Ave., Suste 100, Icrine. CA 92614 (94th 261-1022 FAX (94t) 260-3297 1014 E. Cochey Ch., Suite A, Cefcon, CA 92314 (1977) 370-4467 FAX (94t) 370-1466 9484 Christyeake Ch., Suite Bios. San. Dega. CA 92173 (856) 505-6556 FAX (856) 505-9689 9830 South STU St., Suite Bi 120, Phoenia, AZ 85044 (480) 785-8043 FAX (480) 785-8651 2520 E. Suite Bi 120, Phoenia, AZ 85044 (480) 785-8043 FAX (480) 785-8651 2520 E. Suite Bi 120, Phoenia, AZ 85044 (480) 785-8043 FAX (480) 785-8651

4WH Americas - Brea 5050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Report Number: IOB1727

Sampled: 02/22/05


Received: 02/23/05

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•								10-12		4-
Batch: 5B24082 Extracted: 02/24	1/05									
Blank Analyzed: 02/24/2005 (5B2	4082-BLK1)									
Mercury	ND	0.00020	mg/I							
LCS Analyzed: 02/24/2005 (5B24	082-BS1)									
Mercury	0.00799	0.00020	mg/I	0.00800		300	90-115			
Matrix Spike Analyzed: 02/24/20	05 (5 D7/6P7_MC1)				Coures: I	OB1727-0	ю.			
Mercury	0.00819	0.00020	mg/l	0.00800	ND	102	75-120			
Matrix Spike Dup Analyzed: 02/7	•					OB1727-0				
Mercury	0.00810	0 00020	mg/l	0.00800	ND	101	75-120	1	20	
Batch: 5B25103 Extracted: 02/25	5/05									
nak Analyzed: 02/26/2005 (5B2										
Antimony	ND	010.0	mg∕I							
Arsonic	ND	0.0050	mg/l							
Barium	ND	0.010	mg/L							
Beryllium	ND	0.0040	mg/I							
Cadmium	ND	0.0050	mg/l							
Chromium	ND	0.0050	ıng∕l							
Cobalt	ND	0.010	mg/I							
Соррег	ND	0.010	mg/l							
Lead	ND	0.0050	mg/l							
Molybdemura	ND	9.020	mg/I							
Nickel	ND	0.010	mg/l							
Selenium	ND	0.0050	mg/I							
Silver	ND	010.0	mg/l							
Thallium	ND	0.0050	nag/I							
Vagadium	ND	0.010	mg/l							
Zinc	ND	0 020	mg/l							

17461 Derian Ave., Saine 100, forme, CA 92614 (949) 261-1922 FAX (949) 260-) 297
1014 E. Cooley Dr., Saite A. Colron, CA 92024 (909) 270-4667 FAX (949) 370-1046
9484 Chesapesian Dr., Suite BSS Son Degra, CA 92129 (859-850) 500-5699
9810 Souds 1515 St., Suite B-120, Phermic, AZ 85044 (460) 785-0043 FAX (460) 785-0651
1520 E. Suites Rd. #3, Lax Vigas, NV 89720 (702) 798-3620 FAX (702) 798-3621

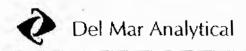
MWH Americas - Brea 3050 Saturn St., Suite 205 Project ID: Honeywell, North Hollywood

Sampled: 02/22/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1727

Received: 02/23/05

METALS


Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 5B25103 Extracted: 02/25/05										(
LCS Analyzed: 62/26/2005 (5B25103-B)	St)									
Antimony	1.04	0.010	шg/I	1.00		104	80-120			
Arsenic	0.978	0.0050	mg/I	1.00		98	80-120			
Bariwn	0.973	0.010	mg/l	1.00		97	80-120			
Berylling	0.969	0.0040	mg/l	1.00		97	80-120			
Cadmium	0.958	0.0050	πε/1	1.00		96	80-120			
Chromium	0.977	0.0050	mg/I	1.00		98	80-120			
Cobelt	0.966	0.010	mg/1	1.00		97	80-120			
Copper	0.957	0.010	mg/l	1.00		96	80-120			
Lead	0.964	0.0050	mg/I	1.00		96	80-120			
Molybácaum	0.981	0.020	mg/I	1.00		98	80-120			
Nickel	0.960	0.010	mg/I	1.00		96	80-120			
Sefenium	0.954	0.0050	mg/l	1.00		95	80-120			
Silver	0.489	0.010	mg/I	0.500		98	80-120			
Thalirum	0.938	0.0050	mg/I	1.00		94	80-120			
Vanadium	0.974	0.010	rog/I	1.00		97	80-120			
Zinc	0_942	0.020	mg∕l	1.00		94	80-120			
Matrix Spike Analyzed: 02/26/2005 (5B	25103-MS1)	i			Source: 1	OB1727-0	4			
Antimony	1.04	0.010	mg/l	1.00	0.0045	104	75-125			•
Arsenic	0.988	0.0050	mg/l	1.00	0.0048	98	75-125			
Beriam	0.971	0.010	mg/l	1.00	ND	97	75-125			
Berylimm	0.971	0.0040	mg/l	1,00	ND	97	75-125			
Cadmium	0.953	0.0050	mg/I	1.00	ND	95	75-125			
Chromium	0.979	0.0050	mg/l	1.00	ND	98	75-125			
Cobali	0.963	0.010	mg/l	1.00	ND	96	75-125			
Copper	0.952	0.010	mg/l	1.00	ND	95	75-125			
Lead	0.964	0.0050	mg/l	1.00	ND	96	75-125			
Molybdenum	0.984	0.020	mg/l	1.00	ND	98	75-125			
Nickel	0.956	0.010	πg/1	1.00	ND	96	75-125			
Sclenium	0.959	0.0050	mg/l	1.00	ND	96	75-125			
Silver	0.488	0.010	mg/l	0.500	ND	98	75-125			
Thellium	0.941	0.0050	mg/I	1.00	ND	94	75-125			
Vanadium	0.971	0.010	eng/I	1.00	ND	97	75-125		6	

Del Mar Analytical, Irvine Chris Roberts Project Manager 0.937

Zinc

mg/l

75-125

17461 Derian Ave., Suite 100, Irrine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookry Or., Suite A. Coltun, CA 97324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapealer Dr., Swice 805, San Dergo, CA 97213 (858) 565-6596 FAX (858) 505-9669 9630 South 514 St., Suite 8-120, 910-min, AZ 85044 4607 (95-0043 FAX (480) 785-0051 2520 E. Swits Rd. #3, Lts. Vegas, NV 89120 (703) 788-3620 FAX (702) 788-3637

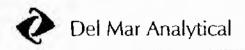
IWH Americas - Brea 3050 Saturn St., Suite 205 Brea, CA 92821

Anention: Lisa Hall

Project ID: Honeywell, North Hollywood

Sampled: 02/22/05

Report Number: 10B1727


Received: 02/23/05

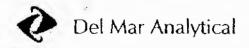
METALS

	Reporting			Spike	Source	%REC			RPD	Data
Analyte	Resuk	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25103 Extracted: 02/15/05										
Matrix Spike Dup Analyzed: 02/26/200	5 (5B25103-M	(SD1)			Source: I	OB1727-0	4			
Antimony	1.03	0.010	mg/l	1.00	0.0045	103	75-125	ŧ	20	
Vizenic	0.983	0.0050	mg/l	1.00	0.0048	98	75-125	1	20	
Barium	0.969	0.010	mg/l	1.00	ND	97	75-125	0	20	
Beryllium	0.972	0.0040	mg/l	1.00	ИD	97	75-125	0	20	
Cadmium	0.954	0.0050	mg/3	1.00	ND	95	75-125	0	20	
Chronnum	0.972	0.0050	mg/l	1.00	ND	97	75-125	1	20	
Cohalt	0.962	0.010	mg/l	1.00	ИD	96	75-125	0	20	
Copper	0.952	0.010	ing/l	1.00	ND	95	75-125	0	20	
Lead	0.962	0.0050	mg/l	1.00	ИD	96	75-125	0	20	
Molybdenum	0.978	0.020	mg/l	1.00	ND	98	75-125	1	20	
kel	0.957	0.010	mg/l	1.00	ND	96	75-125	0	20	
pelcuium	0.954	0.0050	mg/l	1.00	ND	95	75-125	1	20	
Silver	0.487	0.010	mg/l	0.500	ND	97	75-125	0	20	
Thallium	0.943	0.0050	mg/l	1.00	ИD	94	75-125	0	20	
Vanadiwn	0.971	0.010	mg/l	1.00	ND	97	75-125	0	20	
Zinc	0.936	0.020	mg/l	1,00	ND	94	75-125	0	20	
Batch: 5C02082 Extracted: 03/02/05										
Blank Analyzed: 03/03/2005 (5C02082-	BLK1)									
Thallium	ND	1.0	ug/l							
LCS Analyzed: 03/03/2005 (5C02082-B	SI)									
Thallium	90.2	1.0	ug/l	80.0		113	80-120			
Matrix Spike Analyzed: 03/03/2005 (50	02082-MS1)				Source: [OB1727-0	7			
Thallium	85.5	1.0	υ γ/1	80.0	0.20	107	75-125			

17461Derian Ave., Suite 100, Irvme, CA 92614 (949) 261-1022 2AX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colem, CA 92324 (909) 370-4667 £AX (949) 370-1046 9484 Chesspeake Dr., Suite 605, Sen Diego, CA 92123 (858) 505-8596 £AX (858) 503-0049 9830 South S1st St., Suite 81-120, Pricenia, AZ 83644 (440) 785-0041 £AX (460) 785-0051 2520 E. Senises Rd. #3, Lar Vegos, NV 89120 (702) 798-3660 £AX (702) 798-3621

MWH Americas - Brea 3050 Saturn St., Suite 205

3050 Saturn St., State 205 Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood


Report Number: 10B1727

Sampled: 02/22/05 Received: 02/23/05

METALS

Analyte Ratch: 5C02082 Extracted: 03/02/05	Result	Reporting Limit	Units	Spike Level	Source Result	%rec	%REC Limits	RPD	RPD Limit	Data Qualifiert
Matrix Spike Dup Analyzed: 03/03/20 Thallium	05 (5C02082-M 85.5	(SD1) 1.0	υg/l	80.0	Source: I	OB1 727-0 107	75-125	0	20	

17463 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1822 FAX (949) 260-3297 1014 E. Cooley Cr., Suite A. Colton, CA 92324 (NOS) 379 4667 FAX (949) 378-1046 9464 Chesapeale (x., Suite 805, San Diego, CA 92723 (858) 505-8589 FAX (858) 505-9589 9830 South STu St., State 8-120, Phoenia, AZ 85044 (480) 765-0043 FAX (480) 785-0051 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3670 FAX (792) 796-3621

WH Americas - Brea 050 Saturn St., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

Report Number: 10B1727

Sampled: 02/22/05

Received: 02/23/05

METHOD BEANK OCIDATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B23063 Extracted: 02/23/05										
Blank Analyzed: 02/23/2005 (5B23063-)	BLK1)									
Chromium VI	ND	0.0010	mg/1							
LCS Analyzed: 02/23/2005 (5B23063-B	S1)									
Chromium VI	0.0493	0.0010	rag/l	0.0500		99	90-110			
Matrix Spike Analyzed: 02/23/2005 (5B	23063-MS1)				Source: Ye	OB1727-0	3			
Chromium VI	0.0466	0.0010	mg/t	0.0500	0.00078	92	80-115			
Matrix Spike Analyzed: 02/24/2005 (SB	23063-MS2)				Source: I	OB1817-0	4			
Chromium VI	0.379	0.0050	mg/1	0.250	0.17	84	80-115			
Matrix Spike Dup Analyzed: 02/23/200	5 (5B23063-M	(SD1)			Source: I	OB1727-0	3			
omium VI	0.0476	0.0010	നള/1	0.0500	0.00078	94	80-115	2	15	
Matrix Spike Dup Analyzed: 02/24/200	5 (5B23063-M	(SD2)			Source: Is	OB1817-0	4			
Chromium VI	0.384	0.0050	mg/l	0,250	0.17	86	80-115	1	15	
Batch: 5B28103 Extracted: 02/28/05										
Blank Analyzed: 02/28/2005 (5B28103-)	BLK()									
Perchlorate	ND	2.0	ug/I							
LCS Analyzed: 02/28/2005 (5B28103-B	S1)									
Perchlorate	51.9	2.0	ug/l	50.0		104	85-315			
Matria Spike Analyzed: 03/01/2005 (5B	28103-MS1)				Source: I	OB1879-0	IRE1			
Perchlorate	53.1	2.0	ug/l	50.0	5.7	95	80-120			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (94% 261-1027 FAX (94% 260-3297 1014 E. Cooliep Dr., Suite A. Colton, CA 93334 (92% 370-4667 FAX (94% 370-1046 1446 Chempeake Dr., Suite 803, San Diego, CA 93137 (85% 35%-55% FAX (85% 36%) 9889 9836 Suith 314 St., Suite 8-120, Phrenix, AZ 85044 (440) 785-004) FAX (480) 785-0653 2520 E Suite 8-120, Phrenix, AZ 85044 (440) 785-004) FAX (480) 785-0653 2520 E Suite 8-120, Phrenix, AZ 85044 (440) 785-004) FAX (480) 785-0653

MWII Americas - Brea 3050 Saturn St., Suite 205 Brea CA 92821 Project ID: Honeywell, North Hollywood

Sampled: 02/22/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1727

Received: 02/23/05

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limíts	RPD	Limit	Qualifiers
Batch; 5B28103 Extracted: 02/28/05										
Matrix Spike Dup Analyzed: 03/01/20	05 (5B28103-N	(SD1)			Source: I	OB1879-0	IREI			
Perchlorate	53.7	2.0	ug∕I	50.0	5.7	96	80-120	t	20	
Batch: 5C02057 Extracted: 03/02/05										
Blank Analyzed: 03/02/2005 (5C02057	-BLK1)								101	
Perchlorate	ND	2.0	ug/l							
LCS Analyzed: 03/02/2005 (5C02057-)	BS1)									
Perchlorate	50.9	2.0	ug/I	50.0		102	85-115			
Matrix Spike Auslyzed: 03/02/2005 (5	C02057-MS1)				Source: I	OB1811-0	1			
Perchiorate	56.1	2.0	ug/I	50.0	ND	112	80-120			
Matrix Spike Dup Analyzed: 03/02/70	05 (5C02057-N	ISDI)			Source: I	OB1811-0	t			
Perchiorate	55.3	2.0	11g/1	50.0	ND	111	80-120	1	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

WH Americas - Brea 3050 Saturn St., Suite 205

Project ID: Honeywell, North Hollywood

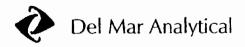
Sampled: 02/22/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1727

Received: 02/23/05

DATA QUALIFIERS AND DEFINITIONS

H Sample analysis performed past method-specified holding time.


R The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries,

however, were within acceptance limits.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461Denian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92134 (909) 370-4667 FAX (949) 370-1046 9484 Cheapeake Dr., Suite 085, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-859 9830 South 51st Sc., Suite 8-120, Phoenia, AZ 85044 (480) 785-0043 FAX (488) 785-0851 2520 E. Suisset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn St., Suite 205

Brea, CA 92821

Report Number: IOB1727

Sampled: 02/22/05

Attention: Lisa Hall

Received: 02/23/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 314.0	Water	N/A	х
EPA 6010B	Water	X	х
EPA 6020	Water	X	х
EPA 7199	Water	x	х
EPA 7470A	Water	X	х
EPA 8260B	Water	X	х
EPA 8270C MOD	Water	X	х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Dei Mar Analytical, Irvine Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1727 < Page 44 of 44>

10B1727 •

DEL MAR AN. 3825 Alion Avenue living, CA 93000	ALYTI(CAL				one		el	I	Ch	ain O				· .		ques									37010-0021	
Phone: (949)261-1022	Fux: (945)	435-0858		Privil	eged &	Coulidest	ial					Site N	ame:	NOR	THHO	LLY	North	F(all v	wood 5	ile -i	1600 3	herma	n Way	v. Nu	mh	CAMPROCATI	
A/C Manager: Mike F	urkinson			EDD.	Tu:							Local	on of S		Hally	wood	ÇA	riony		ine vi	1000		,	, 110		DMA	
Client Contact: (name		(125)		_		J.Ptummer						-	Prese			-	0	0	0	À	0	0	0	1 0	10	00000000000000000000000000000000000000	
Mike Flaucher/Lisa H MWH	all			PO#		1890933.05 Pround Time:	·			10		- 5	0	0	0	0	0		<u> </u>	0		<u></u>		Ť			
3050 Saturn Street.	Suite 205	S. Brea. C	A 92821	Stand						14		墜.	3														
Michael.E.Plaughe				1		ulherized for .						2000	(arto Hg)	reu.y			8							}			
Contact Phone/Cel	1: (714)93			2 468	ıkş •							Sign .	Ē	N.	5		Note		unics.								
Hardenpy Report To:				l wee					•			3	Ħ	3) E	e	4										
Invoice To:	-			(WEE	. K -							國	Z Z	k 22	the ZZ Vodinis	Tige 1	MOD I.4-Diocax	3 8	9	S S							
				Next I	Day		-	-		-	-	個	2	10 11	8	8	200	Per	V 042								
	Camula	e IdenUffca	. dan		mple	Sample Time	Samp Type			Samp!		State State	11de 2	SW7470 Title 22 CAM Mercury	SW71	SW6020 Thallium	2M8	E314.0 Perdona	E#260								
	Start Depth	End Depth			3,5,	1.21275				in the second							_	ب									
Location ID	(1)	(ft)	Fleid Sample ID			3133	1		. "	1		Units	#P.E.	_	200	No.	3	2	3			_	<u> </u>	_		Territory MP 2	
1 GW-6			GW-6-2/22/05.F	2/2	2/05	1110	EW	_	Neter	Reg	1		X	X		X								_		11-000 HNO	
3 6W-6	<u></u>		6W-6-2/22/05	Ĺ	_	1110					6				X		X	X	X							1 Amber 7 500 Mg	
, GU-2			6W-2-2/22/054	_		1250					1		X	X		X							L	_	-	1-500 के प्र भ	
16W-Z			GW-2-2/22/05			250					6				X		X	X	X	.,_		<u></u>				Amber, 1600; 30	
5 GW-9			GW-9-2/24/05-F			1410					1		X	X		X	34.0									1-500 MC. HN	
6 GN-9			GW-9-2/22/05			1410					4				X				X							1-500ML, 3 VCA"	
1 6W-9			6W-9-422/05+ MS/6			1410					1		X	Х		X						1	1			1 500 HNO	
8 GW-9			6W-7-422/05-MS/0			1410					4				Χ				X			0	100	7		1-500 HNO3 3	
, TB			TB-022205			0930					2								X							278	
10 EB			EB-01-02/22/05	1	/	1000			V	V	7		X	Χ	X	Х	X	X	X							Amber, 1500 HAD	
11 GW-8			GW-8-4/2005-F	4	<i>i</i>	1600	, J		V	V	1		X	X		X						j				1-500 HNO2	
-12 GW-8			GW-8-2/22/65	2/4	4/35	1600	6h)	white	Rec	4				X			,	X							3- 1095	
	EPA 60103	· Tille 22	CAM Melais List - Sb, As, Ba									470Å - T	lue 22	CAM	Metal	s Ligh	· Hg					<u> </u>		.,			
Relinquished by	1		Соприлу		MY	νΉ	Receive	въу		\wedge				Co	mpun	DMA			Cond	tion				Сu	slody Se	eals iniact	
Just	<u>/</u>		Date/filme	2/2	3/4	1709	Ó	<u></u>	ايند	<u> </u>			Date/I				26		Coole	r Ten	ъ.						
Kellmpaished by	<u> </u>		DO MAY COMPANY			, , , , , ,	Receive	d ph				T.	MA						Cond					Cu	stody Sc	eals Intact	
Direch	<i></i>		123 Dale Ting 05				¥.	Ĺ	466	<u>S</u> _		۾ ا	Date/1	, S	- 9	σ_{ζ}	<u> </u>		Cools	المم	بعة بي						
reservatives: 0 = No	one; 1 = H	(CL); {2 =	HNO3); [3 = H3SO4); [4 = Ne	юн);	{5 = Zz	L Acetate];	[6 = M	OH)	i [7 = N	kaH\$O4	; 8 = O	her (spe	dly):		1					70		1					

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297
1014 E. Crooky Dr., Suite A., Cziton, CA 92324 (909) 370-4667 FAX (949) 370-1046
9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8566 FAX (858) 505-9569
9830 South 51st St., Suite 81-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Surset Rd. #3, Las Vegzs, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For: MWH Americas - Brea Project: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205 1890933.0501

Brea, CA 92821 Attention: Lisa Hall

Sampled: 02/23/05 Received: 02/23/05 Issued: 03/01/05 17:30

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soll samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
IOB1817-01	GW-1-2/23/05-F	Water
IOB1817-02	GW-1-2/23/05	Water
IOB1817-03	GW-3-2/23/05-F	Water
IOB1817-04	GW-3-2/23/05	Water
IOB1817-05	GW-14A-PA-2/23/05-F	Water
IOB1817-06	GW-14A-PA-2/23/05	Water
IOB1817-07	GW-14A-2/23/05-F	Water
IOB1817-08	GW-14A-2/23/05	Water
IOB1817-09	GW-14A-PC-2/23/05-F	Water
IOB1817-10	GW-14A-PC-2/23/05	Water
IOB1817-11	GW-14B-PA-2/23/05-F	Water
IOB1817-12	GW-14B-PA-2/23/05	Water
IOB1817-13	TB-022305	Water
10B1817-14	GW-14A-PD-2/23/05	Water

Reviewed By:

Del Mar Analytical, Irvine

Chris Roberts Project Manager

IOB1817 < Page 1 of 70>

17461 Derian Ave., Soite 100, Fwinc. CA 97614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Ch., Soite A. Colton, CA 93324 (909) 370-4662 FAX (949) 370-1046 9484 Chesapeake Ch., Soite 805, San Dingo, CA 92123 (658) 305-4596 FAX (868) 505-9669 9830 South 51st St., Suite 8-170, Phoeese, AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 E. Somet Rd, #3, Cas Vegos. NV 89120 (702) 789-3620 FAX (702) 796-3621

4WH Americas - Brea

3050 Saturn Ave., Suite 205 Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: JOB1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Facter	Extracted	Analyzed	Qualifiers
Sample ID: IOB1817-02 (GW-1-2/23/	05 - Water)							
Reporting Units: ng/l								
Benzene	EPA 8260B	SB24014	0.50	ND	1	2/24/2005	2/24/2005	
Bromobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Bromochforomethane	EPA 8260B	SB24014	1.0	ND	1	2/24/2005	2/24/2005	
Bromodichloromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Bromoform	EPA 8260B	5B24014	0.1	ND	1	2/24/2005	2/24/2005	
Bromomethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
n-Butylbenæne	EPA 8260B	5824014	1.0	ND	1	2/24/2005	2/24/2005	
sec-Butylbenzene	· EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
tert-Bulyibenzene	EPA 8260B	5824014	1.0	ND	ì	2/24/2005	2/24/2005	
Carbon tetrachloride	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
Chlorobenzene	EPA 8260B	5B24014	1.0	ND	ŧ	2/24/2005	2/24/2005	
Chloroethane	EPA 8260B	5824014	1.0	ND	1	2/24/2005	2/24/2005	
Chloroform	EPA 8260B	5B24014	1.0	ND	ì	2/24/2005	2/24/2005	
Chioromethane	EPA 8260B	5824014	1.0	ND	1	2/24/2005	2/24/2005	
Chlorotolucne	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
hiorotoluene	EPA 8260B	5824014	1.0	ND	1	2/24/2005	2/24/2005	
Dibromochloromethane	EPA 8260B	5B24014	1.0	ND	ì	2/24/2005	2/24/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B24014	5.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5824014	1.0	ND	1	2/24/2005	2/24/2005	
Dibromomethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichlerobenzene	EPA 8260B	SB24014	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,4-Dichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Dichlorodifluoromethane	EPA 8260B	5B24014	2.0	10	1	2/24/2005	2/24/2005	
1,1-Dichleroethane	EPA 8260B	5B24014	1.0	3.1	1	2/24/2005	2/24/2005	
1,2-Dichloroethane	EPA 8260B	5B24014	0.50	0.91	1	2/24/2005	2/24/2005	
1,1-Dichloroethene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B24014	1.0	22	1	2/24/2005	2/24/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B24014	1.0	ND	I	2/24/2005	2/24/2005	
1,2-Dichloropropane	EPA 8260B	5B24014	1.0	ND	ì	2/24/2005	2/24/2005	
1,3-Dichloropropane	EPA 8260B	5B24014	0.1	ND	ì	2/24/2005	2/24/2005	
2,2-Dichloropropane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
l,l-Dichloropropene	EPA 8260B	5B24014	0.1	ND	ì	2/24/2005	2/24/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B24014	0.50	ND	ì	2/24/2005	2/24/2005	
trans-1,3-Dichloropropene	EPA 8260B	5824014	0.50	ND	1	2/24/2005	2/24/2005	
Ethylbenzene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
Hexachlorobutadiene	EPA 8260B	5824014	1.0	ND	1	2/24/2005	2/24/2005	
ksopropyibenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
p-Isopropyltoluene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	-X-
Methylene chloride	EPA 8260B	5824014	5.0	ND	1	2/24/2005	2/24/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	

Mar Analytical, Irvine ouris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mor Analytical.

IOB1817 <Page 2 of 70>

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesppeake Dr., Suite 805, San Diego, CA 92122 (858) 505-8596 FAX (8689) 505-9669 9830 South 514 St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2570 E. Suntet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: 10B1817

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-02 (GW-1-2/23/05 - Wat	ter) - cont.							
Reporting Units: ug/t	•							
Naphthalene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
n-Propylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Styrene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Tetrachloroethene	EPA 8260B	5B24014	1.0	12	1	2/24/2005	2/24/2005	
Toluene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1-Trichloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2-Trichloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Trichloroethene	EPA 8260B	5B24014	1.0	11	i	. 2/24/2005	2/24/2005	
Trichlorofluoromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichloropropane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Vinyl chloride	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	·
o-Xylene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
m,p-Xylenes	EPA 8260B	5B24014	1.0	ND	ì	2/24/2005	2/24/2005	
Surrogate: Dibromofluoromethane (80-120%)				102 %				
Surrogate: Toluene-d8 (80-120%)				106 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				102 %				

17461 Denian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Ori, Suite A. Colton, CA 92334 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-8699 9830 Souds 514 St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0051 2520 E. Suitet Rd. #3, Las Vegax, NV 89120 (702) 788-3620 FAX (702) 788-3621

IWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-04 (GW-3-2/23/05	(- Water)						•	
Reporting Units: ug/l	, · water)							
Benzene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
Bromobenzene	EPA 8260B	5B24014	1.0	ND	i	2/24/2005	2/24/2005	
Bromochloromethane	EPA 8260B	5B24014	1.0	ND	ì	2/24/2005	2/24/2005	
Bromodichloromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Bromoform	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Bromomethane	EPA 8260B	5B24014	. 1.0	ND	1	2/24/2005	2/24/2005	
n-Butylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
sec-Butylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
tert-Butylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Carbon tetrachloride	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
Chlorobenzene	EPA 8260B	5B24014	1.0	ND	i	2/24/2005	2/24/2005	
Chloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Chloroform	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Chloromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
2-Chlorotoluene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Chlorotoluene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Stromochloromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B24014	5.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Dibromomethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1.2-Dichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,4-Dichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Dichlorodifluoromethane	EPA 8260B	5B24014	2.0	14	1	2/24/2005	2/24/2005	
1,1-Dichloroethane	EPA 8260B	5B24014	1.0	3.8	1	2/24/2005	2/24/2005	
1,2-Dichloroethane	EPA 8260B	5B24014	0.50	1.3	1	2/24/2005	2/24/2005	
1,1-Dichloroethene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B24014	1.0	29	1	2/24/2005	2/24/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichloropropane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichloropropane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
2,2-Dichloropropane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1-Dichloropropene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B24014		ND	1	2/24/2005		
trans-1,3-Dichloropropene	EPA 8260B		0.50 0.50	ND	1	2/24/2005	2/24/2005	
Ethylbenzene		5B24014					2/24/2005	
Hexachlorobutadiene	EPA 8260B	5B24014	1.0	ND	1		.2/24/2005	
Isopropylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
p-Isopropyltoluene	EPA 8260B	5B24014	1.0	ND	l 1	2/24/2005	2/24/2005	
Methylene chloride	EPA 8260B	5B24014	5.0	ND	1	2/24/2005	2/24/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	

Mar Analytical, Irvine

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 < Page 4 of 70>

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-1297 1014 E. Cookey Dr., Suite A. Colton, CA 92124 (909) 370-4667 FAX (949) 370-1046 9484 Cheapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-969 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2500 E. Sunset Rd. #J., Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05 Received: 02/23/05

Brea, CA 92821 Attention: Lisa Hall

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-04 (GW-3-2/23/05 - Wat	ter) - cont.							
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
n-Propylbenzene	EPA 8260B	5B24014	1.0	ND	i	2/24/2005	2/24/2005	
Styrene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Tetrachloroethene	EPA 8260B	5B24014	1.0	16	1	2/24/2005	2/24/2005	
Toluene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1-Trichloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2-Trichloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Trichloroethene	EPA 8260B	5B24014	1.0	12	1	2/24/2005	2/24/2005	
Trichlorofluoromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichloropropane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Vinyl chloride	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	•
o-Xylene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
m,p-Xylenes	EPA 8260B	5B24014	1.0	ND	i	2/24/2005	2/24/2005	
Surrogate: Dibromofluoromethane (80-120%)				103 %				
Surrogate: Toluene-d8 (80-120%)				106 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				102 %				

17461 Derian Ave., Suite 100, Inrine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 80-5 San Diego, CA 92123 (850) 505-8596 FAX (858) 505-9669 9630 South 51s St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (400) 785-0051 2520 E. Suinset Rd. #3, Las Vega, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

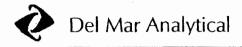
Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

Brea, CA 92821 Attention: Lisa Hall

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)


Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-06 (GW-14A-PA-	2/23/05 - Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
Bromobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Bromochloromethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Bromodichloromethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Bromoform	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Bromomethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
n-Butylbenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
sec-Butylbenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
tert-Butylbenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Carbon tetrachloride	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
Chlorobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Chloroethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Chloroform	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Chloromethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
2-Chlorotoluene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Chlorotoluene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Dibromochloromethane	EPA 8260B	5B24007	1.0	ND .	1	2/24/2005	2/24/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B24007	5.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Dibromomethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichlorobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichlorobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,4-Dichlorobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Dichlorodifluoromethane	EPA 8260B	5B24007	2.0	5.8	1	2/24/2005	2/24/2005	
1,1-Dichloroethane	EPA 8260B	5B24007	1.0	3.9	1	2/24/2005	2/24/2005	
1,2-Dichloroethane	EPA 8260B	5B24007	0.50	1.5	1	2/24/2005	2/24/2005	
1,1-Dichloroethene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B24007	1.0	31	1	2/24/2005	2/24/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichloropropane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichloropropane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
2,2-Dichloropropane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,1-Dichloropropene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
Ethylbenzene	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
Hexachlorobutadiene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
lsopropylbenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
p-lsopropyltoluene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Methylene chloride	EPA 8260B	5B24007	5.0	ND	1	2/24/2005	2/24/2005	
Methyl-tent-butyl Ether (MTBE)	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
May Analytical Impine								

Mar Analytical, Irvine aris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1817 < Page 6 of 70>

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 3014 E. Cooley Dr., Suite A, Cotton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-869 9830 South 51st Sct., Suite 8-120, Phoenic, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 796-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: iOB1817 Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Datak	Reporting	Sample	Dilution Factor	Date Extracted	Date Analyzed	Data
Analyte	Method	Batch	Limit	Result	ractor	Extracted	Anwiyzeu	Qualifiers
Sample ID: IOB1817-06 (GW-14A-PA-2/23/0	5 - Water) - cont.							
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
n-Propylbenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Styrene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B24007	1.0	ND	I	2/24/2005	2/24/2005	
Tetrachloroethene	EPA 8260B	5B24007	1.0	17	1	2/24/2005	2/24/2005	
Toluene	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1-Trichloroethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2-Trichloroethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Trichloroethene	EPA 8260B	5B24007	1.0	13	1	2/24/2005	2/24/2005	
Trichlorofluoromethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichloropropane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	4
1,3,5-Trimethylbenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Vinyl chloride	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
o-Xylene	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
m,p-Xylenes	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Surrogate: Dibromofluoromethane (80-120%)				106 %				
Surrogate: Toluene-d8 (80-120%)				100 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				99%				

17461 Derian Ave., Suite 108, Inrine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92124 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Cv., Suite 805, San Diego, CA 92123 (858) 505-6596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2570 E. Suntet Rd. #3, Las Vegas, NV 89120 (707) 798-3620 FAX (702) 798-3621

AWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: 10B1817

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-08 (GW-14A-2/23	1/05 - Water)							
Reporting Units: ug/l	, , , , , , , , , , , , , , , , , , , ,							
Benzene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
Bromobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Bromochloromethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Bromodichloromethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Bromoform	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Bromomethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
n-Butylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
sec-Butylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
tert-Butylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Carbon tetrachloride	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
Chlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Chloroethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Chloroform	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Chloromethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
2-Chlorotoluene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Chlorotoluene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
bromochloromethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B24012	5.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Dibromomethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,4-Dichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Dichlorodifluoromethane	EPA 8260B	5B24012	2.0	7.0	1	2/24/2005	2/24/2005	
1,1-Dichloroethane	EPA 8260B	5B24012	1.0	3.9	1	2/24/2005	2/24/2005	
1,2-Dichloroethane	EPA 8260B	5B24012	0.50	1.6	1	2/24/2005	2/24/2005	
1,1-Dichloroethene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B24012	1.0	31	1	2/24/2005	2/24/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichloropropane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichloropropane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
2,2-Dichloropropane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,1-Dichloropropene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
Ethylbenzene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
Hexachlorobutadiene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	.2/24/2005	
lsopropylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
p-Isopropyltoluene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Methylene chloride	EPA 8260B	5B24012	5.0	ND	1	2/24/2005	2/24/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	

el Mar Analytical, Irvine iris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 <Page 8 of 70>

17.461 Oeran Ave., Suite 100, Invine, CA 97814 (949) 261-1022 FAX (949) 260-3292 (1014 E. Cockey Dr., Suite A. Cokon, CA 92324 (1903) 370-4667 FAX (949) 370-1046 (1014) FAX (949) 370-1046 (1014) FAX (949) 370-1046 (1014) FAX (949) 370-1046 (1014) FAX (940) 570-1046 (1014) FAX (940) 570-1046 (1014) FAX (

MWH Americas - Brea 3050 Sazum Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

Brea, CA 92821 Attention: Lisa Hall

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Anslyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1817-08 (GW-14A-2/13/05 - V	Vater) - cont.							
Reporting Utilts: ug/l								
Naphthalene	EPA 8260B	5B240[2	1.0	ИD	l	2/24/2005	2/24/2005	
n-Propylbenzene	EPA 8260B	SB24012	1.0	ND	1	2/24/2005	2/24/2005	
Styrene	EPA 8260B	5B24012	1.0	ИD	. 1	2/24/2005	2/24/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2,2-Tetrachloroethene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Tetrachloroethene	EPA 8260H	5B24012	1.0	16	1	2/24/2005	2/24/2005	
Toluene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1-Trichloroethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2-Trichloroethane	EPA 8260B	SB24012	1.0	ND	1	2/24/2005	2/24/2005	
Trichloroethene	EPA 8260B	5B24012	1.0	14	1	2/24/2005	2/24/2005	
Trichlorofluoromethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichloropropane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Vinyl chloride	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
o-Xylene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
m,p-Xylenes	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Surrogate: Dibromofhoromethane (80-120%)				103 %				
Surrogate: Toluene-d8 (80-120%)				98 %				
Surrogate: 4-Bromofluorabenzene (80-120%)				91 %				

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 80-5, San Diego, CA 92123 (858) 505-8559 FAX (868) 505-9669 9830 South 51st St., Suite 80-120, Phornia, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suites Rd. #3, Las Vegas, NV 89130 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

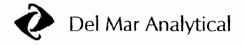
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample ' Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-10 (GW-14A-PC-2/2	2M5 Water)						,	Quantity.
Reporting Units: ug/l	23/03 - Watery							
	EPA 8260B	5B24012	0.50	ND	ı	2/24/2005	2/24/2005	
Benzene Bromobenzene	EPA 8260B	5B24012	1.0	ND	i i	2/24/2005	2/24/2005	
	EPA 8260B	5B24012	1.0	ND	l	2/24/2005	2/24/2005	
Bromochloromethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Bromodichloromethane								
Bromoform	EPA 8260B	5B24012	1.0	ND	1 1	2/24/2005	2/24/2005	
Bromomethane	EPA 8260B	5B24012	1.0	ND		2/24/2005	2/24/2005	
n-Butylbenzene	EPA 8260B	5B24012	1.0	ND	i .	2/24/2005	2/24/2005	
sec-Butylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
tert-Butylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Carbon tetrachloride	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
Chlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Chloroethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Chloroform	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Chloromethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Chlorotoluene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
hlorotoluene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Dibromochloromethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B24012	5.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Dibromomethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,4-Dichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Dichlorodifluoromethane	EPA 8260B	5B24012	2.0	6.3	1	2/24/2005	2/24/2005	
1,1-Dichloroethane	EPA 8260B	5B24012	1.0	4.0	1	2/24/2005	2/24/2005	
1,2-Dlchloroethane	EPA 8260B	5B24012		1.6	1	2/24/2005	2/24/2005	
1,1-Dichloroethene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B24012		31	1	2/24/2005	2/24/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichloropropane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichloropropane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
2,2-Dichloropropane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,1-Dichloropropene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
cís-1,3-Dichloropropene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
• •		5B24012			_			
trans-1,3-Dichloropropene	EPA 8260B		0.50	ND	1	2/24/2005	2/24/2005	
Ethylbenzene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
Hexachlorobutadiene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Isopropylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
p-Isopropyltoluene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Methylene chloride	EPA 8260B	5B24012	5.0	ND	1	2/24/2005	2/24/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Mar Analytical, Irvine								

Chris Roberts
Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1817 < Page 10 of 70>

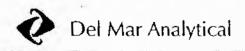
17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Or., Soite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2570 F. Suinet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501


Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1817-10 (GW-14A-PC-2/23/05	- Water) - cont.							
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
n-Propylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Styrene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Tetrachloroethene	EPA 8260B	5B24012	1.0	16	1	2/24/2005	2/24/2005	
Toluene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1-Trichloroethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2-Trichloroethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Trichloroethene	EPA 8260B	5B24012	1.0	14	1	2/24/2005	2/24/2005	
Trichlorofluoromethane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichloropropane	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	4
1,3,5-Trimethylbenzene	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Vinyl chloride	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
o-Xylene	EPA 8260B	5B24012	0.50	ND	1	2/24/2005	2/24/2005	
m,p-Xylenes	EPA 8260B	5B24012	1.0	ND	1	2/24/2005	2/24/2005	
Surrogate: Dibromofluoromethane (80-120%)				105 %				
Surrogate: Toluene-d8 (80-120%)				97 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				92 %				

17461 Derian Ave., Suite 100, Ervine, CA 92614 (949) 261-1922 FAX (949) 260-3297 1014 E. Cooley Ott., Suite A. Colton, CA 42324 (909) 370-4667 FAX (949) 370-1046 9484 Demagnake Dr., Suite 805, San Diego, CA 92123 (1878) 505-6399 FAX (989) 370-1046 9830 South Stal St., Suite 8-120, Phoenic, AZ 85044 (480) 785-6043 FAX (980) 785-6651 2520 E. Suited Rd. #3, Lax Vegas, NV 89120 (702) 798-3620 FAX (702) 788-3621

fWH Americas - Brea

050 Saturo Ave., Suite 205

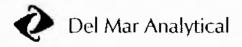
Brea, CA 92821 Attention: Lisa Hall Project ID; Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

	N 11 1		Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Pactor	Extracted	Analyzed	Qualiflers
Sample ID: IOB1817-12 (GW-14B-PA-	2/23/05 - Water)							
Reporting Units: mg/l								
. Benzene	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
Bromobenzene	EPA 8260B	5B24007	0.1	ND	1	2/24/2005	2/24/2005	
Bromochloromethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Bromodichloromethane	EPA 8260B	5B24007	0.1	ND	ı	2/24/2005	2/24/2005	
Bromoform	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Bromomethane	EPA 8260B	5B24007	0.1	ND	1	2/24/2005	2/24/2005	
n-Butylbenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
see-Butylbenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005		
tert-Buty/benzene	EPA 8260B	5 B24 007	1.0	ND	1	2/24/2005	2/24/2005	
Carbon tetrachloride	EPA 8260B	5B24007	0.50	ИD	1	2/24/2005	2/24/2005	
Chlorobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Chloroethane	EPA 8260B	5B24007	0,1	ND	1	2/24/2005	2/24/2005	
Chloroform	EPA 8260B	5B24007	1.0	ND	1	2/24/2005		
Chloromethane	EPA 8260B	5B24007	1.0	ИD	ľ	2/24/2005		
2-Chlorotolucne	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Chlorotoluene	EPA 8260B	5B24007	1.0	ИD	1	2/24/2005	2/24/2005	
bromochloromethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B24007	5.0	ND	1	2/24/2005		
1,2-Dibromoethane (EDB)	EPA 8260B	5B24007	1.0	ИD	1	2/24/2005		
Dibromomethane	EPA 8260B	5B24007	1.0	ND	l	2/24/2005		
1,2-Dichlorobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichlorobenzenc	EPA 8260B	5B24007	0.1	ND	1	2/24/2005	2/24/2005	-
1,4-Dichlorobenzene	EPA 8260B	5 B240 07	1.0	ND	1	2/24/2005	2/24/2005	
Dichlorodifluoromethane	EPA 8260B	5B24007	2.0	14	1	2/24/2005	2/24/2005	
1,1-Dichloroethane	EPA 8260B	5B24007	1.0	4.0	1	2/24/2005	2/24/2005	
1,2-Dichloroethane	EPA 8260B	5 B240 07	0.50	1.6	ì	2/24/2005	2/24/2005	
1,1-Dichloroethene	EPA 8260B	5B24007	1.0	ИD	ľ	2/24/2005	2/24/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B24007	0.1	33	1	2/24/2005	2/24/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichloropropane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichloropropane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
2,2-Dichloropropase	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,1-Dichloropropene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B24007	0.50	ND	ŀ	2/24/2005	2/24/2005	
Ethylbenzene	EPA 8260B	5B24007	0.50	ND	1	2/24/2005	2/24/2005	
Hexachlorobutadiene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Isopropylbenzene	EPA 8260B	5B24007		ND	1	2/24/2005	2/24/2005	
p-Isopropyltoluene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Methylene chloride	EPA 8260B	5B24007	5.0	ND	1	2/24/2005	2/24/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Mar Analytical Irvine								

Mar Analytical, Irvine tris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 <Page 12 of 70>

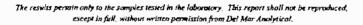
17461 Derian Ave., Suita 190, Invinc, CA 92514 (949) 261-1022 FAX (949) 260 3297 1014 E. Couley Ori, Suite A. Colum, CA 92524 (909) 370-4667 FAX (949) 370-1046 9484 Chempeaks Dr., Suite 805 San Diego, CA 97121 (858) 505-8596 FAX (858) 505-9489 9830 Smath Stat Sc., Suite B-120, Phoenic, AZ 85044 (A80) 785-0043 FAX (480) 785-0851 2520 F Suited Rd. #9, Lax Vegas, NV 89170 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honcywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501


Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10Bi817-J2 (GW-14B-PA-2/23/0	, -,				•			Q =
Reporting Units: ug/l	J- Watery-Com	•						
Naphthalene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
n-Propylbenzene	EPA 8260B	5B24007	1.0	ND	- ;	2/24/2005	2/24/2005	
	EPA 8260B	5B24007	1.0	ND	,			
Styrene						2/24/2005	2/24/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Tetrachloroethene	EPA 8260B	5B24007	0.1	18	1	2/24/2005	2/24/2005	
Toluene	EPA 8260B	5B24007	0.50	ND	3	2/24/2005	2/24/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B24007	1.0	ND	l	2/24/2005	2/24/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1, I, I-Trichloroethane	EPA \$260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2-Trichloroethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
Trichloroethene	EPA 8260B	5B24007	1.0	8.7	1	2/24/2005	2/24/2005	
Trichlorofluoromethane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichloropropane	EPA 8260B	5B24007	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B24007	1.0	ND	ĺ	2/24/2005	2/24/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B24007	1.0	ND	i	2/24/2005	2/24/2005	4
Vinyl chloride	EPA 8260B	5B24007	0.50	ND	i	2/24/2005	2/24/2005	
o-Xylene	EPA 8260B	5B24007	0.50	ND	:	2/24/2005	2/24/2005	
m.p-Xylenes	EPA 8260B	5B24007	1.0	ND		2/24/2005	2/24/2005	
	EPA 6200B	3B24007	1.0		'	212412003	2/24/2003	
Surrogate: Dibromofluoromethane (80-120%)				106%				
Surrogate: Toluene-d8 (80-120%)				99 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				100 %				

17461 Denian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Ori, Suite A. Colton, CA 92374 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Cr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (460) 785-0043 FAX (460) 785-0043 FAX (470) 785-0851 2520 E. Suitet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
-		Duten	Limit	Result	* =0.01	241141111	131111,200	Qualities 5
Sample ID: IOB1817-13 (TB-022305 - V	Water)							
Reporting Units: ug/l	En. 02.00	£004014	0.50	NTO.	,	204/2006	2040005	
Benzene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
Bromobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Bromochloromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Bromodichloromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Bromoform	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Bromomethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
n-Butylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
sec-Butylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
tert-Butylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005		
Carbon tetrachloride	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
Chlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Chloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Chleroform	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Chloromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Chlorotoluene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Chlorotoluene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Dibromochloromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B24014	5.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Dibromomethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1.4-Dichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	-
Dichlorodifluoromethane	EPA 8260B	5B24014	2.0	ND	1	2/24/2005	2/24/2005	
1,1-Dichloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005		
1,2-Dichloroethane	EPA 8260B	5B24014	0.50	ND	i	2/24/2005	2/24/2005	
1,1-Dichloroethene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B24014	1.0	ND	i	2/24/2005		
trans-1,2-Dichloroethene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005		
1,2-Dichloropropane	EPA 8260B	5B24014	1.0	ND	j	2/24/2005	2/24/2005	
	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichloropropane								
2,2-Dichloropropane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005		
1,1-Dichloropropene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005		
cis-1,3-Dichloropropene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005		
trans-1,3-Dichloropropene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
Ethylbenzene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005		
Hexachlorobutadiene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005		
Isopropylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
p-Isopropyltoluene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Methylene chloride	EPA 8260B	5B24014	5.0	ND	1	2/24/2005	2/24/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B24014	1.0	ND	. 1	2/24/2005	2/24/2005	
					,			

Mar Analytical, Irvine enris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report sholl not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1817 < Page 14 of 70>

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Or., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Or., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 514 St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (488) 785-0851 2520 E. Sunset Rd. 43, Las Vegas, NV 89130 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/23/05 Received: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-13 (TB-022305 - Water)	- cont.						•	
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
n-Propylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Styrene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B24014	1.0	ND	ì	2/24/2005	2/24/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Tetrachloroethene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Toluene	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B24014	1.0	ND	ì	2/24/2005	2/24/2005	
1,1,1-Trichloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2-Trichloroethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Trichloroethene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Trichlorofluoromethane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichloropropane	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Vinyl chloride	EPA 8260B	5B24014	0.50	ND	1	2/24/2005	2/24/2005	
o-Xylene	EPA 8260B	5B24014	0.50	ND	ì	2/24/2005	2/24/2005	
m,p-Xylenes	EPA 8260B	5B24014	1.0	ND	1	2/24/2005	2/24/2005	
Surrogate: Dibromofluoromethane (80-120%)				102 %				
Surrogate: Toluene-d8 (80-120%)				107 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				102 %				

17461Derian Ave., Saite 100, Inrine, CA 92614 (949) 261-1022 FAX (949) 260-)297 1014 E. Coddey Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 Chesapeake Dr., Suite 805, San Diegn. CA 92123 (858) 505-6596 FAX (858) 505-9669 9830 Sacid-Stat K., Suite 8-120, Phoenic, AZ 85044 (480) 285-0043 FAX (480) 785-0652 2501E, Suite 8-120, Phoenic, AZ 85044 (480) 285-0043 FAX (480) 785-0652 2501E, Suite 8-120, Phoenic, AZ 85044 (480) 285-0043 FAX (480) 785-0652

MWH Americas - Brea 3050 Saturn Ave. Suite 20

3050 Saturn Ave., Suite 205 Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting ·	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-14 (GW-14A-PI	D-2/23/05 - Water)							
Reporting Units: ug/l	,							
Benzene	EPA 8260B	5B25031	0.50	ND	1	2/25/2005	2/25/2005	
Bromobenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Bromochloromethane	EPA 8260B	5B25031	1.0	ND	I	2/25/2005	2/25/2005	
Bromodichloromethane	EPA 8260B	5B25031	0.1	ND	1	2/25/2005	2/25/2005	
Bromoform	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Bromomethane	EPA 8260B	5B25031	0.1	ND	I	2/25/2005	2/25/2005	
n-Burylbenzene	EPA 8260B	5B25031	0.1	ИD	1	2/25/2005	2/25/2005	
sec-Butylbenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
tert-Butylbenzene	EPA 8260B	5B25031	0.1	ND	I	2/25/2005	2/25/2005	
Carbon tetrachloride	EPA 8260B	5B25031	0.50	ND	ĵ	2/25/2005	2/25/2005	
Chlorobenzene	EPA 8260B	5B25031	0.1	ND	1	2/25/2005	2/25/2005	
Chloroethane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Chloroform	EPA 8260B	5B25031	1.0	ND	I	2/25/2005	2/25/2005	
Chioromethane	EPA 8260B	5B25031	0.1	ND	I	2/25/2005	2/25/2005	
2-Chlorotoluene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Chlorotoluene	EPA 8260B	5B25031	0.1	ND	1	2/25/2005	2/25/2005	
promochloromethane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25031	5.0	ND	1	2/25/2005	2/25/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Dibromomethane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichlorobenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25031	0.1	ND	1	2/25/2005	2/25/2005	
I 4-Dichlorobenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Dichlorodifluoromethane	EPA 8260B	5B25031	2.0	3.8	1	2/25/2005	2/25/2005	
1,1-Dichloroethane	EPA 8260B	5B25031	0.1	3.5	1	2/25/2005	2/25/2005	
1,2-Dichloroethane	EPA 8260B	5B25031	0.50	1.3	1	2/25/2005	2/25/2005	
1,1-Dichloroethene	EPA 8260B	5B25031	1.0	1.1	i	2/25/2005	2/25/2005	
cis-1,2-Dichloroethene	ЕРА 8260В	5B25031	1.0	25	1	2/25/2005	2/25/2005	
trans-1,2-Dichloroethese	EPA 8260B	5B25031	1.0	ND	I	2/25/2005	2/25/2005	
1,2-Dichloropropane	EPA 8260B	5B25031	0.1	ND	1	2/25/2005	2/25/2005	
1,3-Dichloropropane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
2,2-Dichloropropane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,1-Dichloropropene	EPA 8260B	5B25031	0.1	ND	Ī	2/25/2005	2/25/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25031	0.50	ND	1	2/25/2005	2/25/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B25031	0.50	ND	1	2/25/2005	2/25/2005	
Ethylbenzene	EPA 8260B	5B25031	0.50	ND	1	2/25/2005	2/25/2005	
Hexachlorobutadiene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
lsopropylbenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
p-Isopropyltoluene	EPA 8260B	5B25031	1.0	ND	ī	2/25/2005	2/25/2005	
Methylene chloride	EPA 8260B	5B25031	5.0	ND	1	2/25/2005	2/25/2005	
Methyl-ten-butyl Ether (MTBE)	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	

Mar Analytical, Irvine is Roberts Project Manager

The results pertain only to the samples tested in the loboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 < Page 16 of 70>

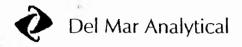
17.461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dt., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Cheapeake Dr., Suite 805, San Dicgo, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51x St., Suite 8-120, Phoenix, AZ 85044 (460) 785-5003 FAX (460) 785-0851 2510 E. Suinse Rd. #3, Las Vegas, NY 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501


Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1817-14 (GW-14A-PD-2/23/05	5 - Water) - cont.							
Reporting Units: ug/I								
Naphthalene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
n-Propylbenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Styrene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Tetrachloroethene	EPA 8260B	5B25031	1.0	14	1	2/25/2005	2/25/2005	
Toluene	EPA 8260B	5B25031	0.50	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Trichloroethene	EPA 8260B	5B25031	1.0	24	1	2/25/2005	2/25/2005	
Trichlorofluoromethane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B25031	1.0	ND	1	2/25/2005	2/25/2005	
Vinyl chloride	EPA 8260B	5B25031	0.50	ND	1	2/25/2005	2/25/2005	
o-Xylene	EPA 8260B	5B25031	0.50	ND	1	2/25/2005	2/25/2005	
m,p-Xylenes	EPA 8260B	5B25031	1.0	ND	3	2/25/2005	2/25/2005	
Surrogate: Dibromofluoromethane (80-120%)	•			106 %				
Surrogate: Toluene-d8 (80-120%)				113%				
Surrogate: 4-Bromofluorobenzene (80-120%)				106 %				

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92134 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Surset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 796-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/8270C MOD)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-04 (GW-3-2/23/05 - V	Water)							
Reporting Units: ug/l	PR - 00000 1 (0P	emp.10.10			0.042	0.004.000.0		
1,4-Dioxane	EPA 8270C MOD	5B24040	1.0	5.4	0.962	2/24/2005	2/25/2005	
Surrogate: 1,4-Dioxane-d8 (35-120%)				60 %				

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92124 (909) 370-4667 FAX (949) 370-1046 9484 Chespeake Dr., Swite 805, San Diego, CA 92123 (858) 505-8596 FAX (868) 505-9689 9830 South 514 Sr., Suite 8-120, Phoenix, AZ 85044 (49b) 785-0043 FAX (440) 785-0851 2520 E. Suite 8-120, Phoenix, AZ 85044 (49b) 785-0043 FAX (420) 785-0851

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/23/05

Brea, CA 92821

Report Number: IOB1817

Received: 02/23/05

Attention:	Lisa	Hal	
------------	------	-----	--

		MI	ETALS					
•			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Resuit	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1817-01 (GW-1-2/23/05-F - V	Water)							
- Reporting Units: mg/l								
Antimony	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Arsenic	EPA 6010B	5B24047	0.0050	0.012	ì	2/24/2005	2/25/2005	
Barium	EPA 6010B	5B24047	0.010	0.37	1	2/24/2005	2/24/2005	
Beryllium	EPA 6010B	5B24047	0.0040	ND	1	2/24/2005	2/24/2005	
Cadmium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Chromium	EPA 6010B	5B24047	0.0050	ND	i	2/24/2005	2/24/2005	
Cobalt	EPA 6010B	5B24047	0.010	ND	ì	2/24/2005	2/24/2005	
Copper	EPA 6010B	5B24047	0.010	ND	ì	2/24/2005	2/24/2005	٠.
Lead	EPA 6010B	5B24047	0.0050	ND	. 1	2/24/2005	2/24/2005	*
Mercury	EPA 7470A	5B24046	0.00020	ND	1	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B24047	0.020	ND	1	2/24/2005	2/24/2005	
Nickel	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Selenium	EPA 6010B	5B24047	0.0050	ND	i	2/24/2005	2/25/2005	
Silver	EPA 6010B	5B24047	0.010	ND	i	2/24/2005	2/25/2005	
Vanadium	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Zinc	EPA 6010B	5B24047	0.020	0.055	i	2/24/2005	2/24/2005	
Sample ID: IOB1817-01 (GW-1-2/23/05-F -	Water)				•			
Reporting Units: ug/l								
Thallium	EPA 6020	5B24052	1.0	ND	i	2/24/2005	2/24/2005	
Sample ID: IOB1817-03 (GW-3-2/23/05-F - V	Water)							
Reporting Units: mg/i								
Antimony	EPA 6010B	5B24047	0.010	ND	i	2/24/2005	2/24/2005	
Arsenic	EPA 6010B	5B24047	0.0050	0.0082	i	2/24/2005	2/25/2005	
Barium	EPA 6010B	5B24047	0.010	0.36	ì	2/24/2005	2/24/2005	
Beryllium	EPA 6010B	5B24047	0.0040	ND	i	2/24/2005	2/24/2005	
Cadmium	EPA 6010B	5B24047	0.0050	ND	i	2/24/2005	2/24/2005	
Chromium	EPA 6010B	5B24047	0.0050	0.18	i	2/24/2005	2/24/2005	
Cobalt	EPA 6010B	5B24047	0.010	ND	ì	2/24/2005	2/24/2005	
Copper	EPA 6010B	5B24047	0.010	ND	i	2/24/2005	2/24/2005	
Lead	EPA 6010B	5B24047	0.0050	ND	i	2/24/2005	2/24/2005	
Mercury	EPA 7470A	5B24046	0.00020	ND	i	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B24047	0.020	ND	1	2/24/2005	2/24/2005	
Nickel	EPA 6010B	5B24047	0.010	ND	i	2/24/2005	2/24/2005	
Selenium	EPA 6010B	5B24047	0.0050	ND	i	2/24/2 0 05	2/25/2005	
Silver	EPA 6010B	5B24047	0.010	ND	ì	2/24/2005	2/25/2005	
Vanadium	EPA 6010B	5B24047	0.010	ND	i	2/24/2005	2/24/2005	
Zinc	EPA 6010B	5B24047	0.020	0.072	i	2/24/2005	2/24/2005	

Sample ID: IOB1817-03 (GW-3-2/23/05-F - Water)

Reporting Units: ug/I

Del Mar Analytical, Irvine

Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1817 < Page 19 of 70>

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Or., Suite A. Cokon, CA 92314 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diepp, CA 92123 (850) 805-8596 FAX (888) 905-9669 9830 South S14 St., Suite 8-120, Phoenix, AZ 85044 (460) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05

METALS

		IVAL	IALIS					
			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1817-03 (GW-3-2/23)	/05-F - Water)							
Reporting Units: ug/l								
Thallium	EPA 6020	5B24052	1.0	ND	1	2/24/2005	2/24/2005	
Sample ID: IOB1817-05 (GW-14A-P	A-2/23/05-F - Water)							
Reporting Units: mg/l								
Antimony	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Arsenic	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Barium	EPA 6010B	5B24047	0.010	0.38	1	2/24/2005	2/24/2005	
Beryllium	EPA 6010B	5B24047	0.0040	ND	1	2/24/2005	2/24/2005	
Cadmium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Chromium	EPA 6010B	5B24047	0.0050	0.43	1	2/24/2005	2/24/2005	
Cobalt	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Copper	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Lead	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Mercury	EPA 7470A	5B24046	0.00020	ND	1	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B24047	0.020	ND	1	2/24/2005	2/24/2005	
ckel	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
enium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/25/2005	
Silver	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005	
Vanadium	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Zinc	EPA 6010B	5B24047	0.020	0.15	1	2/24/2005	2/24/2005	
Sample ID: IOB1817-05 (GW-14A-P	'A-2/23/05-F - Water)							
Reporting Units: ug/l								
Thallium	EPA 6020	5B24052	1.0	ND	1	2/24/2005	2/24/2005	
Sample ID: IOB1817-07 (GW-14A-2	/23/05-F - Water)							
Reporting Units: mg/l								
Antimony	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Arsenic	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Barium	EPA 6010B	5B24047	0.010	0.36	1	2/24/2005	2/24/2005	
Beryllium	EPA 6010B	5B24047	0.0040	ND	1	2/24/2005	2/24/2005	
Cadmium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Chromium	EPA 6010B	5B24047	0.0050	0.82	1	2/24/2005	2/24/2005	
Cobalt	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Соррег	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Lead	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Mercury	EPA 7470A	5B24046	0.00020	ND	1	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B24047	0.020	ND	1	2/24/2005	2/24/2005	
Nickel	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Selenium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/25/2005	
Silver	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005	
Vanadium	EPA 6010B	5B24047	0.010	ND	1	2/24/2 00 5	2/24/2005	

Mar Analytical, Irvine ris Roberts
Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOBI817 < Page 20 of 70>

17461 Derian Ave., Suite 100, Inrine, CA 92614 (949) 261-1027 FAX (949) 760-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9464 Chesapeaike Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenin, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suntet Rd. #3, Lts Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Received: 02/23/05

ME	ΓΔΤ.

	METALS								
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IOB1817-07 (GW-14A-2/23/05-F - Water) - cont.									
Reporting Units: mg/l	,								
Zinc	EPA 6010B	5B24047	0.020	0.058	1	2/24/2005	2/24/2005		
Sample ID: IOB1817-07 (GW-14A-2/23/05-F	- Water)								
Reporting Units: ug/l	,								
Thallium	EPA 6020	5B24052	1.0	ND	1	2/24/2005	2/24/2005		
Sample ID: IOB1817-09 (GW-14A-PC-2/23/0	5-F - Water)								
Reporting Units: mg/l	·								
Antimony	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005		
Arsenic	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005		
Barium	EPA 6010B	5B24047	0.010	0.39	1	2/24/2005	2/24/2005		
Beryllium	EPA 6010B	5B24047	0.0040	ND	1	2/24/2005	2/24/2005		
Cadmium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005		
Chromium	EPA 6010B	5B24047	0.0050	1.1	1	2/24/2005	2/24/2005		
Cobalt	EPA 6010B	5B24047	0.010	ND	ì	2/24/2005	2/24/2005		
Соррет	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005		
Lead .	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	4	
Mercury	EPA 7470A	5B24046	0.00020	ND	1	2/24/2005	2/24/2005	•	
Molybdenum	EPA 6010B	5B24047	0.020	ND	1	2/24/2005	2/24/2005		
Nicket	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005		
Selenium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/25/2005		
Silver	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005		
Vanadium	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005		
Zinc	EPA 6010B	5B24047	0.020	0.086	1	2/24/200 5	2/24/2005		
Sample ID: IOB1817-09 (GW-14A-PC-2/23/05-F - Water)									
Reporting Units: ug/l									
Thallium	EPA 6020	5B24052	1.0	ND	1	2/24/2005	2/24/2005		

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chespeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (688) 505-9669 9830 South 514 St., Suite 8-120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suinte Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

METALS

		171.43	ITIDO					
			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1817-11 (GW-14B-F	A-2/23/05-F - Water)							
Reporting Units: mg/l	,							
Antimony	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Arsenic	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Barium	EPA 6010B	5B24047	0.010	0.61	ī	2/24/2005	2/24/2005	
Beryllium	EPA 6010B	5B24047	0.0040	ND	1	2/24/2005	2/24/2005	
Cadmium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Chromium	EPA 6010B	5B24047	0.0050	0.046	1	2/24/2005	2/24/2005	
Cobalt	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Copper	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Lead	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/24/2005	
Mercury	EPA 7470A	5B24046	0.00020	ND	1	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B24047	0.020	ND	1	2/24/2005	2/24/2005	
Nickel	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
Selenium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/25/2005	
Silver	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005	
anadium	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/24/2005	
c .	EPA 6010B	5B24047	0.020	0.13	1	2/24/2005	2/24/2005	
Sample ID: IOB1817-11 (GW-14B-1	PA-2/23/05-F - Water)							
Reporting Units: ug/l								
Thallium	EPA 6020	5B24052	1.0	ND	1	2/24/2005	2/24/2005	
Samuel TO TORNOTE NA (CW) 144	DD 2/22/06 W- to)							
Sample ID: IOB1817-14 (GW-14A-) Reporting Units: mg/l	FD-2/25/05 - Water)							
Antimony	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/26/2005	
Arsenic	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/26/2005	
Barium	EPA 6010B	5B25093	0.010	0.47	i	2/25/2005	2/26/2005	
Beryllium	EPA 6010B	5B25093	0.0040	ND	1	2/25/2005	2/26/2005	
Cadmium	EPA 6010B	5B25093	0.0050	ND	i	2/25/2005	2/26/2005	
Chromium	EPA 6010B	5B25093	0.0050	4.2	,	2/25/2005	2/26/2005	
Cobalt	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/26/2005	
Copper	EPA 6010B	5B25093	0.010	ND	i	2/25/2005	2/26/2005	
Lead	EPA 6010B	5B25093	0.0050	ND	i	2/25/2005	2/26/2005	
Mercury	EPA 7470A	5B25106	0.00020	ND	i	2/25/2005	2/25/2005	
Molybdenum	EPA 6010B	5B25100	0.020	ND	i	2/25/2005	2/26/2005	
Nickel	EPA 6010B	5B25093	0.010	ND	i	2/25/2005	2/26/2005	
Selenium	EPA 6010B	5B25093	0.0050	ND	i	2/25/2005	2/26/2005	
Silver	EPA 6010B	5B25093	0.010	ND	i	2/25/2005	2/26/2005	
Vanadium	EPA 6010B	5B25093	0.010	ND	i	2/25/2005	2/26/2005	
Zinc	EPA 6010B	5B25093	0.020	0.12	i	2/25/2005	2/26/2005	
	21.1.00100	3220073	5,020	****	•			

Sample ID: IOB1817-14 (GW-14A-PD-2/23/05 - Water)


Reporting Units: ug/l

Mar Analytical, Irvine

Chris Roberts
Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1817 < Page 22 of 70>

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dr., Suite A, Colton, CA 92124 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Or., Suite 805, San Diego, CA 92124 (858) 505-8596 FAX (858) 505-9689 9830 South 51st SL, Suite B-120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0851 350 E. Simori R.I. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Received: 02/23/05

METALS

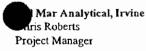
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-14 (GW-14A-PD-2/23/05	- Water)							
Reporting Units: ug/l Thallium	EPA 6020	5B25114	1.0	ND	ı	2/25/2005	2/26/2005	

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Cokon, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (658) 505-6596 FAX (888) 505-9689 9830 South S1st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2570 E. Suitet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

IWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood


1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

		INOR	GANICS					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1817-02 (GW-1-2/23/05 - W Reporting Units: mg/l Chromium VI	ater) EPA 7199	5B23063	0.0010	0.0018	t	2/23/2005	2/23/2005	
Sample ID: IOB1817-02 (GW-1-2/23/05 - W Reporting Units: ug/l Perchlorate	eter) EPA 314.0	5B24061	2.0	ND	1	2/24/2005	2/24/2005	
Sample ID: IOB1817-04 (GW-3-2/23/05 - W Reporting Units: mg/l Chromium VI	erer) EPA 7199	5B23063	0.0050	0.17	5	2/23/2005	2/23/2005	
Sample ID: IOB1817-04 (GW-3-2/23/05 - W Reporting Units: ug/l Perchlorate	EPA 314.0	5B24061	2.0	ND	1	2/24/2005	2/24/2005	
Sample ID: IOB1817-06 (GW-14A-PA-2/23) Reporting Units: mg/l Chromium VI	(05 - Water) EPA 7199	5B23063	0.010	0.39	10	2/23/2005	2/23/2005	
mple ID: IOB1817-08 (GW-14A-2/23/05 - Reporting Units: mg/l Chromium VI	Water) . EPA 7199	5B23063	0.020	0.72	20	2/23/2005	2/24/2005	
Sample ID: IOB1817-10 (GW-14A-PC-2/23) Reporting Units: mg/l Chromium VI	/05 - Water) EPA 7199	5B23063	0.020	1.1	20	2/23/2005	2/24/2005	
Sample ID: IOB1817-12 (GW-14B-PA-2/23) Reporting Units: mg/l Chromium VI	05 - Water) EPA 7199	5B23063	0.0010	0.048	1	2/23/2005	2/23/2005	
Sample ID: 10B1817-14 (GW-I4A-PD-2/23) Reporting Units: mg/l Chromium VI		5B25084	0.050	3.4	50	2/25/2005	2/25/2005	н
Sample ID: IOB1817-14 (GW-14A-PD-2/23. Reporting Units: ug/l		JDZJU04	0.030	5.4	ν̈́	<i>LI LSI L</i> 003	425,2003	.1
Perchlorate	EPA 314.0	5B25064	2.0	9.9	1	2/25/2005	2/25/2005	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South S1st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05

Report Number: IOB1817

Received: 02/23/05

SHORT HOLD TIME DETAIL REPORT

•	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: GW-1-2/23/05 (IOB1817-02) - W	ater				
EPA 7199	1	02/23/2005 08:45	02/23/2005 21:00	02/23/2005 21:15	02/23/2005 21:49
Sample ID: GW-3-2/23/05 (IOB1817-04) - W	ater				
EPA 7199	1	02/23/2005 10:15	02/23/2005 21:00	02/23/2005 21:15	02/23/2005 23:30
Sample ID: GW-14A-PA-2/23/05 (IOB1817-0)6) - Water				
EPA 7199	1	02/23/2005 11:00	02/23/2005 21:00	02/23/2005 21:15	02/23/2005 23:40
Sample ID: GW-14A-2/23/05 (IOB1817-08) -	Water				
EPA 7199	1	02/23/2005 11:55	02/23/2005 21:00	02/23/2005 21:15	02/24/2005 00:10
Sample ID: GW-14A-PC-2/23/05 (IOB1817-	l 0) - Water				
EPA 7199	1	02/23/2005 12:55	02/23/2005 21:00	02/23/2005 21:15	02/24/2005 00:20
Sample ID: GW-14B-PA-2/23/05 (IOB1817-1	l2) - Water				
EPA 7199	1	02/23/2005 15:10	02/23/2005 21:00	02/23/2005 21:15	02/23/2005 22:40
Sample ID: GW-14A-PD-2/23/05 (IOB1817-	14) - Water				
EPA 7199	1	02/23/2005 14:00	02/23/2005 21:00	02/25/2005 14:10	02/25/2005 17:29

17461 Derive Ave., Scite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-1297 1014 E. Cascler Dr., Suite A. Colton, CA 92174 (909) 370-4667 FAX (949) 370-1046 9484 Overapeake Dr., Svite 895, San Diego. CA 92171 (998) 905-6596 FAX (858) 505-9689 9610 South 51st St., Skite 8-120, Phirenx, AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 E. Suite 8-120, Phirenx, AZ 85044 (480) 785-0043 FAX (480) 785-0651

tWH Americas - Brea 3050 Saturn Ave., Suite 205

3050 Saturn Ave., Suite 20 Brea, CA 92821 Attention: Lisa Hall Project ID: Honcywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 5B24007 Extracted: 02/24/		Land	Cints	Leves	Keiun	/•REC	Liung	KID	Ligh	Quamie:3
Matel: Sp24007 Extracted: 02/24	<u>u2</u>									
Blank Analyzed: 02/24/2005 (5B24	007-BLK1)									
Benzene	ND	0.50	ug/I							
Bromobenzene	ИD	1.0	ugA							
Bromochloromethane	DA	1.0	घट्ट∕ी							
Bromodichloromethane	ND	1.0	eg∕l							
Bromoform	ИD	1.0	ug/l							
Bromomethane	ND	1.0	ug/I							
a-Butylbenzene	ND	1.0	ng/I							
soc-Buty!benzene	ďИ	1.0	บ2/1							*
tert-Butylbenzene	ИD	1.0	ug/I							
Carbon tetrachloride	ИD	0.50	ug/1							
orobenzene	מא	1.0	ug/l							
doroethane	ND	1.0	ag/l							
Chloroform	МD	1.0	ug∕l							
Chloromethane	ИD	1.0	ug/l							
2-Chlorotohuene	ND	1.0	0g/I							
4-Chlorotoluene	ИD	1.0	ug/l							
Dibromochloromethane	סא	1.0	ug∕1							
1,2-Dibromo-3-chloropropane	МD	5.0	ug/I							
1,2-Dibromoethane (EDB)	ИD	1.0	ug/I							
Dibramomethane	ND	1.0	ug/l							
1,2-Dichlorobenzene	ND	1.0	ug/l							
1,3-Dichlorobenzene	מא	1.0	ng/l							
1,4-Dichlorobenzene	ND	10	ug/I							
Dichlorodifluoromethane	מא	2.0	ug/I							
I,1-Dichlomethane	ND	1.0	ug/I							
1,2-Dichloroethane	ND	0,50	ug/I							
1,1-Dichlomethere	ND	1.0	ug/l							
cis-1,2-Dichloroethene	ND	1,0	ug/I							
trans-1,2-Dichlomethene	ND	1.0	ug/I							
1,2-Dichloropropane	מא	1.0	ug/I							
1,3-Dichloropropane	ND	1.0	ug/I							
2,2-Dichloropropane	МD	1.0	ug/I					172		
1,1-Dichloropropene	ND	1.0	ug/I							
cis-1,3-Dichloropropene	טא	0.50	ug/l							
trans-1,3-Dichloropropene	ND	0.50	ug/I							

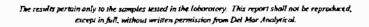
17461 Derian Ave., Suite 100, Invate, CA 92614 (949) 261-3922. FAX (949) 260-3297 1034 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4447. FAX (949) 370-1046 9464 Desspeake Dr., Swite 805, San Diego, CA 92723. I858) 505-8596 FAX (889) 505-9649 9830 South 514 Sc., Suite 8-120, Phornix, AZ 85044 (460) 785-0043. FAX (460) 785-0851 2520 E. Swite Rd. #3, Las Virgos. NV 89120 (702) 788-3670. FAX (707) 798-3623

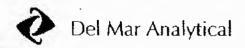
MWH Americas - Brea 3050 Satura Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05


Received: 02/23/05


Brea, CA 92821 Attention: Lisa Hall

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

-		Reporting		Spíke	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: 5B24007 Extracted: 02/24/0	<u>5</u>										
Blank Analyzed: 02/24/2005 (5B240	107-BLK1)										
Ethylbenzesie	MD	0.50	սջ/I								
Hexachlorobutadiene	ND	1.0	ng/1								
Isopropylbenzene	MD	1.0	ng/i								
p-Iropropyltoluene	ND	. 1.0	ug/i								
Methylene chloride	ИD	5.0	og/I								
Methyl-tert-buryl Ether (MTBE)	ND	1.0	ug/l								
Naphthalene	ИD	1.0	ug∕l								
n-Propylbenzene	МD	1.0	ug/1								
Styrene	ND	1.0	ug/i								
1,1,1,2-Tetrachlorocthane	ND	1.0	ug/ī							*	
1,1,2,2.Tetrachloroethane	ИD	1.0	ug/i								ì
Tetrachloroethene	ND	1.0	սց/1								
Toluene	ND	0.50	ug/l								
1,2,3-Trichlorobenzene	ND	10	ug/I								
1,2,4-Trichlorobenzene	ND	1.0	ug/I								
1,1,1-Trichloroethane	MD	1.0	ug/l								
1,1,2-Trichloroethane	ND	1.0	ug/i								
Trichloroethene	ND	1.0	ug/i								
Trichloro fluoromethane	ND	1.0	ug/i								
1,2,3-Trichloropropane	ND	1.0	ug/i								
1,2,4-Trimethylbenzene	MD	1.0	ug/l								
1,3,5-Trimethylbenzene	MD	1.0	ug/l								
Vinyl chloride	MD	0,50	υg/l								
o-Xylene	МD	0.50	ug∕l								
п.р-Ху је веs	MD	1.0	ug/I								
Surrogute: Dibromofluoromethane	25.1		ид∕1	25.0		100	80-120				
Surrogate: Toluene-d8	23.5		ug/l	25.0		94	80-120				
Surrogute: 4-Bromofluorobenzene	23.7		ug/t	25.0		95	80-120				

17461 Dei ihn Aver, Suite 100, Irvine, CA 92614 (1949) 261-1022 FAX (1949) 260-3297 1014 E. Coolley Dr., Suite A. Cinkon, CA 92174 (1909) 370-4667 FAX (1949) 370-1046 9484 Chesippeake Dr., Suite 803, San Diego, CA 92173 (858) 565-8596 FAX (1858) 505-9669 9830 South 51st St., Skie B-120, Phoesis, AZ 85044 (1801) 785-3043 FAX (1801) 785-3053 2520 E. Swiset Rd. & 3, Lax Vegas, NY 89120 (703) 798-3020 FAX (7047) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Brea, CA 92821 Attention: Lisa Hall Project ID: Honcywell, North Hollywood

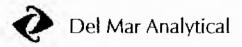
1890933.0501

Report Number, IOB1817

Sampled: 02/23/05

Received: 02/23/05

METHOD BLANK/OC DATA


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	aga	RPD Limit	Data Qualifiers
		Liam	Units	I_EA61	Keznit	70.KEA	Limits	KID	Limit	Crammers
Batch: 5B24007 Extracted: 02/24/0	<u>05</u>									
LCS Analyzed: 02/24/2005 (5B2400	7-BS1)									
Benzene	24.7	0.50	ug/I	25.0		99	70-120			
Bromobenzene	23,6	1.0	ug/l	25.0		94	80-120			
Bromochloromethane	23.9	1.0	ug/I	25.0		96	65-135			
Bromodichloromethane	23.2	1.0	ug/I	25.0		93	70-140			
Bromoform	19.7	1.0	υεΛ	25.0		79	55-135			
Bromomethane	23.9	1.0	սջ∕1	25.0		96	60-140			
a-Butylbenzene	25.8	10	ug/l	25.0		103	75-130			
sec-Butylbenzene	23.9	1.0	ug/I	25.0		96	75-125			
tert-Butylbenzene	23.4	1.0	ug/I	25.0		94	75-125			
rbon tetrachloride	22.9	0.50	ug/l	25.0		92	70-140			*
orobenzene	23.8	1.0	ug/I	25.0		95	80-125			
Chloroethane	23.9	1.0	ug/I	25.0		96	60-145			
Chleroform	25.8	1.0	пеЛ	25.0		103	75-130			
Chloromethane	22.4	1.0	ug/1	25.0		96	40-145			
2-Chlorocoluene	23.5	1.0	ug/I	25.0		94	75-125			
4-Chlorotoluene	24.1	1.0	սջ/1	25.0		96	75-125			
Dibromochloromethane	23.5	1.0	ug/l	25.0		94	65-145			
1,2-Dibromo-3-chloropropane	22,3	5.0	ug/l	25.0		89	50-135			
1,2-Dibromoethane (EDB)	24.3	1.0	ug/ 1	25.0		97	75-125			
Dibronomethane	23.8	1.0	ug/I	25.0		95	75-130			
1,2-Dichlorobenzene	21.8	1.0	սg/I	25.0		95	80-120	-		
1,3-Dichlorobenzene	23,4	1.0	ug/1	25.0		94	80-120			
1,4-Dichlorobenzene	23.1	1.0	ug/I	25.0		92	80-120			
Dichlorodifluoromethane	20.8	2.0	υ <u>ς</u> /1	25.0		83	10-160			
1,1-Dichloroethane	25.0	1.0	ug/l	25.0		100	70-135			
1,2-Dichloroethane	24.6	0.50	ug/I	25.0		98	60-150			
1,1-Dichloroethene	24.2	1.0	ug/I	25.0		97	75-135			
cis-1,2-Dichloroethene	24.5	1.0	ug/I	25.0		98	70-125			
trans-1,2-Dichloroothene	25.0	1.0	ug/l	25.0		100	70-130			
1,2-Dichloropropane	24.2	1.0	ug/I	25.0		97	70-120			
1,3-Dichloropropane	24.6	1.0	ug/l	25.0		98	70-130			
2,2-Dichloroprepane	25.6	1.0	ug/I	25.0		102	65-150	9		
1,1-Dichloropropene	24.6	1.0	บยู/ไ	25.0		98	75-130			
cis-1,3-Dichloropropene	25.1	0.50	աք/I	25.0		100	75-130			
trans-1,3-Dichloropropene	24.4	0.50	นg/l	25.0		98	75-135			

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analysical

10B1817 <Page 28 of 70>

17461 Delian Ave., Suite 100, trvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 L. Conley On, Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chruspade Dr., Saite 805, San Diego, CA 92123 (858-905-8596 - HAX (858-905-9689 9830 South 51x St., Saite 8-120, Phoreira, AZ 85044 (468) 785-0043 FAX (480) 785-0851 2520 F. Surger, Rd. #3, Las Vegas, NV 89120. (702) 798-3620. FAX (702) 798-3621.

MWH Americas - Brea

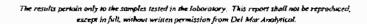
Project ID: Honeywell, North Hollywood

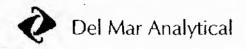
3050 Saturn Ave., Suite 205

1890933.0501

Brea, CA 92821 Attention: Lisa Hall Report Number: 10B1817

Sampled: 02/23/05


Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers	
Batch: 5B24007 Extracted: 02/24/05	•									\	
LCS Analyzed: 02/24/2005 (5B24007-E	BS1)										
Ethylbenzeue	25.1	0ک	ug/I	25.0		100	80-120				
Hexachlorobutadiene	22.0	1.0	ug/l	25.0		88	65-140				
Isopropyibenzene	24.2	1.0	սջ/I	25.0		97	75-125				
p-Isopropyltoluene	23.8	1.0	սջ/]	25.0		95	75-125				
Methylene chloride	25.3	5.0	ug/l	25.0		10 i	60-135				
Methyl-tert-butyl Ether (MTBE)	25.i	1.0	ug/l	25.0		100	55-145				
Naphthalene	24.8	1.0	սջ/]	25.0		99	50-145				
n-Propylbenzene	24.8	1.0	ug/l	25.0		99	75-130				
Styrene	24.8	1.0	ug/l	25.0		99	80-135				
1,1,1,2-Tetrachieroethane	23.4	1.0	ug/l	25.0		94	70-145				
1,1,2,2-Tetrachlornethane	24.0	1.0	սջ/ 1	25.0		96	60-135				4
Tetrachloroethene	22.3	1.0	ug/l	25.0		89	75-125				
Tohiese	24.2	0.50	սջ/1	25.0		97	75-120				
1,2,3-Trichlorobenzene	24.4	1.0	ug∕I	25.0		98	65-135	100			
1,2,4-Trichlorobenzene	24.9	1.0	ug/l	25.0		100	70-140				
i, I, i-Trichlomethane	24.6	1.0	ug/I	25.0		98	75-140				
1,1,2-Trichlomethane	24.2	0.1	ug/l	25.0		97	70-125				
Trichlomethene	23.3	1.0	ug/l	25.0		93	80-120				
Trichlorefluoromethane	24.3	1.0	ug/l	25.0		97	65-145				
1,2,3-Trichleropropune	23.7	1.0	ug/l	25.0		95	60-130				
1,2,4-Trimethylbenzene	24.2	1.0	սջ/I	25.0		97	75-125				
1,3,5-Trimethy/benzene	24.6	1.0	սջ/I	25.0		98	75-125				
Vinyl chloride	22.7	0.50	ug/I	25.0		91	50-130				
o-Xylene	23.8	0_50	ug/l	25.0		95	75-125				
m,p-Xylenes	48.8	1.0	ug/I	50.0		98	75-120				
Surrogate: Dibromoffstoromethane	25.0		υg∕ł	25.0		100	80-120				
Surrogate: Tohume-d8	24.1		ug/l	25.0		96	80-120				
Surrogate: 4-Bromofluorobenzene	24.4		ug/l	25.0		98	80-120				

Del Mar Analytical, Irvine Chris Roberts Project Manager

10B1817 <Page 29 of 78>

17461Uerkan Ave., Swite 100, Irvine, CA 92614 (949) 261-1022. FAX (949) 260-3297 1034 C. Cooley Dr., Suite A. Colum, CA 93374 (909) 370-4667. FAX (949) 370-1046 9486 Chespeake Dr., Suite 805, San Diego, CA 92173 (858) 505-6559. FAX (888) 505-9689 98/0 Souds 514 Sr., Suite B-170, Phemiric AZ 85044 (488) 785-0043. FAX (480) 785-0651 2520 E. Senset Rd. #3, Las Vegas, NV (9170-707) 798-3620. FAX (702) 738-3621

IWH Americas - Brea

2050 Saturn Ave., Suite 205

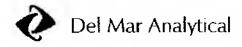
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Ameliate	Result	Reporting Limit	F1= 44=	Spike	Source	P/ DEC	%REC	RPD	RPD	Data
Analyte		LIDK	Units	Level	Result	%REC	Limits	кри	Limit	Qualifiers
Batch: 5B24007 Extracted: 02/24	/85									
Matrix Spike Analyzed: 02/24/200	IS (5B24007-MSI)				Source: I	OB1817-1	2			
Benzene	27.1	0.50	ug/l	25.0	ND	108	70-120			
Bromobeazene	25,4	1.0	աջ/1	25.0	ND	102	65-130			
Bromochloromethane	27_5	1.0	ng/l	25.0	ND	110	65-140			
Bromodichloromethanc	26.6	1.0	ug/I	25.0	ND	106	70-140			
Bromoform	22.0	1.0	ug/I	25.0	ND	88	55-140			
Bromomethane	25.8	1.0	ug/I	25.0	ИD	103	50-145			
u-Butylbenzene	27.9	1.0	ug/I	25.0	ИD	112	70-140			
sec-Burylbenzene	25,4	1.0	vg/l	25.0	ND	102	70-130			
tert-Butylbenzene	24.8	1.0	ug/l	25.0	ND	99	70-130			
Carbon tetrachloride	25.2	0.50	ng/I	25.0	ND	101	70-145			
orobenzene	26.3	1.0	ug/l	25.0	ND	105	80-125			
oroethane	27.2	1.0	. vg/l	25.0	ND	109	50-145			
Chloroform	29.2	1.0	ug/l	25.0	0.41	115	70-135			
Chloromethane	25.6	1.0	ug/l	25,0	ND	102	35-145			
2-Chlorotoluene	25.2	1.0	ng/l	25.0	ND	101	70-140			
4-Chlorotoluene	25.6	1.0	υg/l	25.0	ND	102	70-140			
Dibromochloromethane	26.4	1.0	ug/I	25.0	ND	106	65-145			
1,2-Dibramo-3-chloropropane	24.8	5.0	սց∕1	25.0	ND	99	45-155			
1,2-Dibromoethane (EDB)	27.3	1.0	vg/l	25.0	ND	109	70-130			
Dibromomethane	26.9	1.0	ng/l	25.0	ND	108	65-140			
1,2-Dichlorobenzene	26.3	1.0	ug/l	25.0	ND	105	75-130			
1,3-Dichlorobenzene	25.6	1.0	Eg/1	25.0	ND	102	75-130			
1,4-Dichlorobenzeue	25.3	1.0	ug/l	25.0	ND	101	80-120			
Dichlorodifluoromethane	37.3	2.0	ug/l	25.0	14	93	10-160			
1,1-Dichloroethane	31.7	1.0	ug/I	25.0	4.0	111	65-135			
1.2-Dichloroethune	29.8	0.50	ng/l	25.0	1.6	113	60-150			
1,1-Dichloroethene	27.1	1.0	ug/l	25.0	ND	108	65-140			
cis-1,2-Dichloroethene	61.3	1.0	υg/I	25.0	33	113	65-130			
trans-1,2-Dichloroothene	27.9	1.0	ug/l	25.0	ND	112	65-135			
1.2-Dichloropropane	28.0	1.0	ug/l	25.0	0.57	110	65-130			
1,3-Dichloropropane	27.2	1.0	ug/ 1	25.0	ND	109	65-140			
2,2-Dichloropropane	28.3	1.0	ug/l	25,0	ND	113	60-150	-50		
1,1-Dichloropropene	26.8	1.0	υg/I	25.0	ND	107	65-140			
cis-1,3-Dichloropropene	28.5	0.50	ug/l	25.0	ND	114	70-140			
trans-1,3-Dichkeropropene	28.7	0.50	ug/l	25.0	ND	115	70-140			
			0							

el Mar Analytical, Irvine ris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1817 <Page 30 of 70>

17461Ucrian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Ch., Swite A. Collow, CA 92824 (959) 370-4667 FAX (949) 370-1046 9484 Chesspeake On, Swite 805, San Diege, CA 92123 (858) 505-8596 FAX (858) 505-9669 9310 Swish Stat St., Swite 8-120, Pitceriot, AZ 85044 (460) 785-0043 FAX (400) 785-0053 2570 E. Sunset Rd. 41, Las Vegas, NY 49120 (792) 798-1620 FAX (702) 796-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

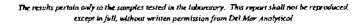
Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Brea, CA 92821

Report Number: IOB1817


Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

A malada	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	DPD.	RPD Limit	Data Qualiflers	
Analyte Batch: 5B24007 Extracted: 02/74/6	7	12(4)(CHRS	Level	Reson	/•REC	LIMIL	KI D	Diplic	Quanters.	
Matris Spike Analyzed: 02/24/2605	- /5R24007_M(\$1)				Saurca: Y	OB1817-1	,				
Ethylbenzene	27,5	0.50	սջ/I	25.0	ND	130	70-130				
Hexachlorobutadiene	24.0	1.0	ug/l	25.0	ND	96	65-140				
Isopropylbenzene	25.7	1.0	ug/l	25.0	ND	103	70-130	* .			
p-Isopropyltolucue	25.6	1.0	ug/l	25.0	ND	102	70-130	*			
Methylene chloride	29.4	5.0	սջ/I	25.0	ND	118	60-135				
Methyl-tert-buryl Ether (MTBE)	29.8	1.0	ug/l	25.0	ND	119	50-155				
Naphihalene	21.9	1.0	11g/l	25.0	ND	132	50-150				
a-Propylbenzene	26.1	1.0	ug/l	25.0	ND	104	70-135				
Stytepe	26.3	1.0	սջ/1	25.0	ND	105	55-145				
1,1,1,2-Tetrachloroethane	26.1	1.0	սբ/I	25.0	ND	104	70-145				
1.1.2.2-Tetrachloroethane	27,3	1.0	ug/l	25.0	ND	109	60-145				4
Tetrachloroetheue	41.9	1.0	սջ/I	25.0	18	96	70-130				٥
Toluene	27.2	0.50	ug/l	25.0	0.39	107	70-120				
1,2,3-Trichlorobenzene	28.1	1.0	սը/]	25.0	ND	112	60- 1 40				
1,2,4-Trichlorobenzene	28.6	1.0	ug/l	25.0	ND	114	60-140				
1,1,1-Trichloroedune	27.4	1.0	ug/I	25.0	ND	110	75-140				
1,1,2-Trichloroethane	27.9	1.0	ug/I	25.0	ND	1 12	60-135				
Trichlaroethene	33.9	1.0	ug/I	25.0	8.7	101	70-125				
Tricklorofluoromethane	27.1	1.0	ug/I	25.0	ND	108	55-145				
1,2,3-Trichloropropase	25.5	1.0	ug/1	25.0	ND	102	55-140	*			
1,2,4-Trimethylbenzene	26.0	1.0	ug/I	25.0	ND	104	60-125				
1,3,5-Trimethylbenzene	26.2	1.0	սց/1	25.0	ND	105	70-130			-	
Vinyl chloride	25.6	0.50	ug/l	25.0	ND	102	40-135				
o-Xyleac	26.1	0.50	ng/l	25.0	ND	104	65-125				
m.p-Xylenes	53.5	1.0	ug/I	50.0	ND	107	65-130				
Surrogate: Dibromoflworomethane	26,8		ug/I	25.0		107	80-/20				
Surrogate: Toluene-d8	25.3		ug/l	25.0		101	80-120				
Surrogate: 4-Bromofluorobenzene	25.6		ug/I	25.0		102	80-120				

17461 Deriam Ave., Suite 100, Ivrane, CA 92614 (949) 261-1022 FAX (949) 260-3237 1014 E. Coolley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9486 Chesapeake Dr., Suite 805, Sam Drego, CA 92123 (858) 509-8596 FAX (858) 509-9669 9830 South 574; Sr., Suite 81-20, Phornic, AZ 85044 (400) 785-0043 FAX (400) 785-0051 2570 E. Sonket Rd. #3, Las Vegas, NV 89120 (703) 796-3620 FAX (702) 796-3621

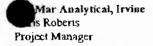
3050 Saturn Ave., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817


Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24007 Extracted: 02/24/05										
Matrix Spike Dup Analyzed: 62/24/2	005 (5B24007-M	(SD1)			Source: I	OB1817-1	2			
Benzene	24.9	0.50	ug/l	25.0	ND	100	70-120	8	20	
Bromobenzene	23.5	1.0	ug/l	25.0	ND	94	65-130	8	20	
Bromochloromethage	25.4	1.0	սջ/I	25.0	ND	102	65-140	8	25	
Bromedichloromethane	24.2	1.0	սջ/1	25.0	ND	97	70-140	9	20	
Bromeform	20.1	1.0	ug/l	25.0	ND	80	55-140	9	25	
Dromomethane	22.7	1.0	ug/I	25.0	ND	91	50-145	13	25	
n-Butyfbenzene	25.4	1.0	աջ/1	25.0	ND	102	70-140	9	20	
sec-Butylbenzene	23.7	1.0	սջ/1	25.0	ND	95	70-130	7	20	
tert-Burylbenzene	23.2	1.0	սջ/1	25.0	ND	93	70-130	7	20	*
Carbon tetrachloride	22.9	0.50	սց/1	25.0	ND	92	70-145	10	25	
robenzene	23.9	1.0	սջ/1	25.0	ND	96	80-125	10	20	
enioroethage	23.5	1.0	սց/1	25.0	ND	94	50-145	15	25	
Chloroform	26.2	1.0	սջ/1	25.0	0.41	103	70-135	11	20	
Chloromethane	22.5	1.0	ug/l	25.0	ND	90	35-145	13	25	
2-Chilorotohiene	23.2	1.0	ug/I	25.0	ND	93	70-140	8	20	
4-Chlorotoluene	23.8	1.0	ug/I	25.0	ND	95	70-140	7	20	
Dibromochloromethane	24.1	1.0	ug/I	25.0	ND	96	65-145	9	25	
1,2-Dibrumo-3-chloropropage	22.1	5.0	ug/I	25,0	ND	88	45-155	12	30	
1,2-Dibromoethane (EDB)	24,7	1.0	ug/l	25.0	ND	99	70-130	10	25	
Dibromomethane	24.8	1.0	ug/I	25.0	ND	99	65-140	8	25	
1,2-Dicklorobenzene	24.4	1.0	ug/I	25.0	ND	98	75-130	7	20	
1,3-Dichlorobenzene	24.1	1.0	ug/l	25.0	ND	96	75-130	6	20	
1,4-Dichlorobenzene	23.5	1.0	ug/t	25.0	ND	94	80-120	7	20	
Dichlorodifluoromethate	33,8	2.0	ug/I	25.0	14	79	10-160	10	30	
1,1-Dichloroethane	29.1	1.0	ug/I	25.0	4.0	100	65-135	9	20	
1,2-Dichloroethane	27.3	0.50	ug/t	25.0	1.6	103	60-150	9	20	
1,1-Dichloroethene	24.0	1.0	ug/I	25.0	ND	96	65-140	12	20	
cis-1,2-Dichloroethene	58.0	1.0	ug/t	25.0	33	100	65-130	6	20	
trans-1,2-Dichloroethene	25.3	1.0	υg/I	25.0	ND	101	6 5 -135	10	20	
1,2-Dichleropropsue	25.5	1.0	ug/1	25.0	0.57	100	65-130	9	20	
1.3-Dichloropropane	24.7	1.0	ug/i	25.0	ND	99	65-140	10	25	
2.2-Dichloropropane	24.8	1.0	ug/l	25.0	ND	99	60-150	13	25	
1,1-Dichloropropene	24.5	1.0	ug/t	25.0	ND	98	65-140	9	20	
cis-1,3-Dichloropropene	26.0	0.50	ug/I	25.0	ND	104	70-140	. 9	20	
trans-1,3-Dichloropropene	25.8	0.50	139/1	25.0	ND	103	70-140	[]	25	

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in fall, without written permission from Del Mar Analytical.

IOB1817 < Page 32 of 70>

17461Densin Ave., Soite 100, Invine, CA 92614 (649) 261-1072 FAX (949) 760-3297 1014 E. Cockey Ov., Soite A. Colton, CA 92724 (699) 370-4667 FAX (949) 370-1046 7484 Chesspeaker Dr., Swite 803, San Diego, CA 97123 RS in Siss 505-6596 FAX (688) 505-9689 630 Soidh 514 St., Swite 8-170, Phoenic, AZ 85044 14404 785-0043 FAX (480) 785-4851 1250-E. Swite 8-170, Phoenic, AZ 85044 14404 785-0043 FAX (480) 785-4851 1250-E. Swite Rd. 43, tas Verpa, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05


Brea, CA 92821 Attention: Lisa Hall Report Number: 10B1817

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limiu	RP D	Limit	Qualifiers
Batch: 5B24007 Extracted: 02/24/05	<u>.</u>									
Matrix Spike Dup Analyzed: 01/24/2	:005 (\$B24007-M	ISD1)			Source: I	OB1817-1	2			
Ethylbenzene	24.9	0.50	ug/I	25.0	ND	100	70-130	10	20	
Hexachlorobutadiene	21.8	1.0	ug/I	25.0	ND	87	65-140	10	20	
Isopropylbenzene	23.5	1.0	ug∕I	25.0	ND	94	70-130	9	20	
p-Isopropyltoluene	23.7	1.0	บg∕ไ	25.0	ИD	95	70-130	8	20	
Methylene chloride	26.3	5.0	ug/I	25.0	ND	105	60-135	11	20	
Methyl-text-butyl Ether (MTBE)	26.7	1.0	ug/I	25.0	ND	107	50-155	11	25	
Naphthalene	. 25.5	1.0	હg/I	25.0	ND	102	50-150	9	3 0	
a-Propyloenzene	24.0	1.0	ug/I	25.0	ИD	96	70-135	8	20	
Styrene	23.9	1.0	ug/I	25.0	ND	96	55-145	10	30	
1,1,1,2-Tetrachloroethage	24.0	1.0	ug∕I	25.0	ND	96	70-145	8	20	
1,1,2,2-Tetrachioroethane	25.4	1.0	ug/l	25.0	, ND	102	60-145	7	30	
Tetrachloroethene	40,2	1.0	ug/l	25.0	18	89	70-130	4	20	
Tolvene	24.9	0.50	ug/I	25.0	0.39	98	70-120	9	20	
1,2,3 Trichlorobenzene	25.5	1.0	ug/I	25.0	ND	102	60-140	10	20	
,2,4-Trichlorobenzene	26.0	1.0	սջ∕Ո	25.0	ND	104	60-140	10	20	
1,1,1-Trichloroethane	24,1	1.0	ug∕I	25.0	ND	96	75-140	13	20	
1,1,2-Trichloroethane	24,7	1.0	ug/l	25.0	ND	99	60-135	12	25	
Trichloroethene	31.8	1.0	ug/I	25.0	8.7	92	70-125	6	20	-
Trichknofluoromethane	24.0	1.0	บอู/โ	25.0	ND	96	55-145	12	25	
,2,3-Trichloropropane	23.6	1.0	սք∕1	25.0	ND	94	55-140	8	30	
1,2,4-Trimethylbeuzene	24.3	1.0	ug/I	25.0	ND	97	60-125	7	25	
1,3,5-Tranethylbenzene	24.3	1.0	ug/I	25.0	ND	97	70-130	8	20	
Vinyl chloride	22.6	0.50	ug/I	25.0	ND	90	40-135	12	30	
-Xylene	23.6	0.50	ug/I	25.0	ND	94	65 -125	10	20	
m,p-Xylenes	48.5	1.0	บg/1	50.0	ND	97	65-130	10	25	
Surrogate: Dibromofluoramethane	26.4		ug/I	25.0		106	80-120			
Surrogate: Tohiene-dB	25.0		ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobentene	25.1		идЛ	25.0		100	80-120			

17461Denan Ave., Saite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dr., Saite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapesise Dr., Suize 805, San Diego, CA 92173 (858) 355-8596 FAX (858) 505-9649 9430 South Staf St., Saite 8-120, Phoenix, AZ 85044 (460) 785-0043 FAX (460) 785-0851 2520 E. Surset Rd. 47, Las Wigat. NV 89120 (202) 786-3620 FAX (702) 756-3621

AWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

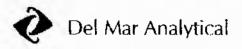
1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05

METHODBLANK OC DATA


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
- Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Lìmit	Qualifiers
Batch: 5B24012 Extracted: 02/24	<u>/05</u>									
Blank Analyzed: 02/24/2005 (5B2-	4012-BLK(1)									
Benzene	ND	0.50	սց/1							
Bromobenzene	ИD	1.0	ug/l							
Bromochloromethane	ND	1.0	ug/I							
Bromodichloromethane	ND	1.0	ա ը∕1							
Bromoform	ND	1.0	սց/1							
Biomomethane	ND	1.0	ug/l							
n-Butylbenzene	ND	1.0	սաչ∕≀							
sec-Burylbenzene	DИ	1.0	2g/1							
ten-Butylbenzene	ND	1.0	ug/I							
Curbon tetrachloride	ND	0.50	սց∕Ո							
brobenzeue	DИ	1.0	ug/l					0.0		
Caloroethane	ND	1.0	ug/l							
Chloroform	ND	1.0	ug/I							
Chloromethane	ND	1.0	սց/1							
2-Chlorotomene	ND	1.0	¢g/l							
4-Chlorotoluene	ND	1.0	ug/I							
Dibromochloromethane	DИ	1.0	սց∕Ո							
1,2-Dibromo-3-chloropropane	ND	5,0	ug/I							
1,2-Dibromoethane (EDI)	ND	1.0	¢g/l							
Dibromomethane	DИ	1.0	սջ/ե							
1,2-Dichlorobenzene	ND	1,0	սց/1							
1,3-Dichlorobenzene	ND	1.0	ug/1							
1,4-Dichlorobenzene	ND	1.0	ug/I							
Dichlorodifluoromethane	DИ	2,0	ug/l							
1,1-Dichloroethane	ND	1.0	ug/I							
1,2-Dichlorouthane	ND	0.50	ug/I							
1,1-Dichloroethene	ИD	1.0	ug/I							
cis-1,2-Dickloroethene	ND	1.6	ug/I							
trans-1,2-Dichloroethene	ND	1.0	Ե ջ/1							
1,2-Dichloropropase	ND	0.1	ug/1							
1,3-Dichloropropane	DИ	1.0	ug/1							
2,2-Dichloropropane	ND	1.0	บg/ใ						Ŷ.	
1,1-Dichloropropene	ИD	1.0	ug/ 1							
cis-1,3-Dichloropropene	ND	0.50	սջ/I							
trans-1,3-Dichloropropene	ND	0.50	ուն/1							
B										

Mar Analytical, Irvine as Roberts Project Manager

The results pertoin only to the samples tested in the lobaratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 <Page 34 of 76>

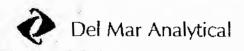
17461 Derian Ave., Saitz 100, Irvine, CA 92624 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dt., Saitz A., Cohan, CA 92224 (999) 170-4667 FAX (949) 370-1046 9484 Chesaprolde Dt., Saitz 6856, Saitz Osego, CA 92273 (959) 505-8696 FAX (959) 565-9669 9630 South S1st Sc., Saitz 8-120, Phoenia, AZ 85044 (480) 785-001) FAX (480) 785-0651 7520 E. Swisel Rd. #3, EasVings, NY 69120 (702) 298-3620 FAX (702) 298-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05


Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817


Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RFD	Limit	Qualifiers	
Batch: 5B24012 Extracted: 02/24/05											
Blank Analyzed: 02/24/2005 (5B24012-	BLK1)										
Ethylbenzene	ND	0_50	սջ/]								
Hexachlorobundiene	ND	1.0	ug∕l								
Isopropylbenzene	ND	1.0	ug/l								
p-Isopropytolucie	ND	1.0	ug/I								
Methylene chloride	ND	5.0	ug∕l								
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l								
Naphibalcoc	ND	1.0	ug/I								
n-Propylbenzene	ND	1.0	સ્કૂ/ી								
Styrenc	ND	1.0	ug/l								
1, 1, 1, 2-Tetrachloroethane	ND	1.0	ug/I								
1,1,2,2-Tetrachloroethane	ND	1.0	աջ/1								
Tetrachloroethene	ND	1.0	માટ/1								
Tolume	ND	0.50	ng/I								
1,2,3-Trichlorobeuzene	ND	1.0	ug/l								
1,2,4-Trichlorobenzene	ND	1.0	սջ/յ								
1, 1,)-Trichioroethans	ND	1.0	ug/l								
1,1,2-Trichloroethane	ND	1.0	u g/ t								
Trichloroetheue	ND	1.0	սջ/1								
Trichloro Duoromethane	ND	1.0	սջ/յ								
1,2,3-Trichloropropane	ND	1.0	ոջ/]								
1,2,4-Trimethylbenzeue	ND	1.0	ug/I								
1,3,5-Trimethylbenzenc	ND	1.0	ug/l								
Vinyl chloride	ND	0.50	ng/I								
o-Xylene	ND	0.50	ug/I								
m_p-Xylenes	ND	1.0	ug/1								
Surrogate: Dibromoftworomethane	25.1		ug/l	25.0		100	80-120				
Surrogate: Toluene-d8	24.3		ug/l	25.0		97	80-120				
Surrogate: 4-Bramafluorobenzene	22.7		æg/ी	25.0		91	80-120				
•							-				

17461Denim Ave., Surie. 100, bvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Goddey Dv., Surie A. Calton, CA 92324 (200) 370-4667 FAX (949) 370-1046 9484 Overspeake Dv., Surie Bods, Sam Diego, CA 92123 (858) 505-8596 FAX (858) 505-969 9830 South Stat Sc., Surie B-120, Phinesin, AZ 85044 (460) 785-9043 FAX (MBD 785-085) 2520 E. Sumart Rd. #3, Lat Vegas, NV 89120 (202) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05

GMETHOD BLANK OG BATA-

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte Result Limit Units Livel Result VAREC Livite RPD Limit Qualifiers Batels SR4012 Extracted SR24012-BS1			Reporting		Spike	Source		%REC		RPD	Data
LCS Analyzed: 02/24/2005 (SB24012-BS1)	Analyte	Result	Limit	Units	-	Result	%REC	Limits	RPD	Limit	Qualifiers
Веналие 24.1 0.50 ug/L 25.0 96 70-120 Втопос/весемее 23.6 1.0 ug/L 25.0 94 80-120 Втопос/весемее 24.7 1.0 ug/L 25.0 97 70-140 Втопосительные 24.2 1.0 ug/L 25.0 95 55-135 Втопосительные 29.4 1.0 ug/L 25.0 18 60-140 втопосительные 29.4 1.0 ug/L 25.0 186 60-140 вес-Витуйскими 25.1 1.0 ug/L 25.0 160 75-125 test-Buryйскими 25.1 1.0 ug/L 25.0 100 75-125 test-Buryйскими 24.7 1.0 ug/L 25.0 101 70-140 voctorizere 25.3 0.50 ug/L 25.0 101 70-140 voctorizere 21.7 1.0 ug/L 25.0 110 70-140 voctorizere	Batch: 5B24012 Extracted: 02/24/	<u>05</u>									
Вготобъедееее 23.6 1.0 ug/l 25.0 94 80-120 ВготосМоготонамие 24.7 1.0 ug/l 25.0 99 65-135 ВготосМоготонамие 24.2 1.0 ug/l 25.0 97 70-140 ВготосМоготонамие 23.8 1.0 ug/l 25.0 95 55-135 Вготонов 24.1 1.0 ug/l 25.0 95 55-135 Вготонов 25.1 1.0 ug/l 25.0 118 60-140 Пиуръваден 25.0 1.0 ug/l 25.0 118 60-140 Пиуръваден 25.0 1.0 ug/l 25.0 100 75-130 sec-Burylbradzene 25.1 1.0 ug/l 25.0 100 75-125 Liet-Durylbradzene 27.9 1.0 ug/l 25.0 112 60-145 Liet-Durylbradzene 27.9 1.0 ug/l 25.0 112 60-145 Chlorofora 24.9 1.0 ug/l 25.0 112 60-145 Chlorofora 24.4 1.0 ug/l 25.0 100 75-130 Chlorofora 24.4 1.0 ug/l 25.0 100 75-125 Liet-Durylbradzene 24.4 1.0 ug/l 25.0 100 75-125 Liet-Durylbradzene 24.4 1.0 ug/l 25.0 98 65-145 L'Alborotolucne 24.7 1.0 ug/l 25.0 98 75-125 Dibromo-d-Inforquopane 24.7 1.0 ug/l 25.0 98 65-145 L'2-Dibromo-d-Inforquopane 24.7 1.0 ug/l 25.0 98 75-125 Dibromo-d-Inforquopane 24.7 1.0 ug/l 25.0 98 65-145 L'2-Dibromo-d-Inforquopane 24.7 1.0 ug/l 25.0 99 75-130 L'2-Dichlorochuse (EDB) 24.4 10 ug/l 25.0 99 75-135 L'2-Dichlorochuse (EDB) 24.4 10 ug/l 25.0 99 75-135 L'2-Dichlorochuse 25.9 2.0 ug/l 25.0 99 70-135 L'2-Dichlorochuse 24.8 1.0 ug/l 25.0 98 70-135 L'2-Dichlorochuse 24.8 1.0 ug/l 25.0 98 70-136 L'2-Dichlorochuse 24.8 1.0 ug/l 25.0 98 70-136 L'2-Dichlorochuse 24.8 1.0 ug/l 25.0 98 70-136 L'2-Dichlorochuse 24.8 1.0	LCS Analyzed: 02/24/2005 (5B240	12-BS1)									
Bromochloromethaue 24.7 1.0 ug/l 25.0 99 65.135 Bromochloromethaue 24.2 1.0 ug/l 25.0 97 70.140 Bromochloromethaue 23.8 1.0 ug/l 25.0 95 55.135 Bromochloromethaue 29.4 1.0 ug/l 25.0 118 60.140 u-Butylheazene 25.0 1.0 ug/l 25.0 100 75.130 sec-Butylheazene 25.1 1.0 ug/l 25.0 100 75.130 sec-Butylheazene 25.1 1.0 ug/l 25.0 100 75.125 iet-Butylheazene 25.1 1.0 ug/l 25.0 100 75.125 iet-Butylheazene 27.7 1.0 ug/l 25.0 99 75.125 carbon tetrachloride 25.3 0.50 ug/l 25.0 111 70.140 secbenzene 21.7 1.0 ug/l 25.0 91 80.125 chlorochane 27.9 1.0 ug/l 25.0 112 60.145 Chlorofora 24.9 1.0 ug/l 25.0 100 75.130 Chloromethane 26.4 1.0 ug/l 25.0 100 75.130 Chloromethane 26.4 1.0 ug/l 25.0 100 40.145 chlorochane 27.7 1.0 ug/l 25.0 100 40.145 chlorochane 28.4 1.0 ug/l 25.0 100 40.145 chlorochane 29.4 1.0 ug/l 25.0 100 40.145 chloromethane 24.4 1.0 ug/l 25.0 98 75.125 dhloromethane 24.4 1.0 ug/l 25.0 99 75.125 Dibromochloromethane 24.6 1.0 ug/l 25.0 99 75.125 Dibromochloromethane 24.6 1.0 ug/l 25.0 99 75.125 Dibromochloromethane 24.7 1.0 ug/l 25.0 98 65.145 1,2-Dibromochane (EDB) 24.4 1.0 ug/l 25.0 98 75.125 Dibromochloromethane 27.7 5.0 ug/l 25.0 99 75.130 1,2-Dichlorothazene 28.1 1.0 ug/l 25.0 99 75.130 1,2-Dichlorothazene 29.1 1.0 ug/l 25.0 99 75.130 1,2-Dichlorothazene 29.1 1.0 ug/l 25.0 99 75.130 1,2-Dichlorothazene 29.1 1.0 ug/l 25.0 99 75.135 cis-1,2-Dichlorothane 24.8 1.0 ug/l 25.0 99 75.135 cis-1,2-Dichlorothane 24.5 1.0 ug/l 25.0 99 75.135 cis-1,2-Dichlorothane 24.5 1.0 ug/l 25.0 99 75.135 cis-1,2-Dichlorothane 24.6 1.0 ug/l 25.0 99 70.135 1,2-Dichlorothane 24.5 1.0 ug/l 25.0 99 70.135 1,2-Dichlorothane 25.4 0.50 ug/l 25.0 99 70.135 1,2-Dichlorothane 25.5 1.0 ug/l 25.0 99 70.135 1,2-Dichlorothane 25.6 1.0 ug/l 25.0 99 70.135 1,2-Dichlorothane 25.7 1.0 ug/l 25.0 99 70.135 1,2-Dichlorothane 25.8 1.0 ug/l 25.0 99 70.135 1,2-Dichlorothane 25.1 0.0 ug/l 25.0 99 70.135 1,2-Dichlorothane 25.1 0.0 ug/l 25.0 99 70.135 1,2-Dichlorothane 25.1 0.0 ug/l 25.0 99 70.130 1,2-Dichlorothane 25.1 0.0 ug/l 25.0 100 75.130	Benzene	24.1	0.50	ug/l	25.0		96	70-120			
Bromodichloromethane 24.2 1.0 ug/l 25.0 97 70.140	Bromobenzene	23.6	1.0	ug/l	25.0		94	80-120			
Bromoform 23.8 1.0 ug/l 25.0 95 55-135 Bromomenhase 29.4 1.0 ug/l 25.0 118 60-140	Bromochloromethane	24.7	1.0	. ug/1	25.0		99	65-135			
Bromomenhaue 29.4 1.0 ug/l 25.0 118 60-140 1-140	Bromodichloromethane	24.2	1.0	ս ջ∕1	25.0		97	70-140			
Description Sec. Butylbrazers Sec. Butyl	Bromoferm	23.8	0.1	ug/l	25.0	•	95	55-135			
Description Description	Bromomethane	29.4	1.0	ug/l	25.0		118	60-140			
tert-Burylbenzene 24.7 1.0 ug/l 25.0 99 75-125 Tarbon tetruchloride 25.3 0.50 ug/l 25.0 101 70-140 voctorazene 21.7 1.0 ug/l 25.0 1112 60-145 Chloroform 24.9 1.0 ug/l 25.0 110 75-130 Chloromethane 26.4 1.0 ug/l 25.0 100 75-130 Chloromethane 24.4 1.0 ug/l 25.0 98 75-125 Dibromochloromethane 24.7 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.6 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.6 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.7 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.7 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.7 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.7 1.0 ug/l 25.0 99 86-143 1,2-Dibromo-3-chloromethane 24.7 1.0 ug/l 25.0 99 75-125 Dibromochlare (EDB) 24.4 10 ug/l 25.0 99 75-125 Dibromochlare 24.7 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzzne 23.0 10 ug/l 25.0 99 80-120 1,3-Dichlorobenzzne 23.1 1.0 ug/l 25.0 99 80-120 1,4-Dichlorobenzzne 22.9 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzzne 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichlorochlane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorochlane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorochlane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorochlane 24.5 1.0 ug/l 25.0 99 70-135 1,2-Dichlorochlane 24.5 1.0 ug/l 25.0 98 70-120 1,1-Dichlorochlane 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichloropapane 24.2 10 ug/l 25.0 98 70-120 1,1-Dichloropapane 24.2 10 ug/l 25.0 98 70-120 1,1-Dichloropapane 25.5 1.0 ug/l 25.0 97 70-130 1,2-Dichloropapane 25.5 1.0 ug/l 25.0 97 70-130 1,1-Dichloropapane 25.5 1.0 ug/l 25.0 100 75-130	n-Datylbenzene	25.0	1.0		25.0		100	75-E30			
Carbon tetrachloride	sec-Butyloenzene	25, E	1.0	սջ/ 1	25.0		100	75-125			
Discontinue 21.7 1.0 ug/l 25.0 91 80-125	tert-Butylbenzene	24.7	0.1	ขg∕ใ	25.0		99	75-125			
Chloroform 24.9 1.0 ug/l 25.0 112 60-145 Chloroform 24.9 1.0 ug/l 25.0 100 75-130 Chloromethane 26.4 1.0 ug/l 25.0 106 40-145 2-Chlorosolucne 24.4 1.0 ug/l 25.0 98 75-125 4-Chlorosolucne 24.7 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.6 1.0 ug/l 25.0 98 65-145 1,2-Dibromo-3-chloropropane 22.7 5.0 ug/l 25.0 98 75-125 Dibromochloromethane (EDB) 24.4 10 ug/l 25.0 99 75-125 Dibromomethane (EDB) 24.4 10 ug/l 25.0 99 75-125 Dibromomethane 23.0 10 ug/l 25.0 99 75-130 1,2-Dichlorobenzene 23.0 1 ug/l 25.0 99 80-120 1,3-Dichlorobenzene 23.1 1.0 ug/l 25.0 99 80-120 1,4-Dichlorobenzene 22.9 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobense 25.9 2.0 ug/l 25.0 92 80-120 Dichlorodiflucromethane 25.9 2.0 ug/l 25.0 99 70-135 1,2-Dichlorothane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorothane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorothane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorothane 24.5 1.0 ug/l 25.0 99 70-135 1,2-Dichlorothane 24.5 1.0 ug/l 25.0 99 70-135 1,2-Dichlorothane 24.5 1.0 ug/l 25.0 98 70-125 ugns-1,2-Dichlorothane 24.6 1.0 ug/l 25.0 98 70-125 ugns-1,2-Dichlorothane 24.6 1.0 ug/l 25.0 98 70-125 ugns-1,2-Dichlorothane 24.4 1.0 ug/l 25.0 98 70-125 ugns-1,2-Dichlorothane 24.5 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothane 24.5 1.0 ug/l 25.0 100 75-130	Carbon tetrachloride	25.3	0.50	ug/t	25.0		101	70-140			
Chloroform 24.9 1.0 ug/l 25.0 100 75-130 Chloromethane 26.4 1.0 ug/l 25.0 106 40-145 2-Calorotolucne 24.4 1.0 ug/l 25.0 98 75-125 4-Chlorotolucne 24.7 1.0 ug/l 25.0 98 75-125 Dibromochloromethane 24.6 1.0 ug/l 25.0 98 65-145 1,2-Dibromo-3-chloropropane 22.7 5.0 ug/l 25.0 91 50-135 1,2-Dibromochlane (EDB) 24.4 1.0 ug/l 25.0 98 75-125 Dibromomethane 24.7 1.0 ug/l 25.0 98 75-125 Dibromomethane 24.7 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzene 23.0 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,3-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzene 25.9 1.0 ug/l 25.0 92 80-120 Dichlorotiflucromethane 25.9 2.0 ug/l 25.0 92 80-120 Dichlorotiflucromethane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorothane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorothane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorothane 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichlorothane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorothane 24.5 1.0 ug/l 25.0 99 70-135 1,2-Dichlorothane 24.6 1.0 ug/l 25.0 99 70-135 cis-1,2-Dichlorothene 24.6 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorothene 24.6 1.0 ug/l 25.0 98 70-126 trans-1,2-Dichlorothene 24.4 1.0 ug/l 25.0 98 70-126 trans-1,2-Dichlorothene 24.4 1.0 ug/l 25.0 98 70-126 trans-1,2-Dichlorothene 24.5 1.0 ug/l 25.0 98 70-130 1,2-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 1,2-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 1,2-Dichloropropane 25.5 1.0 ug/l 25.0 170 75-130 cis-1,3-Dichloropropane 25.1 0.50 ug/l 25.0 175 65-150 1,1-Dichloropropane 25.1 0.50 ug/l 25.0 175 65-150 1,1-Dichloropropane 25.1 0.50 ug/l 25.0 175 65-150 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 175 65-150 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 175 65-150	огобсидене	21.7	6.3	սջ/1	25.0		91	80-125			
Chloromethane 26.4 1.0 ug/l 25.0 106 40-145 2-Calorotolucae 24.4 1.0 ug/l 25.0 98 75-125 4-Calorotolucae 24.7 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.6 1.0 ug/l 25.0 98 65-145 1,2-Dibromo-3-chloropropane 22.7 5.0 ug/l 25.0 98 75-125 Dibromochlane (EDB) 24.4 1.0 ug/l 25.0 98 75-125 Dibromochlane (EDB) 24.4 1.0 ug/l 25.0 98 75-125 Dibromomethane 24.7 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzzne 23.1 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzzne 23.1 1.0 ug/l 25.0 92 80-120 1,3-Dichlorobenzzne 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzzne 22.9 1.0 ug/l 25.0 92 80-120 Dichlorochlane 25.9 2.0 ug/l 25.0 92 80-120 Dichlorochlane 25.9 2.0 ug/l 25.0 104 10-160 1,1-Dichlorochlane 25.4 0.50 ug/l 25.0 102 60-150 1,1-Dichlorochlane 25.4 0.50 ug/l 25.0 97 75-135 cis-1,2-Dichlorochlane 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorochlane 24.6 1.0 ug/l 25.0 98 70-126 trans-1,2-Dichlorochlane 24.4 1.0 ug/l 25.0 98 70-130 1,2-Dichlorochlane 24.4 1.0 ug/l 25.0 98 70-130 1,2-Dichlorochlane 24.4 1.0 ug/l 25.0 98 70-130 1,2-Dichlorochlane 24.4 1.0 ug/l 25.0 98 70-130 1,2-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-130 1,2-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-130 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 25.5 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropane 25.1 0.50 ug/l 25.0 102 75-130	enioroethane .	27.9	1.0	սջ/1	25.0		112	60-145			
Chloromethane 26.4 1.0 ag/l 25.0 106 40-145 2-Chlorototucne 24.4 1.0 ug/l 25.0 98 75-125 4-Chlorototucne 24.7 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.6 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 22.7 5.0 ug/l 25.0 98 65-145 1,2-Dibromo-3-chloropropane 22.7 5.0 ug/l 25.0 98 75-125 Dibromochlane (EDB) 24.4 1.0 ug/l 25.0 98 75-125 Dibromomethane 24.7 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzzne 23.0 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzzne 23.1 1.0 ug/l 25.0 92 80-120 1,3-Dichlorobenzzne 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzzne 22.9 1.0 ug/l 25.0 92 80-120 Dichlorotifluoromethane 25.9 2.0 ug/l 25.0 92 80-120 Dichlorothane 24.8 1.0 ug/l 25.0 92 80-120 1,1-Dichlorothane 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichlorothane 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichlorothene 24.3 1.0 ug/l 25.0 99 70-135 1,2-Dichlorothene 24.3 1.0 ug/l 25.0 99 70-135 1,2-Dichlorothene 24.4 1.0 ug/l 25.0 98 70-126 trans-1,2-Dichlorothene 24.4 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichlorothene 24.4 1.0 ug/l 25.0 97 70-130 1,3-Dichloropropane 24.4 1.0 ug/l 25.0 97 70-130 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropane 25.1 0.50 ug/l 25.0 102 75-130	Chloroform	24.9	1.0	ug/1	25.0		100	75-130			
2-Chlorotolucae 24.4 1.0 ug/l 25.0 98 75-125 4-Chlorotolucae 24.7 1.0 ug/l 25.0 99 75-125 Dibromochloromethane 24.6 1.0 ug/l 25.0 98 65-145 1,2-Dibromochloromethane 22.7 5.0 ug/l 25.0 91 50-135 1,2-Dibromochlaro (EDB) 24.4 1.0 ug/l 25.0 98 75-125 Dibromomethane (EDB) 24.4 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzene 23.0 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,3-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzene 22.9 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzene 25.9 2.0 ug/l 25.0 92 80-120 Dichlorothane 25.9 2.0 ug/l 25.0 99 70-135 1,2-Dichlorothane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorothane 25.4 0.50 ug/l 25.0 99 70-135 1,1-Dichlorothane 24.5 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichlorothene 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorothene 24.6 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorothene 24.4 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 98 70-135 cis-1,2-Dichlorothene 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 98 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 99 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 99 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 97 70-130 1,2-Dichlorothene 24.5 1.0 ug/l 25.0 97 70-130 2,2-Dichlorothene 25.5 1.0 ug/l 25.0 100 75-130	Chloromethane	26,4	t.0				106				
Dibromochloromethane 24.6 1.0 ug/l 25.0 98 65-145 1,2-Dibromo-3-chloropropane 22.7 5.0 ug/l 25.0 91 50-135 1,2-Dibromoethane (EDB) 24.4 1.0 ug/l 25.0 98 75-125 Dibromomethane (EDB) 24.4 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzene 23.0 1.0 ug/l 25.0 92 80-120 1,3-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzene 22.9 1.0 ug/l 25.0 92 80-120 1,4-Dichloromethane 25.9 2.0 ug/l 25.0 92 80-120 1,1-Dichloroethane 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichloroethane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichloroethene 24.3 1.0 ug/l 25.0 97 75-135 1,2-Dichloroethene 24.5 1.0 ug/l 25.0 97 75-135 1,2-Dichloroethene 24.5 1.0 ug/l 25.0 98 70-125 1,2-Dichloroethene 24.6 1.0 ug/l 25.0 98 70-126 1,2-Dichloroethene 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 25.5 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 102 75-130 1,2-Dichloropropane 25.5 1.0 ug/l 25.0 102 75-130 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 100 75-130 1,1-Dichloropropane 25.1 0.50 ug/l 25.0 100 75-130 1,1-Dichloropropane 25.1 0.50 ug/l 25.0 100 75-130	2-Chlorotolucae	24.4	t.0		25.0		98	75-t25			
1,2-Dibromo-3-chloropropane 22.7 5.0 ug/l 25.0 9t 50-135 1,2-Dibromoethase (EDB) 24.4 1.0 ug/l 25.0 98 75-125 Dibromomethane 24.7 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzene 23.0 1.0 ug/l 25.0 92 80-120 1,3-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzene 22.9 1.0 ug/l 25.0 92 80-120 Dichlorochiaucomethane 25.9 2.0 ug/l 25.0 92 80-120 Dichlorochiane 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichlorochiane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorochiane 24.3 1.0 ug/l 25.0 99 75-135 1,2-Dichlorochiane 24.5 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichlorochiane 24.6 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorochiane 24.4 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorochiane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.5 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 25.5 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 25.5 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 100 75-130 cis-1,3-Dichloropropane 25.1 0.50 ug/l 25.0 100 75-130	4-Chlerotoluene	24.7	6.1	ug∕î	25.0		99	75-125			
1,2-Dibromo-3-chloropropane 1,2-Dibromo-stance (EDB) 24.4 1 0 ug/l 25.0 98 75-125 Dibromomethane 24.7 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzzne 23.0 1 0 ug/l 25.0 99 75-130 1,3-Dichlorobenzzne 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzzne 22.9 1.0 ug/l 25.0 92 80-120 1,4-Dichlorochane 25.9 2.0 ug/l 25.0 92 80-120 Dichlorochine 25.9 2.0 ug/l 25.0 99 70-135 1,2-Dichlorochane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorochane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichlorochane 24.3 1.0 ug/l 25.0 99 75-335 cis-1,2-Dichlorochene 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorochene 24.6 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorochene 24.6 1.0 ug/l 25.0 98 70-126 trans-1,2-Dichlorochene 24.6 1.0 ug/l 25.0 98 70-126 trans-1,2-Dichlorochene 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.5 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 25.5 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 100 75-130	Dibromochloromethane	24.6	1.0	ug/l	25.0		98	65-145			
Dibromomethane 24.7 1.0 ug/l 25.0 99 75-130 1,2-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,3-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzene 22.9 1.0 ug/l 25.0 92 80-120 Dichlorodiflucromethane 25.9 2.0 eg/l 25.0 92 80-120 Dichlorodiflucromethane 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichloroethane 25.4 0.50 ug/l 25.0 99 70-135 1,2-Dichloroethane 24.3 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichloroethene 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichloroethene 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropene 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 100 75-130	1,2-Dibromo-3-chloropropane	22.7	5.0		25.0		91	50-135			
1,2-Dichlorobenzene 23.0 1.0 ug/l 25.0 92 80-120 1,3-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzene 22.9 1.0 ug/l 25.0 92 80-120 Dichloroctifluoromethane 25.9 2.0 ug/l 25.0 104 10-160 1,1-Dichlorocthane 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichlorocthane 24.3 1.0 ug/l 25.0 102 60-150 1,1-Dichlorocthene 24.3 1.0 ug/l 25.0 97 75-35 cis-1,2-Dichlorocthene 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorocthene 24.6 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 25.5 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 100 75-130 cis-1,3-Dichloropropane 25.1 0.50 ug/l 25.0 100 75-130	1,2-Dibromoethane (EDB)	24.4	10	1\ga	25.0		98	75-125			
1,3-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzene 22.9 1.0 ug/l 25.0 92 80-120 Dichlorodifluoromethane 25.9 2.0 ug/l 25.0 104 10-160 1,1-Dichloroethane 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichloroethane 25.4 0.50 ug/l 25.0 102 60-150 1,1-Dichloroethane 24.3 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichloroethene 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichloroethene 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichloroethene 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 98 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 100 75-130	Dibromomethane	24.7	1.0	ug/I	25.0		99	75-t30			
1,3-Dichlorobenzene 23.1 1.0 ug/l 25.0 92 80-120 1,4-Dichlorobenzene 22.9 1.0 ug/l 25.0 92 80-120 Dichlorobiflucromethane 25.9 2.0 ug/l 25.0 104 10-160 1,1-Dichlorobenzene 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichlorobenzene 25.4 0.50 ug/l 25.0 102 60-150 1,1-Dichlorobenzene 24.3 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichlorobethane 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorobene 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichlorobene 24.4 1.0 ug/l 25.0 98 70-130 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 98 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropane 25.1 0.50 ug/l 25.0 100 75-130	1,2-Dichlerobenzene	23.0	10	ug/l	25.0		92	80-120			
Dichlorochiflucromethane 25.9 2.0 ng/l 25.0 104 10-160 1,1-Dichlorochane 24.8 1.0 ug/l 25.0 99 70-135 1,2-Dichlorochane 25.4 0.50 ug/l 25.0 102 60-150 1,1-Dichlorochene 24.3 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichlorochene 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichlorochene 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropene 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 100	1,3-Dichlombenzene	23.t	1.0	-	25.0		92	80-120			
Dichloroctifilucromethane 25.9 2.0 mg/l 25.0 104 10-160 1,1-Dichlorocthane 24.8 1.0 mg/l 25.0 99 70-135 1,2-Dichlorocthane 25.4 0.50 mg/l 25.0 102 60-150 1,1-Dichlorocthane 24.3 1.0 mg/l 25.0 97 75-135 cis-1,2-Dichlorocthane 24.5 1.0 mg/l 25.0 98 70-125 trans-1,2-Dichlorocthane 24.6 1.0 mg/l 25.0 98 70-130 1,2-Dichlorocthane 24.4 1.0 mg/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 mg/l 25.0 97 70-130 2,2-Dichloropropane 29.2 1.0 mg/l 25.0 117 65-150 1,1-Dichloropropane 25.5 1.0 mg/l 25.0 102 75-130 cis-1,3-Dichloropropane 25.1 0.50 mg/l 25.0 100 75-130	1,4-Dichlorobenzene	22.9	1.0	_	25.0		92	80-120			
t,2-Dichloroethane 25.4 0.50 ug/l 25.0 102 60-150 1,1-Dichloroethene 24.3 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichloroethene 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichloroethene 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropene 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 100 75-130	Dichlorodi@ucromethane	25.9	2.0		25.0		104	10-160			
t,2-Dichloroethane 25.4 0.50 ug/l 25.0 102 60-150 1,1-Dichloroethene 24.3 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichloroethene 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichloroethene 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropane 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 100 75-130	1,1-Dichloroethane	24.8	t_0	ug/l	25.0		99	70-135			
1,1-Dichloroethene 24.3 1.0 ug/l 25.0 97 75-135 cis-1,2-Dichloroethene 24.5 1.0 ug/l 25.0 98 70-125 trans-1,2-Dichloroethene 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropene 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 100 75-130	1,2-Dichlomethane	25.4	0.50		25.0		102	60-150			
cis-l,2-Dichloroethene 24.5 1.0 ug/l 25.0 98 70-125 trans-l,2-Dichloroethene 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichloropropane 24.4 1.0 ug/l 25.0 98 70-120 t,3-Dichloropropane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropene 25.5 1.0 ug/l 25.0 102 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 100 75-130	1,1-Dichkoroethene	24.3	1.0		25.0		97	75-135			
trans-1,2-Dichloroptopane 24.6 1.0 ug/l 25.0 98 70-130 1,2-Dichloroptopane 24.4 1.0 ug/l 25.0 98 70-120 t,3-Dichloroptopane 24.2 1.0 ug/l 25.0 97 70-130 2,2-Dichloroptopane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloroptopane 25.5 1.0 ug/l 25.0 t02 75-130 cis-1,3-Dichloroptopane 25.1 0.50 ug/l 25.0 t00 75-130	cis-1.2-Dichloroethene	24.5	1.0	-	25.0		98				
1,2-Dichloropropane 24.4 I.0 ug/l 25.0 98 70-120 1,3-Dichloropropane 24.2 I.0 ug/l 25.0 97 70-130 2,2-Dichloropropane 29.2 I.0 ug/l 25.0 117 65-150 1,1-Dichloropropene 25.5 I.0 ug/l 25.0 t02 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 t00 75-130	trans-1,2-Dichloroethene	24.6	1.0	_							
t,3-Dichloropropaue 24.2 t.0 ug/l 25.0 97 70-130 2,2-Dichloropropaue 29.2 t.0 ug/l 25.0 1t7 65-150 1,1-Dichloropropeue 25.5 1.0 ug/l 25.0 t02 75-130 cis-t,3-Dichloropropeue 25.1 0.50 ug/l 25.0 t00 75-130	1,2-Dichloropropane	24.4	1.0	-	25.0						
2,2-Dichloropropane 29.2 1.0 ug/l 25.0 117 65-150 1,1-Dichloropropene 25.5 1.0 ug/l 25.0 t02 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 t00 75-130	1,3-Dichleropropane	24.2	t.0	_							
1,1-Dichloropropene 25.5 1.0 ug/1 25.0 to2 75-130 cis-1,3-Dichloropropene 25.1 0.50 ug/1 25.0 to0 75-130	• •			•						ė.	
cis-1,3-Dichloropropene 25.1 0.50 ug/l 25.0 t00 75-130	• •	25.5		_							
				_							
				_							

Mar Analytical, Irvine is Roberts Project Manager

The results periodn only to the samples tested in the kaboratory. This report shall not be reproduced except in full, without written permission from Del Mor Analytical.

IOB1817 <Page 36 of 70>

17461 Derian Ave., Switz 100, Itvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Collem, CA 92124 (909) 379-4657 FAX (949) 370-1046 2481 Chesapeake Dr., Suite 805, San Diego, CA 92123 (859) 505-8556 FAX (848) 505-859 9830 South S1x St., Suite 8-120, Prevenic, AZ 85044 (868) 785-0043 FAX (480) 785-0853 (740) 785-3621 2506-5806 FAX (480) 785-3621 2506 FAX (480) 785-3621 25

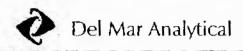
MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: 5B24012 Extracted: 02/24/0	<u>)5</u>										
LCS Analyzed: 02/24/2005 (5B240)	2-BS1)										
Ethylbenzene	25.1	0.50	ug∕1	25.0		100	80-120				
Hexachlorobutadiene	25.2	1.0	ug/I	25.0		101	65-140				
Isopropylbeazene	25.9	1.0	ug/l	25.0		104	75-125				
p-Isopropyltoluene	24.2	1.0	սջ∕1	25.0		97	75-125				
Methylene chloride	25.2	5.0	ug/I	25.0		101	60-135				
Methyl-tert-butyl Ether (MTBE)	25.4	1.0	ug/I	25.0		102	55-145				
Naphthalene	20.7	1.0	ug∕l	25.0		83	50-145				
n-Propylbenzene	25.7	1.0	11g/T	25.0		103	75-130				
Styrene	26.6	1.0	ug/I	25.0		106	80-135				
1, 1, 1,2-Tetrachloroethane	24.3	1.0	ug/l	25.0		97	70-145				1
1,1,2,2-Tetrachlorocthage	23.7	1.0	, ug∕l	25.0		95	60-135				
Tetrachleroethese	23.1	1.0	ug/I	25.0		92	75-125				
Tohiene	23.8	0.50	ug/l	25.0		95	75-120				
1,2,3-Trichlorobeuzene	22.0	1.0	ug/I	25.0		88	65-135			-	
1,2,4-Trichlorobenzenc	21.6	1.0	ug/I	25.0		86	70-140				
1,1,1-Trichloroethane	25.7	9.0	чg/1	25,0		103	75-140				
1,1,2-Trichloroethanc	24.6	1.0	ug/I	25.0		98	70-125				
Trichloroethene	23.8	1.0	ug/I	25.0		95	80-120				
Trichlorofluoromethane	25.8	1.0	ug/I	25.0		103	65-145				
1,2,3-Trichloropropage	24.5	1.0	υ φ/ 1	25.0		98	60-130				
1,2,4-Trimethylbenzzue	25.3	1.0	υg/I	25.0		101	75-125				
1,3,5-Tranethylbenzene	25.6	1.0	ug/I	25.0		102	75-125				
Vinyl chloride	26.2	0.50	ug/I	25.0		105	50-130				
o-Xylene	24.5	0.50	ug/I	25.0		98	75-125				
m.p-Xylenes	49.2	1.0	ug/l	500		98	75-120				
Surrogate: Dibromoftworomethane	25.1		ug/I	25.0		100	80-120				
Surrogate: Toluene-d8	24.0		ug/I	25.0		96	80-120				
Surrogate: 4-Bromofhwrobenzene	24.5		ug/I	25.0		98	80-120				

Del Mar Analytical, Irvine Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mor Analytical.

IOB1817 < Page 37 of 70>

17461 Derian Ave., Suite 100, finine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Codey Dr., Suite A. Colton, CA 92324 1959) 370-4667 FAX (949) 370-1046 9484 Chespetake Dr., Swite 80: San Dergo, CA 92123 (RDB) 570-8596 FAX (468) 565-9669 9830 Snish Stat St., Swite 81:20, Phoenia, AZ 85944 1480) 785-0043 FAX (400) 785-0651 2570 E. Suite 81:20, Phoenia, AZ 85944 1480) 785-0043 FAX (400) 785-0651

AWH Americas - Brea 3050 Saturn Ave., Suite 205

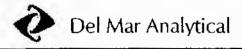
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qu∎Шleг
Batch: 5B24012 Extracted: 02/24/	<u>05</u>									
Matrix Spike Analyzed: 02/24/2005	5 (5B24012-MS1)				Source: I	OB1788-0	5			
Вспленс	25.3	0.50	ug/I	25.0	ND	101	70-120			
Bromobenzene	24.1	1.0	ng/l	25.0	ND	96	65-130			
Bromochloromethane	24.9	1.0	ug/l	25.0	ИD	100	65-140			
Bromodichloromethane	25.6	1.0	ag/l	25.0	ND	102	70-140			
Bromoform	24_1	1.0	ng/l	25.0	ND	96	55-140			
Bromomethane	29.8	1.0	ug/l	25.0	ND	119	50-145			
n-Butylbenzene	26.3	1.0	ug/l	25.0	ИD	105	70-140			
sec-Busylbenzenc	26.0	1.0	ug/I	25.0	ND	104	70-130			
tert-Butylbenzene	25.8	1.0	ug/l	25.0	ND	103	70-130			
Carbon tetrschloride	26.8	0.50	ug/l	25.0	ND	167	70-145			
probenzene	23.7	1.0	ug/l	25.0	ИD	95	80-125			
caloroethane	28.7	1.0	ug/I	25.0	ND	115	50-145			
Chloroform	27.0	1.0	ug/I	25.0	1.2	103	70-135			
Chloromethane	26.4	1.0	ug/l	25.0	ND	106	35-145			
2-Chlorosoluene	25,4	1.0	ug/l	25.0	ND	102	70-140			
4-Chlorotoluene	25.8	1.0	ug/I	25.0	ND	103	70-140			
Dibromochloromethane	25.0	1.0	ug/I	25.0	ND	100	65-145			
1,2-Dibromo-3-chloropropane	23.3	5.0	ug/l	25.0	· ND	93	45-155			
1,2-Dibromoctione (EDB)	24.9	1.0	ug/l	25.0	ND	100	70-130			
Dibromomethane	25.4	1.0	ug/l	25.0	ND	102	65-140			
1,2-Dichlombenzene	23.7	1.0	ug/I	25.0	ND	95	75-130			
1,3-Dichlorobenzene	23.8	1.0	ug/I	25.0	ND	95	75-130			
1,4-Dichlombenzene	23.4	1.0	ug/l	25.0	ND	94	80-120			
Dichlorodifluoromethane	26.5	2.0	ug/l	25.0	ND	106	10-160			
1,1-Dickloroethane	25.6	1.0	ug/l	25.0	ND	102	65-135			
1,2-Dichloroethane	26.5	0.50	ug/l	25.0	ND	106	60-150			
I,1-Dichloroethene	32.7	1,0	ug/I	25.0	8.5	97	65-140			
cis-1,2-Dichloroethene	25.7	1.0	ug/I	25.0	ND	103	65-130			
trans-1 2-Dickloroethene	25.9	1.0	ug/l	25.0	מא	104	65-135			
1,2-Dickleropropane	25.5	1,0	ug/l	25.0	ND	102	65.130			
1,3-Dichloropropane	24.9	1.0	ng/l	25.0	ИD	100	65-140			
2,2-Dichkropropane	31.6	1.0	ug/l	25.0	ND	126	60-150		N.	
1,1-Dichloropropene	26.6	1.0	ug/l	25.0	ND	106	65-140			
cis-1,3-Dichlaropropene	25.8	0.50	ug/l	25.0	ND	103	70-140			
trans-1,3-Dichloropropene	26.3	0.50	ug/l	25.0	ND	105	70-140			

Mar Analytical, Irvine is Roberts Project Manager

The results periotin only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 <Page 38 of 70>

17461 Derian Ave., Suite 100, Invine, CA 42614 (349) 261-1022 FAX (349) 266-3797 1074 E. Cooley Dt., Suite A. Colton, CA 92324 (909) 370-4647 FAX (949) 370-1046 9484 Chesapeake Dr., Suite, 805, San Diego, CA 92123 (858) 505-8596 TAX (858) 505-9689 9830 South 51st St., Suite 8-170, Phoenic, AZ 85044 (480) 285-0043 FAX (480) 785-0851 1520 E. Surset Rd. #3, Eas Vegas, NV 85120 (702) 758-3620 FAX (702) 758-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

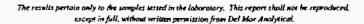
Brea, CA 92821

Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817


Sampled: 02/23/05


Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	DPD.	RPD Limit	Data Qu≄lifiers	
Batch: 5B24012 Extracted: 02/24/0		Marit	Olici	Level	Кенди	AIGE	Lights	KI D	*10146	Qualificia	
Baten, 3B24012 Elitacied, 02/24/0	<u>.,</u>										
Matrix Spike Analyzed: 02/24/2005	(5B24912-MS1)				Source: I	OB1788-0	·s				
Ethylbenzene	26.4	0.50	ug/I	25.0	ND	106	70-130				
Hexachlorobutadiene	26.8	1.0	บอ/ไ	25.0	ND	107	65-140				
Isopropyibenzene	26.9	3.0	ug/I	25.0	ND	801	70-130				
p-Isopropyltoluene .	24.9	1.0	ug/l	25.0	ND	001	70-130				
Methylene chloride	25.8	5.0	ug/l	25.0	ND	103	60-135				
Methyl-tert-butyl Ether (MTBE)	25.3	1.0	ug/l	25.0	ND	101	50-155				
Naphthalene	22.1	1.0	ug/l	25.0	ND	88	50-150				
в-Рторујвендеве	27.1	0.1	ug/l	25.0	ND	108	70-135				
Styrene	26.5	1.0	ug/I	25.0	ND	106	55-145				
1,1,1,2-Tetrachlorocthone	25.4	1.0	υρЛ	25.0	ND	102	70-145				
1,1,2,2-Tetrschloroethane	25.2	1.0	це/І	25.0	ND	101	60-145				7
Terrachloroethene	52.3	1.0	ug/l	25.0	32	81	70-139				
Toloene	24.9	0_50	ug/l	25.0	ND	100	70-120				
1,2,3-Trichlerobenzene	23.6	0.1	ug/l	25.0	ND	94	60-140				
1,2,4-Trichlorobenzene	23.3	1.0	ug/l	25.0	ND	93	60-140				
1,1,1-Trichloroethane	28.0	1.0	ug/I	25.0	1.1	801	75-140				
1,1,2-Trichloroethane	25.3	1.0	ug/I	25.0	ND	101	60-135				
Trichloroethene	40.6	1.0	ug/I	25.0	19	86	70-125				
Trichlorofluoromethanc	27.0	1.0	цgЛ	25.0	ND	108	55-145				
1,2,3-Trichloropropage	24.0	1.0	ug/I	25.0	ND	96	55-140				
1,2,4-Trimethylbenzene	25.7	1.0	ug/l	25.0	ND	103	60-125				
1,3,5-Trimethylbenzene	26.3	1,0	ug/l	25.0	ND	105	70-130				
Virryl chloride	27.3	0.50	Ng/I	25.0	ND	109	40-135				
o-Xylene	25.4	0.50	ug/l	25.0	ND	102	65-125				
m.p-Xylenes	51,6	1.0	ug/l	50.0	ND	103	65-130				
Surrogate: Dibromofluoromethane	25.3		ug/l	25.0		101	80-120				
Surrogate: Toluene-d8	24.3		ие/Т	25.0		97	80 -120				
Surrogate: 4-Bromofluorobenzene	25.2		#g/T	25.0		101	80-120				

17461 Derian Ave., Saite 100, Irvine, CA 92614 (949) 261-1922 FAN (949) 260-3297 1014 E Cooley D., Seite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chatapeako D., Svike 805, San Degn, CA 92123 1834 505-856 FAX (858) 505-9689 9830 Snich 51st St., Suite 8-120, Phoenia, AZ 85044 14409 785-0043 FAX (460) 785-0851 2520 E. Suitset Rd. #3, Las Vegas, FAX 89120 (2702) 798-3620 FAX 1702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

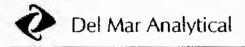
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Levei	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24012 Extracted: 02/24	<u>/05</u>									
Matrix Spike Dup Analyzed: 02/2	4/20 0 5 (5B24012-M	ISD1)			Source: I	OB1788-0	5			
Benzene	26.0	0,50	ug/l	25.0	ND	104	70-120	3	20	
Bromobenzeuc	25.0	1,0	ug/I	25.0	ИD	001	65-130	4	20	
Bromochloromethane	26.t	0,1	ug/I	25.0	ИD	104	65-140	5	25	
Bromodichloromethane	26.0	1.0	սց/1	25.0	ND	104	70-140	2	20	
Bromoform	25,3	1.0	ug/l	25.0	ND	101	55-140	5	25	
Bromomethane	30.5	0.1	ug/l	25.0	ND	122	50-145	2	25	
n-Butylbenzene	26.2	1.0	ug/I	25.0	ND	105	70-140	0	20	
sec-Butythenzene	25.9	1.0	աց∕Ո	25.0	ND	104	70-130	0	20	
tert-Burylbenzeue	25.8	0.1	ug/l	25.0	ND	t03	70-130	0	20	
Carbon tetrachloride	26.7	0.50	սց∕1	25.0	ND	t 07	70-145	0	25	
probenzene	24.1	0.1	սց∕մ	25.0	ND	96	80-125	2	20	
doroethane	28.9	0.1	ug/I	25.0	ND	116	50-145	1	25	
Chloroform	27.1	1_0	ug/l	25.0	1.2	104	70-135	0	20	
Chloromethane	27.0	0.1	ug/l	25.0	ND	108	35-145	2	. 25	
2-Chlorotoluene	25.5	1.0	ug∕l	25.0	ŒΝ	102	70-140	0	20	
4-Chlorotolucae	25.7	1.0	ug/I	2 5.0	ИD	103	70-140	0	20	
Dibromochloromethane	25.8	1.0	ug/i	25.0	ND	601	65-145	3	25	
t,2-Dibromo-3-chloropropane	26 0	5.0	ug/li	25.0	ND	104	45-155	11	30	
1,2-Dibromoethane (EDD)	25.9	0.1	ug/I	25.0	ИD	104	70-130	4	25	
Dibromomethane	26.5	0.1	ug/I	25.0	ND	301	65-140	4	25	
t,2-Dichlorobenzene	23.8	0.1	ug/l	25.0	ND	95	75-130	0	20	
1,3-Dichlorobenzene	23.9	0.1	ug/l	25.0	ND	96	75-130	0	20	
1,4-Dichlorobenzene	23.5	1.0	ug/l	25.0	ND	94	80-120	0	20	
Dichlorodiffuoromethase	26.7	2.0	ug/I	25.0	ND	107	10-160	1	30	
1,1-Dichloroethage	26.3	1.0	ug/I	25.0	ND	105	65-135	3	20	
1,2-Dichloroethane	27.1	0.50	ug/li	25.0	ND	801	60-150	2	20	
1,1-Dichloroetheae	32.7	1.0	п8/1	25.0	8.5	97	65-140	0	20	
cis-1,2-Dichloroethene	25.7	1.0	ug/I	25.0	ND	103	65-130	0	20	
trans-1,2-Dichloroethene	26.t	1.0	ug/I	25.0	ND	104	65-135	1	20	
1,2-Dichloropropane	25.8	0.1	ug/l	25.0	ND	103	65-130	1	20	
t,3-Dichloropropane	25.8	1.0	ug/l	25.0	ND	103	65-140	4	25	
2,2-Dichkropropane	32.0	1.0	ug/l	25.0	ND	128	60-150		. 25	
1,1-Dichloropropene	27.2	0.1	ug/l	25.0	סא	109	65-140	2	20	
cis-1,3-Dichloropropene	26.9	0.50	աջ/1	25.0	ND	108	70-140	4	20	
trans-1,3-Dichloropropene	27.4	0.50	ug/l	25.0	ND	011	70-140	4	25	
ama-1,5-zacinotopropene	47.7	0,50	ag.	23.0	1.0	110	10-1-40	•	23	

Mar Analytical, Irvine s Roberts Project Manager

The results permin only to the samples tested in the loboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 <Page 40 of 70>

17461 Devian Ave., Suite 100, Invine, CA 92614, 6949; 261-1022, FAX (649) 260-1297.
1014 E. Croicey Dr., Suite A., Calson, CA, 92124, 6909; 370-1467, FAX (649) 370-1046.
9484 Chesapeuke Dr., Suite 805, Sun Diego, CA 92124, (650) 505-6696, FAX (650) 505-6899.
9830 South 51st St., Suite 81120, Phoenic, AZ, R5044, (480) 785-0041, FAX (480) 786-0851.
2520 E. Suroet Rd. #3, (as Vrgan, NY 89120, (702) 798-3620, FAX (702) 798-3621.

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	•
tch: 5B24012 Extracted; 02/24/0	<u>5</u>									
trix Spike Dup Analyzed: 02/24/	20 0 5 (5B24012-N	(SD1)			Source: 1	OB1788-0	5			
sylbenzene	26.6	0.50	രള/ി	25.0	ND	106	70-130	1	20	
xachlorobutadiene	26.2	1.0	ug/l	25.0	ИD	105	65-140	2	20	
ргоруївстиств	27.3	1.0	սջ /∣	25.0	ND	109	70-130	1	20	
sopropyltoluene	24.8	1.0	ug/I	25.0	ND	99	70-130	0	20	
drylene chloride	26.1	5.0	ug/l	25.0	ND	104	60-135	1	20	
thyl-ten-butyl Ether (MTBE)	27.0	1.0	ug/l	25.0	ND	108	50-155	7	25	
phthalene	23.9	1.0	ug/l	25.0	ND	96	50-150	8	30	
ropylbenzene	27.0	1.0	ug/l	25.0	ND	108	70-135	0	20	
rene	27.5	1.0	ug/I	25.0	ND	110	55-145	4	30	
1,2-Tetrachkoroethme	26.0	1.0	ug/I	25.0	ND	104	70-145	2	20	
2,2-Tetrachloroethane	26.4	1.0	ug/1	25.0	ND	106	60-145	5	30	
nchloroethene	51.3	1.0	ն <u>ա</u> /1	25.0	32	77	70-130	2	20	
uene	25.6	0.50	цеЛ	25.0	ИD	102	70-120	3	20	
3-Trichlorobenzenc	24.6	1.0	ngA	25.0	ND	98	60-140	4	20	
4-Trichkorobenzene	23.9	1.0	ugA	25.0	ИD	96	60-140	3	20	
1-Trichloroethane	28.4	1.0	ng/l	25.0	1.1	109	7 5 -140	1	20	
2-Trichloroethane	26.6	1.0	սջ/(25.0	ND	106	60-135	5	25	
chloroethene	41.0	1.0	ug/I	25.0	19	83	70-125	1	20	
chloroflucromethane	26,7	1.0	ug/I	25.0	ND	107	55-145	1	25	
3-Trichloropropane	25.6	1.0	ug/l	25.0	ND	102	55-140	6	30	
,4-Trimethylbenzene	26.3	1.0	ag∕l	25.0	QИ	105	60-125	2	25	
,5-Trimethylbenzene	26.8	1.0	иg/I	25.0	ИD	107	70-130	2	20	
eyl chloride	27.3	0.50	ug/l	25.0	ND	109	40-135	0	30	
ylene	25.6	0,50	ug/I	25.0	ND	102	65-125	1	20	
-Xylenes	51.8	1.0	ug/I	50.0	ND	104	65-130	0	25	
rogate: Dibromofluoromethane	25. 5		ug/l	25.0		102	80-120			
rogate: Toluene-d8	24.2		ug/I	25.0		97	80-120			
rogate: 4-Bromoffuorobenzene	24.7		ug/l	25.0		99	80-120			

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022. FAX (949) 260-3297. 1014 E. Corbry Du, Smite A, Culton, CA 92124 (909) 370-4667. FAX (949) 370-1046. 9484 Chruspeide Dr., Suite 805, San (Xego, CA 92123 (8)48) 505-8659. FAX (858) 505-8689. 9810 South 518 St., Suite 8 120, Phoreiro, AZ 65044. HBD; 765-0043. FAX (460) 765-0651. 2520 E. Suites Rit. #3, Fax Veger. NW 89120. (702) 798-3420. FAX (702) 798-3621.

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

METHOD BLANK/OG DATA

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

- Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
· ·		Limit	Units	Lever	Mesuit	7. KEC	Limits	Krb	Limit	Опятных
Batch: 5B24014 Extracted: 02/24/05										
Blank Analyzed: 02/24/2005 (5B2401	4-BLK1)									
Benzene	ND	0.50	ug/l							
Bromobenzeue	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	ug/1							
Bromodichloromethane	ND .	1.0	ug/l							
Bromoform	ND	1.0	ug/l							
Bromomethane	ND	1.0	ug/l							
B-Butylbenzene	ND	1.0	ug/l							
sen-Butylbenzene	ND	1.0	ug/I							
tert-Butylbenzene	ND	1.0	ug/I							
_Carbon tetrachloride	ND	0.50	ug/I							
lorobenzene	ND	0.1	ug/l							
chloroethane	ND	1.0	ug/l							
Chleroform	ND	1.0	ug/I							
Chloromethane	ND	1.0	ug/l							
2-Chloretoluege	ND	1.0	ug/l							
4-Chiorotolnene	ND	1.0	ug/l							
Dibromochkromethane	ND	1.0	ug/I							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/I							
1,2-Dibromoethane (EDB)	ND	1.0	սց/1							
Dibromomethane	ND	1.0	ug/l							
(,2-Dichlorobenzene	ND	1.0	ug/I							
1,3-Dichlorobenzene	ND	1.0	ug/l							
1,4-Dichlorobenzene	ND	1.0	ug/l							
Dichlorodiflooremethene	ND	2.0	սը∕Ո							
1,1-Dichloroethane	ND	1.0	ug/l							
t 2-Dichlorocthane	ND	0.50	սջ/1							
1,1-Dichkroethene	ИD	1.0	ug/I							
cis-1,2-Dichloroethene	ND	1.0	ug/l							
trans-1,2-Dichloroetheue	ND	1.9	ug/l							
1,2-Dichforogropane	ND	1.0	ug/I							
1,3-Dichloropropane	ND	1.0	ug/t							
2.2-Dichloropropane	ND	t.o	ug/l							
1,1-Dichloropropene	ND	1.0	ug/l							
cis-1,3-Dichloropropene	ND	0.50	±g/1							
trans-1,3-Dichloropropene	ND	0.50	ug/l							

17461Denian Ave., Solve 130, Livine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Couley Ch., Suite A., Cultun, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chempeske Dr., Suite 865, San Diego, CA 92123 (858) 305-8596 FAX (866) 505-9669 9630 Souds S14 St., Suite 8-120, Phoenia, AZ 85044 (4807/35-0043 FAX (480) 785-0651 3730 E. Suiser Rd. #1, Las Vegas, NY 89130 (702) 798-3620 FAX (702) 798-3631

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

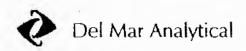
1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)


		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Levei	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24014 Extracted: 02/24/0	<u>5</u>									
Blank Analyzed: 02/24/2005 (5B240	14-BLK1)									
Ethylbenzene	ND	0.50	ag/l							
Hexachlorobutadiene	ND	1,0	ug/l							
Isopropylbeazene	ND	1,0	ug/l							
p-lsopropyltoluene	ND	1.0	սց/հ							
Methylene chloride	ND	5.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
Na ph thalone	ND	1.0	ug∕1							
n-Propylbenzene	ND	1.0	ug/I							
Styrene	ND	1.0	ug/I							
1,1,1,2 Tetrachloroethuse	ND	1.0	ng/I							
1,1,2,2-Tetrachloroethane	ND	1.0	ug/I							
Tetrachloroethene	ND	1.0	ug/I							
Toluene	ND	0.50	ug/I							
1,2,3-Trichlorobenzene	ND	1.0	ug/I						X-	
1,2,4-Trichlorobenzese	ND	1.0	ug/I							
1,1,1-Trichtoroethane	ND	1.0	ug/I							
1,1,2-Trichloroethane	ND	1.0	ug/I							
Trichleroethane	ND	1.0	ag/I							
Trichlorofluoromethene	ND	1.0	ug/l							
1,2,3-Trichkoropropene	ND	1.0	e g∕l							
1,2,4-Trimethylbenzene	ND	1.0	ug/l							
1,3,5-Trimethylbenzene	ND	1.0	ng/I							
Visyl chloride	ИÐ	0.50	ug/l							
o-Xylene	ND	0.50	ug/l							
m_p-Xylenes	ND	1.0	ug/I							
Surragate: Dibromofluoromediume	25.0		wg/1	25.0		100	80-120			
Surrogate: Toluene-d8	27.3		2 8∕1	25.0		109	80-120			
Surrogate: 4-Bromofluoroberzene	25.8		wg/I	25.0		103	80-120			

Del Mar Analytical, Irvine Chris Roberts

Project Manager

The results pertain only to the samples tested in the kaboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 <Page 43 of 70>

17461Derüm Avr., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92124 (949) 370-4647 FAX (949) 370-1046 9484 Cheropeake Pr., Suite 805, San Ulegu, CA 92123 (858) 505-6594 FAX (856) 505-9669 9830 South 514 R. Seite 8-120, Procesis, AZ 85044 (4100, 765-0043 FAX (460) 765-0651 2500 F. Suite 8-120, Procesis, AZ 85044 (4100, 765-0043 FAX (460) 765-0651 2500 F. Suite 8-120, Procesis, AZ 85041 (4100, 765-0043 FAX (4702) 796-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

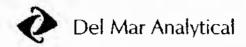
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1020.6860681

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Lin
Batch: 5B24014 Extracted: 02/24	<u>105</u>								
LCS Analyzed: 02/24/2005 (5B240	14-BS1)								
Benzene	24.6	0.50	ug/l	25.0		98	70-120		
Bromobenzene	25.5	0.1	ઘદુ∕ી	25.0		102	021-08		
Bromochloromethane	24.7	10	ug/l	25.0		99	65-135		
Bremodichleromethase	23.6	1.0	ug/l	25,0		94	70-140		
Bromoform	19.2	1.0	ug/1	25.0		77	251-55		
Bromomethage	28.3	1.0	υ ջ /l	25.0		113	60-140		
1-Butylbenzene	25.4	1.0	ug/l	25.0		102	75-130		
ec-Butylbenzese	24.3	0.1	ug/I	25.0		97	75-125		
ert-Butylbenzene	25.2	1.0	ug/l	25.0		101	75-125		
Carbon tetrachloride	25.8	0,50	ug/l	25.0		103	70-140		
orobenzene	24_5	0.1	ug/l	25.0		98	80-125		
doroethane	29,5	1.0	ug/l	25.0		118	60-145		
Chloroform	25.0	0.1	ઘg ∕l	25.0		001	75-130		
Chloromethane	24.5	0.1	ug/l	25.0		98	40-145		
-Chlorotoluene	24.8	1.0	ug/l	25.0		99	75-125		
-Chlorotoluene	24.8	1.0	ug/I	25.0		99	75-125		
)ibromochloromethane	25.0	Q 1	ug/I	25.0		001	65-145		
,2-Dibromo-3-chloropropane	17.6	5.0	υg/I	25.0		70	50-135		
,2-Dibramoethane (EDB)	23.7	1.0	ug/l	25.0		95	75-125		
bibromomethane	22.6	0.1	ug/l	25.0		90	75-130		
2-Dichlorobenzene	24.4	1.0	บร/1	25.0		98	80-120		
3-Dichlorobenzene	24.4	0.1	ug/l	25,0		98	80-120		
4-Dichlorobenzene	24.1	0.1	ug/l	25.0		96	80-120		
Dichlorodi (horomethase	22.2	2.0	ug/I	25.0		89	061-01		
,1-Dichloroethane	25.1	1.0	ug/I	25.0		001	70-135		
,2-Dichloroethane	24.1	0.50	ug/I	25.0		96	60-150		
,1-Dichloroethene	25.6	0.1	ug/l	25.0		102	75-135		
is-1,2-Dichlaroethese	25.2	1.0	ug∕l	25.0		101	70-125		
rans-1,2-Dichforoetheae	25.8	0.1	υg/1	25.0		103	70-130		
,2-Dichloropropane	25.4	0.1	ug/)	25.0		102	70-120		
,3-Dichloropropane	24.0	1.0	ug/l	25.0		96	70-130		
,2-Dichloropropage	25.3	0,1	ug/I	25.0		101	65-150		
, I-Dichloropropene	26.6	0.1	ug/I	25.0		106	75-130		
cis-1,3-Dichloropropene	26.2	0.50	tèg∕I	25.0		105	75-130		
trans-1_3-Dichloropropene	25.3	0.50	0g/1	25.0		10}	75-135		

Mar Analytical, Irvine is Roberts Project Manager

The results pertain only to the samples rested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 <Page 44 of 70>

17461 Derlan Avel, Suite 190, Ivanie, CA 93614 (849) 261-1022 FAX (949) 260-3397 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chelagorale Dr., Suite 805, Sain Diego, CA 92123 (858) 305-1596 FAX (458) 505-9669 9899 Sorah Stir St., Suite 8-170, Phorenia, AZ 85044 (440) 785-0043 FAX (480) 785-0851 2500 E. Simme Rd. #3., Cas Vegot, NV 89120 (702) 798-1620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

Brea, CA 92821 Attention: Lisa Hall

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

- Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qua E fiers	
Batch: 5B24014 Extracted: 02/24/0		2								\	
LCS Analyzed: 02/24/2005 (5B2401	4-BS1)										
Ethylbenzeae	26.3	0.50	ug∕I	25.0		105	80-120				
Hexachlorobutadiene	24.8	1.0	11g/I	25.0		99	65-140				
Isopropy/benzene	26.1	1.0	ug/I	25,0		104	75-125				
p-Isopropyltolucue	24.4	1.0	ug/1	25.0		98	7 5 -125				
Methylene chloride	24.4	5.0	ug∕1	25.0		98	60-135				
Methyl-text-butyl Ether (MTBE)	24.3	1.0	υg∕l	25.0		97	55-145				
Naphthalene	23.7	1.0	ug/I	25.0		95	50-145				
n-Propylbenzene	24.8	1.0	ug/I	25.0		99	75-130				
Sryrene	27.3	1.0	ug/I	25.0		109	80-135				
1,1,1,2.Tetrachloroethane	26.1	1.0	ug/l	25.0		104	70-145				
1,1,2,2-Tetrachloroethane	21.5	1.0	ng/i	25.0		86	60-135				
Tetrachloroethene	25.6	1.0	ng/i	25.0		102	75-125				
Toluene	25.1	0.50	ug/l	25.0		100	75-120				
1,2,3-Trichlombenzene	24.7	1.0	ug/i	25.0		99	65-135				
1,2,4-Trichtorobenzene	26.1	1.0	ug/I	25.0		104	70-140				
1,1,1-Trichloroethane	25.7	1.0	ug/]	25.0		103	75-140				
1,1,2-Trichloroethane	23.2	Ωſ	ug/I	25.0		93	70-125				
Trichloroethene	26.1	TD	ug/l	25.0		104	80-120				
Trichlorofluoromethane	24.8	ıΔ	ug∕l	25.0		99	65-145				
1,2,3-Trichloropropase	22.0	1.0	ug/1	25.0		68	60-130				
1,2,4-Trimethylbenzene	25.0	1.0	υg∕l	25.0		100	75-125				
1,3,5-Trimethylbentene	26.0	T.D	ug/I	25.0		104	75-125				
Vinyl chloride	26.4	0.50	ug∕l	25.0		106	50-130				
o-Xylene	24.1	0.50	ug/l	25.0		96	75-125				
m,p-Xyiçnes	48.2	1.0	ug/I	50.0		96	75-120				
Surrogate: Dibromofhioromethane	25.4		ug∕f	25.0		102	80-120				
Surrogate: Tohuene-d8	26.7		wg/l	25.0		107	80-120				
Surroguie: 4-Bromofluorobenzene	26.1		ug/f	25.0		104	80-120				

Dei Mar Analytical, Irvine Chris Roberts Project Manager

The results persoin only to the samples tested in the laboratory. This report shall not be reproduced, except to full, without written permission from Del Mar Analytical.

10B1817 < Page 45 of 70>

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-7022 EAX (949) 260-7297 1074 E. Cooley Dr., Saste A. Colton, CA 92324 (109) 370-4667 EAX (949) 370-1046 9484 Chesspeake Dr., Suite 005, San Diego, CA 92123 (858) 355-8596 FAX (858) 350-9659 9830 South 514 St., Suite 8-120, Phoenia, AZ 85044 (4807 785-0043 EAX (4807 785-0851 2570 E. Santet 84: 43, Las Vegas, NV 89120 (2027 798-3620 FAX (7207 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

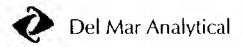
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24014 Extracted: 02/24	1 <u>705</u>									
Matrix Spike Analyzed: 02/24/20	05 (5B24014-MSI)				Source: 10	OB1817-0	4			
Benzone	26.0	0_50	ug/I	25.0	ND	104	70-120			
Bromobenzene	27.0	1.0	ug/I	25.0	ND	108	65-130			* -
Bromochloromethane	26.6	0.1	սց/1	25.0	ND	106	65-140			-81
Bromodichloromethane	26.0	1.0	ug/I	25.0	ND	104	70-140			
Bromoform	21.7	1.0	ug/I	25.0	ИD	87	55-140			
Bromomethane	31.4	1.0	ug/I	25.0	ND	126	50-145			
a-Butylbeazene	27.0	1.0	ug/l	25.0	ND	108	70-140			
sec-ButyIbenzene	25.5	1.0	ug/I	25.0	ИD	102	70-130			
tert-Burytbenzene	26.6	1.0	ъд/1	25.0	ND	106	70-130			
Carbon tetrachloride	27.6	0.50	ug/I	25.0	ND	110	70-145			
orobenzene	26.1	1.0	ug/I	25.0	ND	104	80-125			
aloroethane	32.8	1.0	ug/]	25.0	ND	131	50-145			-
Chloroform	27.6	1.0	ug/I	25.0	0.47	109	70-135			
Chloromethane	26.9	1.0	υg/I	25.0	ND	t 08	35-145			
2-Chlorotoluene	25.8	1.0	ug/I	25.0	ND	103	70-140			
4-Chlorotoluene	26.8	1.0	ug/I	25.0	ND	107	70-140			
Dibromochioromethane	27.2	1.0	ug/I	25.0	ND	109	65-145			
1,2-Dibrome-3-chloropropane	19.9	5.0	ug/I	25.0	ND	80	45-155			
1,2-Dibromoethane (EDR)	26.2	t.0	ug/I	25.0	ND	105	70-130			
Dibromomethene	25.1	1.0	ug∕l	25.0	ND	100	65-140			
1.2-Dichlorobenzene	26.4	1.0	ug/I	25.0	ND	106	25-130			
t,3-Dichlorobenzene	26.2	1.0	ug/I	25.0	ND	105	75-130			
1,4-Dichlorobenzene	25.7	t.0	ug/I	25.0	ND	103	80-120			
Dichlorodifluoromethane	39,4	2.0	u <u>¢</u> /1	25.0	14	102	10-160			
1,1-Dichloroethane	30.5	1.0	ug/I	25.0	3.8	107	65-135			
1,2-Dichloroethane	27.6	0.50	ug/I	25.0	1.3	105	60-150			
t,1-Dichloroethene	28.4	1.0	ug/I	25.0	ND	114	65-140			
cis-1,2-Dichloroethene	53.1	1.0	ug/l	25.0	29	96	65-130			
trans-1,2-Dichloroethene	27.6	t.0	tig/l	25.0	ND	110	65-135			
1,2-Dichloropropane	27.9	1.0	ug/l	25.0	0.59	109	65-130			
1,3-Dichleropropane	26.4	1.0	ug/I	25.0	ND	106	65-140			
2.2-Dichloropropase	29.1	1,0	че/1	25.0	ND	116	60-150		14	
t,1-Dichloropropene	28.3	1.0	ug∕l	25.0	ND	113	65-140			
cis-1,3-Dichloropropene	28.3	0.50	ug∕l	25.0	ND	t13	70-140	8		
trans-1,3-Dichloropropene	28,0	0.50	սջ/I	25.0	ND	112	70-140			

Mar Analytical, Irvine s Roberts Project Manager

The results persoin only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Max Analytical.

1081817 <Page 46 of 70>

17461Derian Ave., Suite 100, Invine, CA 93614 (849) 261-1022 FAX (949) 260-3292 1014 E. Cooliny Or., Suite A, Collun, CA 92324 (809) 370-4667 FAX (949) 370-1046 (940) Averageals Dr., Suite 805, Sain Diego, CA 93133 (838) 805-8596 (AX (949) 8030 South 574 St. (848) 81-100, Phornios, AZ 85044 (480) 745-043 FAX (480) 745-0851 2570 E, Suite 8-120, Phornios, AZ 85044 (480) 745-043 FAX (480) 745-0851 2570 E, Suite 8-120, Phornios, AZ 85044 (480) 745-043 FAX (480) 745-0851

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

1890933.05

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting	·	Spike	Source	*******	%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: 5B24014 Extracted: 02/24/0	<u>15</u>										
Matrix Spike Analyzed: 02/24/2005	(5B24014-MS1)				Source: I	OB1817-0	4				
Ethylbenzene	27.6	0.50	ug/I	25.0	ND	110	70-130				
Hexachlorobutadiene	25.3	1.0	ug/l	25.0	ND	101	65-140				
lsopropylbenzene	27.6	1.0	ug/I	25.0	ND	110	70-130				
p-Isopropyltoluene	25.9	1.0	ug/I	25.0	ND	104	70-130				
Methylene chloride	27.2	5.0	ug/l	25.0	ND	109	60-135				
Methyl-tert-buryl Ether (MTBE)	27.3	1.0	ug/[25.0	ND	109	50-155				
Naphthalenc	25.6	1.0	ug/l	25.0	ND	102	50-150				
n-Propylbenzene	26.2	1.0	ug/l	25.0	ND	105	70-135				
Styrene	29.0	1.0	ug/i	25.0	ND	116	\$5 -145				
1,1,1,2-Terrachlorocthane	28.1	1.0	սց/Լ	25.0	ND	112	70-145				1
1,1,2,2-Tetrachloroethane	25.}	1.0	ug/l	25.0	ND	100	60-145				
Tetrachloroethene	40_3	1.0	ug/l	25.0	16	97	70-130				
Toluene	26.4	0.50	ug/I	25.0	ND	106	70-120				
1,2,3-Trichlorobenzene	26.\$	1.0	ug/ī	25.0	ND	107	60-140			1 =	
1,2,4-Trichlorobenzene	27.9	1.0	ug/ī	25.0	ND	112	60-140				
1,1,1-Trichioroethane	27.9	1.0	ug/I	25.0	ND	112	75-140				
1,1,2-Trichloroethane	25.9	1.0	ug/I	25.0	ND	104	60-135				
Trichloroethene	37.9	1.0	ug/I	25.0	12	104	70-125				
Trichlorofluorosethane	26.0	1.0	ug/I	25.0	ND	104	55-145				
1,2,3-Trichloropropane	24.7	1.0	ug/I	25.0	ND	99	55-140				
1,2,4-Trimethylbenzene	26.2	1.0	ug/l	25.0	ND	105	60-125				
1,3,5-Trimethylbenzene	27.4	1.0	ug/l	25.0	ND	110	70-130				
Vinyl chloride	27.9	0.50	υg/l	25.0	ND	112	40-135				
o-Xylene	25.5	0.50	ug/l	25.0	ND	102	65-125				
m,p-Xylenes	50.8	1.0	ug/l	50.0	ND	102	65-130				
Surrogate: Dibromofluoromethane	26.2		ug/I	25.0		105	80-120				
Surrogate: Tolvene d8	26.9		ug/ī	25.0		108	80-120				
Surrogate: 4-Bromofluoroberzene	26.6		ug/I	25.0		106	80-120				

17461Derian Aver, Sude 100, Brine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Ch., Sade A. Collor, CA 92124 (909) 370-4667 FAX (949) 370-1046 PAX (949) 370-1046 PAX (949) 370-1046 PAX (949) 370-1046 PAX (949) 370-1049 PAX (949

MWH Americas - Brea

3050 Saturn Ave., Suite 205

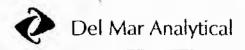
Brea, CA 92821 Attention: Lisa Half Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting			Spike Source				RPD	Data	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
	Batch: 5824014 Extracted: 02/24/	<u>05</u>									
	Matrix Spike Dup Analyzed: 02/24	1/2005 (5B24014-M	ISD1)			Source: I	OB1817-0	4			
	Benzene	26.0	0.50	ug/I	25.0	ND	104	70-120	0	20	
	Bromobenzene	27.2	1.0	ug/I	25.0	ND	109	65-130	1	20	
	Bromochloromethane	26.2	1,0	ug/I	25.0	МD	105	65-140	2	25	
	Bromodichloromethane	25.5	1.0	ug/I	25.0	ND	102	70-140	2	20	
	Втопюбога	19.9	1.0	ug/I	25.0	ND	80	55-140	9	25	
	Bromomethane	31.3	1.0	ug/I	25.0	ND	125	50-145	0	25	
	o-Butylbenzene	27.4	1.0	ug/I	25.0	ND	110	70-140	1	20	
	sec-Butylbenzene	26.3	0.1	ug/1	25.0	ND	105	70-130	3	20	
	tert-Butylbenzene	26.9	1.0	ug/l	25.0	ND	108	70-130	1	20	
	Carbon tetrachloride	27.6	0.50	ug/I	25.0	ND	110	70-145	0	25	
	orobenzene	26.0	1.0	ug/l	25.0	ND	104	80-125	0	20	
	derocthage	32.8	0.1	ug/I	25,0	ND	131	50-145	0	25	
	Chloroform	27.8	1.0	ug/f	25.0	0.47	109	70-135	1	20	
	Chloromethane	26.7	0.1	ng/l	25.0	МD	107	35-145	1	25	
	2-Calorotolucue	26.9	0.1	og/I	25.0	ND	108	70-140	4	20	
	4-Chlorotoluene	27.0	0.1	ng/I	25.0	ND	801	70-140	1	20	
	Dibromochloromethane	25.8	1.0	ug/l	25.0	ND	103	65-145	5	25	
	1,2-Dibromo-3-chloropropage	17.2	5.0	ng/l	25.0	ND	69	45-155	15	30	
	1,2-Dibromoethane (EDB)	24.5	1.0	ug/I	25,0	МD	98	70-130	7	25	
	Dibromomethane	24.1	1.0	ug/l	25.0	ND	96	65-140	4	25	
	1,2-Dichlerobenzene	26.2	0.1	ug/I	25.0	ND	105	75-130	1	20	
	1,3-Dichlorobenzene	26.3	1.0	ug/l	25.0	МD	105	75-130	0	20	
	1,4-Dichlorobeazene	26.0	1.0	ug/I	25.0	ND	104	\$0-120	1	20	
	Dichlorodifhoromethane	39.0	2.0	ug/1	25.0	14	100	10-160	1	30	
	1,1-Dichloroethane	30.9	1.0	ug/I	25.0	3.8	108	65-135	ŀ	20	
	1.2-Dichleroethane	26.4	0.50	ug/I	25.0	1.3	001	60-150	4	20	
	1,1-Dichloroethene	28.6	1.0	ug/l	25.0	ND	114	65-140	1	20	
	cis-1,2-Dichloroethene	53.2	1.0	bg/I	25.0	29	97	65-130	0	20	
	trans-1,2-Dichloroethene	28.0	0.1	υg/I	25.0	ND	112	65-135	1	20	
	1,2-Dichloropropane	27.8	1.0	ug/I	25.0	0.59	109	65-130	0	20	
	1.3-Dichloropropane	24.8	1.0	eg∕1	25.0	ND	99	65-140	6	25	
	2,2-Dichloropropane	28.0	1.0	ug/I	25.0	ND	112	60-150	4		
	1,1-Dichloropropene	28.3	1.0	ug/I	25.0	ND	113	65-140	0	20	
	cis-1,3-Dichloropropene	27.9	0_50	ug/I	25.0	ND	112	70-140	1	20	
	truns-1,3-Dichloropropene	27.1	0.50	ug/I	25.0	ND	108	70-140	3	25	
				0							

Mar Analytical, Irvine ris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1817 < Page 48 of 700

1746) Derian Ave, Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1814 E. Cooky Dr., Suite A. Colton, CA 92124 (909) 170-4667 FAX (949) 370-1046 9484 Obespeake Dr., Suite 805, San Orego, CA 92123 (658) 505-9596 FAX (854) 363-9599 9830 South S1x St., Suite B.170, Phoenia, AZ 85044 (448) 765-0043 FAX (480) 785-0851 250 E. Sunset Rd. & J., Las Vegas, NV 89120 (702) 798-3420 FAX (702) 798-3421

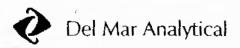
MWII Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817


Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualiflers
Batch: 5B74014 Extracted: 02/24/05		*								
Matrix Spike Dup Analyzed: 02/24/20	05 (5B24014-N	(SD1)			Source: I	OB1817-0	4			
Ethylbenzene	27.6	0.50	սց/J	25.0	ND	110	70-130	0	20	
Hexachlorobutadiene	26.2	1.0	ug/l	25.0	ND	105	65-140	3	20	
Isopropylbenzene	27.8	1.0	ug/l	25.0	ND	111	70-130	. 1	20	
p-isopropyitoluene	25.8	1.0	ug/l	25.0	ND	103	70-130	0	20	
Methylene chloride	27.5	5.0	ug/l	25.0	ND	110	60-135	1	20	
Methyl-terr-butyl Ether (MTBE)	25 2	1.0	ug/I	25.0	ИD	101	50-155	8	25	
Naphthalene	23.4	1.0	սց∕Լ	25.0	ND	94	50-150	9	30	
n-PropyBenzene	26.7	1.0	ug∕l	25.0	ND	107	70 -135	2	20	
Styrene	28.5	1.0	ug/I	25.0	ИD	114	5 5 -145	2	30	
1,1,1,2-Tetrachloroethane	28.0	1.0	սջ/J	25.0	ND	112	70-145	0	20	
1,1,2,2-Tetrachioroethane	22.2	1.0	սց/Լ	25.0	ND	89	60-145	12	30	
Tetrachloroethene	41.1	1.0	ug/l	25.0	16	100	70-130	2	20	
Tohizae	27.1	0.50	vg∕l	25.0	ND	108	70-120	3	20	
1,2,3-Trichlorobenzene	25.4	1.0	սց/J	25.0	ND	102	60-140	5	20	
1,2,4-Trichlorobenzene	27.5	1.0	ug/I	25.0	ИD	110	60-140	1	20	
1,1,1-Trichloroethane	28.3	1.0	ug/l	25.0	ND	113	75-140	1	20	
1,1,2-Trichlorocthane	24.3	1.0	ս ջ∕Լ	25.0	ND	97	60-135	6	25	
Trickloroethene	37.7	1.0	սg/J	25.0	12	103	70-125	1	20	
Trichlorofluoromethane	27.4	1.0	ug/ 1	25.0	ND	110	55-145	5	25	
1,2,3-Trichloropropane	22.4	0.1	ug/l	25.0	ND	90	55-140	10	30	
1,2,4-Trimethylbenzene	26.5	1.0	ug/J	25.0	ND	106	60-125	1	25	
1,3,5-Trimethylbenzene	28.1	1.0	ug/l	25.0	ND	112	70-130	3	20	
Vinyl chloride	29.2	0_50	ug/l	25.0	ND	117	40-135	5	30	
o-Xylene	25.2	0.50	ug/I	25.0	ND	101	65-125	1	20	
m_p-Xylenes	50.5	1.0	ug/I	50.0	ND	101	65-130	1	25	
Surrogase: Dibromofluoromethane	26.0		ug/I	25.0		104	80-120			
Surrogaie: Toluene-d8	26.7		ug/I	25.0		107	80-120			
Surroyate: 4-Bromofluorobenzene	26.2		ug/l	25.0		105	80-120			

17461Derian Ave., Suite 100, Invine, CA 97614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Or., Suite A. Colom, CA 91224 (2009) 370-4667 FAX (949) 370-1046 9484 Chesapeulae Dr., Suite 805, San Oirgo, CA 91121 (858) 505 6596 FAX (680) 505-9889 9810 Soud 514 St., Suite 8-120, Phoenix, AZ 65044 (660) 785-0043 FAX (460) 785-0851 250 E. Suiter 8-120, Phoenix, AZ 65044 (660) 785-0043 FAX (460) 785-0851 250 E. Suiter 8-120, Phoenix, AZ 65044 (660) 785-0043 FAX (460) 785-0851

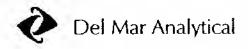
MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817


Sampled: 02/23/05

Received: 02/23/05

METHOD BEANK/OCIDATA

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Applyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25031 Extracted: 02/25/	/05									
Blank Analyzed: 02/25/2005 (5B25	5071 D7 1/1)									
Benzene	ND	0.50	ug/l							
Bromobeuzene	ND	1.0	υg/1							
Bromochloromethane	ND	1.0	ոհ/յ							
Bromodichloromethane	ND	1.0	սg/I							
Bromeform	ND	1.0	ug/I							
Bromomethane	ND	1.0	ug/l							
n-Butylbenzene	ND	1.0	ug/l							
sec-Buryfbenzene	ND	1.0	սջ/I							
teri-Butylbenzene	ND	1.0	່ນ <u>ຍ</u> ∕ໄ							
Cerbon tetrachloride	ND	0.50	ug/l							
orobenzene	ND	1.0	ug/l							
Horoethane	ND	1.0	ug/l							
Chloroform	ND	1.0	-							
Chloromediane	אD	1.0	ug∕1 ug∕1							
2-Chlorotoluene	ND	1.0	-							
4-Chlorotoluene	ND	1.0	սg/I սg/I							
Dibromochloromethane	ND	1.0	ug/I							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/1							
1,2-Dibromoethane (EDB)	ND	1.0	vg/1 vg/1							
Dibromomethane	ND	1.0								
1,2-Dicklorobenzene	ND	1.0	ug∕1 ug∕1							
1,3-Dichlorobenzene	ND	1.0	-							
1,4-Dichlorobenzene	ND	1.0	ug∕l /l							
Dichlorodifluoromethane	ND	2.0	αg/1 αg/1							
1.1-Dichloroethane	ND ON	1.0	-							
1,2-Dichloroethane	ИD	0.50	ug/l							
1,1-Dichloroethene	עט מא	1.0	ug/I							
cis-1,2-Dichloroethene	ИD	1.0	ug/l							
' Carlotte and the carl	עא סא	1.0	ug/1 4							
trans-1,2-Dichloroethene	ND ND		ug/l							
1,2-Dichloropropue	ND	t,0 t.0	ug/1							
1,3-Dichloropropate 2.2 Dichloropropate			υg/I /I						***	
2,2-Dichloropropane	DK DK	1.0	ug/l							
1,1-Dichloropropene	ND UN	1.0 0.50	υg/I ()							
cis-1,3-Dichloropropene		-	αβ\J							
trans-1,3-Dichktropropene	ND	0.50	118/1							

17461 Derian Ave., Suite 100, twine, CA 92614 (949) 261-1027 FAX (949) 260-3297 1014 E. Cooky Du., Swite A. Cokon, CA 92314 (909) 370-4667 FAX (949) 370-1046 9404 Ousapenke Dr., Swite 805, San D'ego, CA 92123 (858) 505-8596 FAX (858) 505-9689 1839 South 51st St., Suite 8-120, Procedic AZ 85044 (480) 785-0041 FAX (480) 785-0251 2528 E. Sunset Rd. #3, Las Vegas, NV 89120 (7021 798-3620 FAX (702) 798-3621

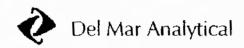
MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project 1D: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: 5B25031 Extracted: 02/25/0	<u>-5_</u>										
	-										
Blank Analyzed: 02/25/2005 (5B250	•									<i>x</i> -	
Ethylbenzene	ND	0 _50	ug/I								
Hexachtoroburadiene	ND	1.0	пб⁄J								
Isopropylbenzene	ND	1.0	ug/1								
p-Isopropyltoluene	ND	1.0	ug/l								
Methylene chloride	ND	50	πā⁄J								
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/I								
Naphthalene	ND	1.0	ug/1								
n-Propyibenzene	ND	1.0	սը/1								
Styrene	ND	1.0	ug/1								
1,1,1,2-Terrachkroethane	ND	1.0	ng∕1								17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/I								Ц
Tetrachkoroethene	ND	1.0	ug∕1								
Toluene	ND	0.50	ug∕1								
1,2,3-Trichlorobenzene	ND	1.0	սը∕1								
1,2,4-Trichlorobenzene	ND	1.0	ug∕1								
1,1,1-Trichloroethane	ND	1.0	ug/I				•				
1,1,2-Trichloroethane	ND	1.0	ug/l								
Trichloroethene	ND	1.0	ug/l			-					
Trichlarofhoromethane	ND	1.0	ug/l								
1,2,3-Trichloropropane	ND	1.0	ug/I								
1,2,4-Trimethylbenzene	ND	1.0	ug/1								
1,3,5-Trimethylbenzene	ND	1.0	ug/l								
Vinyl chloride	ND	0.50	ug∕I								
o-Xylene	ND	0.50	ug/1								
m.p-Xylenes	ND	1.0	ug/l								
Surregate: Dibromofharomethane	26.1		ug/I	25.0		104	80-120				
Sarrogate: Toluene-d8	26.8		ug/l	25.0		107	80-120				
Surrogate: 4-Bromofluorobentene	25.5		ug∕I	25.0		102	80-120				

Del Mar Analytical, Irvine Chris Roberts Project Manager

> The results periodn only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from Del Mar Analytical.

IOB1817 < Page 51 of 70>

1745/Derian Ave., Suite 100. Invier, CA 37674 (PM9) 261-1022 FAX:(b49) 260-3297 1014 E. Cookey Cr., Swite A. Calkon, CA 92314 (PM9) 370-4667 FAX:(b49) 370-1046 9480 Chesapeake Dr., Swite 805, San Diegy, CA 97173 (858) 505-8596 FAX:(f858) 505-9699 9830 Soudh 514:SL, Swite 8 1720, Priornik, AZ 85044 (A 90) 785-0043 FAX:(490) 785-0051 2510 E. Switest Rd. #3, Tax Vegax, NV 89120 (702) 738-3620 FAX:(702) 798-3621

MWH Americas - Brea 3050 Satura Ave., Suite 205

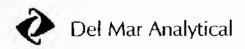
Brea, CA 92821 Attention: Lisa Half Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting		Spike	Source		%REC		RPD	Data
8	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
	Batch: 5B25031 Extracted: 02/25/	05									
	LCS Analyzed: 02/25/2005 (5B250	31-BS1)									
	Веплепе	26.7	0_50	ug/l	25.0		107	70-120			
	Bromobenzene	27.6	0.1	ug∕l	25.0		110	80-120	- 1		
	Bromochlotomethane	27.3	0.1	ug/l	25.0		109	65-135	*		
	Bromodichloromethase	26.9	1.0	ug/i	25.0		801	70-140			
	Bromoform	22.7	1.0	ug/l	25.0		19	55-135			
	Bromomerhane	30.2	1.0	ug/l	25.0		121	60-140			
	n-Burylbenzene	26.5	1.0	ugA	25.0		106	75-130			
	sec-Burylbenzene	25.7	0.1	ug/l	25.0		103	75-125			
	terr-Burylbenzene	26.9	0.1	ug/l	25.0		801	75-125			
	Carbon tetrachloride	28.2	0.50	ug/1	25.0		113	70-140			
	lorobenzene	26.2	1.0	ug/l	25.0		105	80-125			
	oreethanc	31.9	0.1	ug/I	25.0	•	128	60-145			
	Chloroform	27.1	0.1	ug/l	25,0		108	75-130			
	Chloromethane	26.9	O. F	ug/l	25.0		801	40-145			
	2-Chlorotoluene	26.5	1.0	ug/I	25.0		106	75-125			
	4-Chlorotoluene	26.7	1.0	ug/I	25.0		107	-75-125			
	Dibromochloromethane	27.9	1.0	ug/I	25.0		112	65-145			
	1,2-Dibromo-3-chloropropase	20.9	5.0	ug/1	25.0		84	50-135			
	1,2-Dibromoethane (EDB)	26.7	1.0	ug/I	25.0		107	75-125			
	Dibromomethane	26.6	0.1	ug/1	25.0		106	75-130			
	1,2-Dichlorobenzene	26.1	1.0	ug/l	25.0		104	80-120			
	1,3-Dichlorobenzene	26.1	1.0	ug/l	25.0		104	80-120			
	1,4-Dichlorobenzene	25.8	1.0	ug/I	25,0		103	80-120			
	Dichlorodiflusromethane	26.2	2.0	ug/I	25.0		105	10-160			
	1,1-Dichloroethane	27.3	0.1	ug/l	25.0		109	70-135			
	1,2-Dichloroethane	26.9	0.50	⊔g/ 1	25.0		\$08	60-150			
	1,1-Dichlomethene	28.9	0.1	ug/l	25.0		116	75-135			
	cis-1,2-Dichloroethene	28.2	0.1	ng/l	25.0		113	70-125			
	trans-1,2-Dichloroethene	28.2	1.0	ug/f	25.0		113	70-130			
	1,2-Dichloropropane	28.2	1.0	ಬ್ಜ/1	25.0		113	70-120			
	1,3-Dichloropropane	27.1	1.0	ug/l	25.0		801	70-130			
	2,2-Dichloropenpane	26.0	1.0	ug/I	25.0		104	65-150			
	1,1-Dichloropropene	28.9	1.0	սց/1	25.0		116	75-130			
	cis-1,3-Dichloropropene	29.3	0.50	ug/I	25.0		117	75-130			
	trans-1,3-Dichloropropene	28.7	0.50	ug/I	25.0		115	75-135			

The results periain only to the simples texted in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1817 <Page 52 of 70>

17461 Deriyn Ave, Suite 100, Ivvine, CA 97674 (149) 261-1022 FAX (949) 260-3297 1014 E. Candey Cr., Suite A, Colton, CA 92174 (977) 379-4667 FAX (949) 370-1046 9464 Chesperale Cr., Swite 805, Sen Diegn, CA 92173 (858) 595-4594 FAX (959) 505-5669 9830 Sovih 51515, Suite B-170, Pricensi, AZ 85044 (440) 785-0043 FAX (440) 785-0043 FAX (440) 785-004

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

A collection	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	aaa	RPD Limit	Data Oualifiers	
Analyte		Labit	Unic	Level	Kesut	76REC	LIMIL	χιυ	Limit	Attention 2	
Batch: 5B25031 Extracted: 02/25/6	<u>05</u>										
LCS Analyzed: 02/25/2005 (5B2503	31-BS1)										
Ethylbenzene	27.4	0.50	ы g/I	25.0		110	80-120				
Hexachlorobutadiene	25.8	1.0	υg/I	25.0		103	65-140				
lsopropylbenzene	27.6	1.0	նջ/1	25.0		110	75-125				
p-Isopropyltoluene	25.9	1,0	սջ/I	25.0		104	75-125				
Methylene chloride	27.5	5.0	սգ/1	25.0		110	60-135				
Methyl-tert-butyl Ether (MTBE)	27.2	1.0	ug/I	25.0		109	55-145				
Naphdralene	26.1	1.0	ug/1	25.0		104	50-145				
a-Propylbeazene	26.3	1.0	ug/l	25.0		105	75-130			-	
Styrene	29.4	1.0	വള/1	25.0		118	80-135				
1,1,1,2-Tetrachloroethase	28.3	1.0	ս ջ/I	25.0		113	70-145				
1,1,2,2-Tetrachloroethane	24.6	1.0	սբ∕I	25.0		98	60-135				1
Tetrachloroethene	27.2	1.0	ug/I	25.0		109	75-125				0
Toluene	27.4	0.50	ug∕I	25.0		110	75-120				
1,2,3-Trichlorobenzene	26.7	1.0	ս ց/ I	25.0		107	65-135				
1,2,4-Trichlorobenzene	27.8	1.0	ng/1	25.0		111	70-140				
1,1,1-Trichloroethane	27.6	1.0	ug∕1	25,0		110	75-140				
1,1,2-Trichloroethane	26.7	1.0	ug/I	25.0		107	70-125				
Trichloroethene	29.2	1.0	αg/1	25.0		117	80-120				
Trichlorofhoromethane	27.1	1.0	ug/J	25.0		108	65-145				
1,2,3-Trichloropropase	25.6	1.0	ug/I	25,0		102	60-130				
1,2,4-Triroethylbenzene	26.2	1.0	ng/I	25.0		105	75-125				
1,3,5-Trimethylbenzene	27.8	1.0	ng/l	25.0		111	75-125	•			
Viey! chloride	29.1	0.50	ug/I	25.0		116	50-130				
o-Xylene	25.7	0.50	ug/I	25.0		103	75-125				
m,p-Xylenes	51.1	1.0	ug/I	50.0		102	75-120				
Surrogute: Dibromofluoromethane	25.3		wg/l	25.0		101	80-120				
Surrogate: Toluene-d8	26.9		ug/l	25.0		108	80-170				
Surrogate: 4-Bromofluorobenzene	26.4		ug/1	25.0		106	80-120				

17461 Derizm Are., Suite 100, Innne, CA 92614 (849) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suke A. Collom, CA 92924 (909) 378-4667 FAX (949) 370-1046 9484 Chespeake Dr., Suite 055, Sair Diego, CA 92123 (838) 305-8596 FAX (848) 370-1046 9830 South S1a St., Suite B-120, Phoenia, AZ 85044 (480) 795-0043 FAX (400) 795-3451 2570 E. Suiter B. 120, Phoenia, AZ 85044 (480) 795-3043 FAX (400) 795-3451

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte Result Limit Units Level Result %REC Limits RPD Limit Qualifiers			Reporting		Spike	Source		%REC		RPD	Data
Matrix Spike Analyzed: 92/25/2005 (5UZ5031-MS1) Benzese	Analyie	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Benzese 25.1 0.50 ug/l 25.0 ND 100 70-120	Batch: 5B25031 Extracted: 02/25/	05									
Bromochloremethane 25.8 1.0 wg/l 25.0 ND 107 65-130	Matrix Spike Analyzed: 02/25/2005	5 (5D25031-MS1)				Source: I	OB1696-1	5			
Bromochloromethane 25.8 1.0 ug/l 25.0 ND 103 65-140	Вендеве	25.1	0.50	ug/l	25,0	ND	100	70-120			
Bromofern 29.2 1.0 ug/l 25.0 ND 100 70-140 Bromofern 29.2 1.0 ug/l 25.0 ND 81 55-140 Bromomethane 28.5 1.0 ug/l 25.0 ND 114 50-145 n-Butylbenzene 25.8 1.0 ug/l 25.0 ND 103 70-140 sec-Butylbenzene 25.0 1.0 ug/l 25.0 ND 104 70-130 terr-Butylbenzene 26.0 1.0 ug/l 25.0 ND 104 70-130 Carbon terrakthoride 26.6 0.50 ug/l 25.0 ND 106 70-145 Larobenzene 24.8 1.0 ug/l 25.0 ND 106 70-145 Larobenzene 27.8 1.0 ug/l 25.0 ND 106 70-145 Chlorofern 28.0 1.0 ug/l 25.0 ND 119 50-145 Chlorofern 28.0 1.0 ug/l 25.0 ND 119 50-145 Chloromethane 27.8 1.0 ug/l 25.0 ND 119 50-145 Chloromethane 26.1 1.0 ug/l 25.0 ND 119 50-145 Chloromethane 26.1 1.0 ug/l 25.0 ND 119 70-140 Dibromomethare 26.1 1.0 ug/l 25.0 ND 106 70-140 Dibromomethare 26.1 1.0 ug/l 25.0 ND 104 70-135 Chloromethane 26.1 1.0 ug/l 25.0 ND 105 70-140 Dibromomethare 26.1 1.0 ug/l 25.0 ND 106 70-140 Dibromomethare 26.1 1.0 ug/l 25.0 ND 107 70-140 Dibromomethare 26.1 1.0 ug/l 25.0 ND 107 70-140 Dibromomethare 26.1 1.0 ug/l 25.0 ND 98 35-145 1.2-Dibromomethare EDB) 24.6 1.0 ug/l 25.0 ND 97 65-140 1.2-Dichlorobenzene 24.8 1.0 ug/l 25.0 ND 97 65-140 1.3-Dichlorobenzene 25.0 1.0 ug/l 25.0 ND 99 75-130 1.3-Dichlorobenzene 25.0 1.0 ug/l 25.0 ND 99 80-120 Dichlorodenomethane 26.6 1.0 ug/l 25.0 ND 99 80-120 Dichlorodenomethane 26.6 1.0 ug/l 25.0 ND 99 80-120 Dichlorodenomethane 26.6 1.0 ug/l 25.0 ND 99 80-120 Dichlorodenomethane 26.6 1.0 ug/l 25.0 ND 99 80-120 Dichlorodenomethane 26.6 1.0 ug/l 25.0 ND 106 65-135 1.1-Dichlorobenzene 27.1 1.0 ug/l 25.0 ND 106 65-135 1.1-Dichlorochene 27.1 1.0 ug/l 25.0 ND 106 66-150 1.1-Dichlorochene 27.1 1.0 ug/l 25.0 N	Bromobenzene	26.8	1.0	ug/i	25.0	ND	107	65-130			
Bromofern 20.2 1.0 ug/l 25.0 ND 81 55-140	Bromochloromethane	25.8	1.0	ug/I	25.0	ИD	103	65-140			
Bromomethane 28.5 1.0 ug/l 25.0 ND 114 50-145 n-Butylbeuzzne 25.8 1.0 ug/l 25.0 ND 103 70-140 sec-Butylbeuzzne 25.0 1.0 ug/l 25.0 ND 100 70-130 terr-Butylbeuzzne 26.0 1.0 ug/l 25.0 ND 104 70-130 terr-Butylbeuzzne 26.0 1.0 ug/l 25.0 ND 104 70-130 terr-Butylbeuzzne 26.6 0.50 ug/l 25.0 ND 104 70-130 terr-Butylbeuzzne 24.8 1.0 ug/l 25.0 ND 106 70-145 throebeuzzne 24.8 1.0 ug/l 25.0 ND 109 80-125 throebeuzzne 24.8 1.0 ug/l 25.0 ND 119 50-145 throebeuzzne 24.8 1.0 ug/l 25.0 ND 119 50-145 throebeuzzne 24.8 1.0 ug/l 25.0 ND 119 50-145 throebeuzzne 25.0 1.0 ug/l 25.0 ND 98 35-145 2-Chloroopetane 24.6 1.0 ug/l 25.0 ND 98 35-145 2-Chloroopetane 26.1 1.0 ug/l 25.0 ND 98 35-145 2-Chloroopetane 26.1 1.0 ug/l 25.0 ND 104 70-140 terroebeuze 26.3 1.0 ug/l 25.0 ND 104 70-140 terroebeuze 26.1 1.0 ug/l 25.0 ND 105 70-140 Dibromochhoronethane 25.7 1.0 ug/l 25.0 ND 105 70-140 Dibromochhoronethane 25.7 1.0 ug/l 25.0 ND 103 65-145 1.2-Dibromochane (EDB) 24.6 1.0 ug/l 25.0 ND 98 70-130 Dibromochane (EDB) 24.6 1.0 ug/l 25.0 ND 98 70-130 Dibromochane 24.3 1.0 ug/l 25.0 ND 98 70-130 Dibromochane 24.3 1.0 ug/l 25.0 ND 99 75-130 1.3-Dichlorobeuzene 25.0 1.0 ug/l 25.0 ND 99 75-130 1.3-Dichlorobeuzene 26.6 1.0 ug/l 25.0 ND 99 75-130 1.3-Dichlorobeuzene 27.7 1.0 ug/l 25.0 ND 99 80-120 Dichlorobeuzene 27.7 1.0 ug/l 25.0 ND 106 65-135 1.2-Dichlorobeuzene 27.1 1.0 ug/l 25.0 ND 106 65-135 1.2-Dichlorobeuzene 27.1 1.0 ug/l 25.0 ND 106 65-135 1.2-Dichlorobeuzene 27.1 1.0 ug/l 25.0 ND 106 65-135 1.2-Dichlorobeuzene 27.6 1.0 ug/l 25.0 ND 106 65-135 1.2-Dichloropeuzene 25.7 1.0 ug/l 25.0 ND 106 65-135 1.2-Dichloropeuzene 25.7 1.0 ug/l 25.0 ND 106 65-135 1.2-Dichloropeuzene 25.2 1.0 ug/l 25.0 ND 106 65-140 cis-1,2-Dichloropeuzene 25.2 1.0 ug/l 25.0 ND 106 65-140 cis-1,3-Dichloropeuzene 27.2 0.50 ug/l 25.0 ND 106 65-14	Bromodichloromethane	25.1	1.0	ug/i	25.0	ND	100	70-140			
a-Burythenzene 25.8 10 ug/l 25.0 ND 103 70-140 sec-Burythenzene 25.0 1.0 ug/l 25.0 ND 100 70-130 tert-Burythenzene 26.0 1.0 ug/l 25.0 ND 104 70-130 Carbon terachloride 26.6 0.50 ug/l 25.0 ND 104 70-130 Carbon terachloride 26.6 0.50 ug/l 25.0 ND 106 70-145 Introbenzene 24.8 1.0 ug/l 25.0 ND 106 70-145 Introbenzene 29.8 1.0 ug/l 25.0 ND 119 50-145 Chloroschane 29.8 1.0 ug/l 25.0 ND 119 50-145 Chloroschane 29.0 1.0 ug/l 25.0 ND 119 50-145 Chloroschane 24.6 1.0 ug/l 25.0 ND 99 35-125 Ug/l 25.0 ND 104 70-135 Chloroschane 26.1 1.0 ug/l 25.0 ND 104 70-140 4-Chloroschane 26.1 1.0 ug/l 25.0 ND 104 70-140 Ug/l 25.0 ND 105 70-140 Ug/l 25.0 ND 106 70-140 Ug/l 25.0 ND 107 70-140 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-145 Ug/l 25.0 ND 108 65-140 Ug/l 25.0 ND 108 65-140 Ug/l 25.0 ND 108 65-140 Ug/l 25.0 ND 108 07 75-130 Ug/l 25.0 ND 108 07 75-130 Ug/l 25.0 ND 108 07 75-130 Ug/l 25.0 ND 109 75-130 Ug/l 25.0 ND 109 75-130 Ug/l 25.0 ND 109 65-135 Ug/l 25.0 ND 109 65-135 Ug/l 25.0 ND 109 66-150 Ug/l 25.0 ND 109 6	Bromoform	20.2	0.1	ug/l	25.0	ND	81	55-140			
SecBurytherazene 25.0 1.0 ug/l 25.0 ND 100 70-130	Bromomethane	28.5	1.0	ug/i	25.0	ND	114	50-145			
tert-Burylbenzee 26.0 1.0 ug/l 25.0 ND 104 70-130 Carbon tetrachloride 26.6 0.50 ug/l 25.0 ND 106 70-145 Unrobenzeac 24.8 1.0 ug/l 25.0 ND 199 80-125 Unrobenzeac 24.8 1.0 ug/l 25.0 ND 19 98 0-125 Chlorofarm 28.0 1.0 ug/l 25.0 ND 19 50-145 Chlorofarm 28.0 1.0 ug/l 25.0 ND 19 50-145 Chlorofarm 28.0 1.0 ug/l 25.0 ND 19 50-145 Chloromethane 24.6 1.0 ug/l 25.0 ND 98 35-145 2-Chloromethane 26.1 1.0 ug/l 25.0 ND 104 70-140 4-Chlorothene 26.3 1.0 ug/l 25.0 ND 105 70-140 Dibromochloromethane 25.7 1.0 ug/l 25.0 ND 105 70-140 Dibromochloromethane 19.2 5.0 ug/l 25.0 ND 103 65-145 1,2-Dibromochloromethane 24.6 1.0 ug/l 25.0 ND 98 70-130 Dibromochloromethane 25.7 1.0 ug/l 25.0 ND 98 70-130 Dibromochloromethane 25.1 1.0 ug/l 25.0 ND 98 70-130 Dibromochloromethane 25.1 1.0 ug/l 25.0 ND 99 75-130 1,2-Dibromochloromethane 24.3 1.0 ug/l 25.0 ND 99 75-130 1,3-Diblorobenzene 25.0 1.0 ug/l 25.0 ND 99 75-130 1,3-Diblorobenzene 25.0 1.0 ug/l 25.0 ND 99 80-120 Dibromochloromethane 24.0 2.0 ug/l 25.0 ND 99 80-120 Dibromochloromethane 25.5 0.50 ug/l 25.0 ND 99 80-120 Diblorodifloromethane 26.6 1.0 ug/l 25.0 ND 96 10-160 1,1-Diblorothane 25.5 0.50 ug/l 25.0 ND 106 65-135 1,2-Diblorothane 27.1 1.0 ug/l 25.0 ND 106 65-135 1,2-Diblorothane 27.1 1.0 ug/l 25.0 ND 106 65-135 1,2-Diblorothane 27.1 1.0 ug/l 25.0 ND 107 65-140 1,2-Diblorothane 27.1 1.0 ug/l 25.0 ND 106 65-135 1,2-Diblorothane 27.1 1.0 ug/l 25.0 ND 107 65-140 1,1-Diblorothane 27.1 1.0 ug/l 25.0 ND 107 65-130 1,1-Diblorothane 27.1 1.0 ug/l 25.0 ND 107 65-130 1,1-Diblorothane 25.7 1.0 ug/l 25.0 ND 107 65-130 1,1-Diblorothane 25.7 1.0 ug/l 25.0 ND 107 65-130 1,1-Diblorothane 25.7 1.0 ug/l 25.0 ND 107 65-130 1,1-Diblorothane 25.7 1.0 ug/l 25.0 ND 107 65-130 1,1-Diblorothane 25.1 1.0 ug/l 25.0 ND 107 65-130 1,1-Diblorothane 25.1 1.0 ug/l 25.0 ND 107 65-130 1,1-Diblorothane 25.1 1.0 ug/l 25.0 ND 107 65-130 1,1-Diblorothane 25.1 1.0 ug/l 25.0 ND 109 65-140 2,2-Dibloropropane 25.2 1.0 ug/l 25.0 ND 109 65-140	n-Butylbenzene	25.8	10	ug/l	25.0	ND	103	70-140			
Carbon tetrachloride	sec-Burythenzene	25.0	0.1	ug/i	25.0	ND	100	70-130			
Dirocentence 24.8 1.0 ug/l 25.0 ND 99 80-125	tert-Butylbenzene	26.0	0,1	ug/1	25.0	ND	104	70-130			
Chloroform 29.8 1.0 ug/i 25.0 ND 119 50-145	Carbon tetrachloride	26.6	0.50	ug/i	25.0	ND	106	70-145			
Chloroform 28.0 1.0 ug/l 25.0 2.0 104 70-135	Inrobenzene	24.8	1.0	ug/l	25.0	ND	99	80-125			
Chloromethane 24.6 1.0 ug/l 25.0 ND 98 35-145 2-Chloromethane 26.1 1.0 ug/l 25.0 ND 104 70-140 4-Chloromethane 26.3 1.0 ug/l 25.0 ND 105 70-140 Dibromochloromethane 25.7 1.0 ug/l 25.0 ND 105 70-140 Dibromochloromethane 25.7 1.0 ug/l 25.0 ND 77 45-155 1,2-Dibromochlane (EDB) 24.6 1.0 ug/l 25.0 ND 98 70-130 Dibromochlane (EDB) 24.8 1.0 ug/l 25.0 ND 97 65-140 1,2-Dichlorobenzene 24.8 1.0 ug/l 25.0 ND 97 65-140 1,3-Dichlorobenzene 25.0 1.0 ug/l 25.0 ND 99 75-130 1,4-Dichlorobenzene 24.7 1.0 ug/l 25.0 ND 99 80-120 Dichlorodifluorumethane 24.0 2.0 ug/l 25.0 ND 99 80-120 Dichlorodifluorumethane 25.5 0.50 ug/l 25.0 ND 96 10-160 1,1-Dichlorobenzene 25.5 0.50 ug/l 25.0 ND 106 65-135 1,2-Dichlorobenzene 25.5 0.50 ug/l 25.0 ND 106 65-135 1,2-Dichlorothane 25.5 0.50 ug/l 25.0 ND 108 65-140 cis-1,2-Dichlorothene 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichlorothene 27.6 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichlorothene 27.6 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichlorothene 27.6 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichloropropane 25.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 107 65-130 1,1-Dichloropropane 25.7 1.0 ug/l 25.0 ND 109 65-140 1,1-Dichloropropane 25.7 1.0 ug/l 25.0 ND 109 65-140	doroethane	29.8	1.0	ug/i	25.0	ND	119	50-145			
2-Chlorositurie 26.1 1.0 ug/l 25.0 ND 104 70-140 4-Chlorositurie 26.3 1.0 ug/l 25.0 ND 105 70-140 Dibromochkorositurie 25.7 1.0 ug/l 25.0 ND 103 65-145 1.2-Dibromochkorositurie (EDB) 24.6 1.0 ug/l 25.0 ND 98 70-130 Dibromochtane (EDB) 24.6 1.0 ug/l 25.0 ND 97 65-140 1.2-Dictorositurie (EDB) 24.8 1.0 ug/l 25.0 ND 97 65-140 1.2-Dictorositurie (EDB) 25.0 1.0 ug/l 25.0 ND 99 75-130 1.3-Dicthorobenzere 25.0 1.0 ug/l 25.0 ND 99 75-130 1.4-Dicthorositurie 24.7 1.0 ug/l 25.0 ND 99 80-120 Dicthorositurie 24.0 2.0 ug/l 25.0 ND 99 80-120 Dicthorositurie 25.5 0.50 ug/l 25.0 ND 96 10-160 1.1-Dicthorothure 25.5 0.50 ug/l 25.0 ND 96 65-135 1.2-Dichlorothure 25.5 0.50 ug/l 25.0 ND 106 65-135 1.1-Dichlorothure 25.5 0.50 ug/l 25.0 ND 108 65-130 1.1-Dichlorothure 25.5 0.50 ug/l 25.0 ND 108 65-130 1.1-Dichlorothere 27.1 1.0 ug/l 25.0 ND 108 65-130 1.1-Dichloropropare 25.7 1.0 ug/l 25.0 ND 107 65-130 1.3-Dichloropropare 25.7 1.0 ug/l 25.0 ND 107 65-130 1.3-Dichloropropare 25.7 1.0 ug/l 25.0 ND 101 60-150 1.1-Dichloropropare 25.2 1.0 ug/l 25.0 ND 101 60-150 1.1-Dichloropropare 25.2 1.0 ug/l 25.0 ND 101 60-150 1.1-Dichloropropare 25.2 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropare 27.2 0.50 ug/l 25.0 ND 109 65-140	Chloroform	28.0	1.0	ug/l	25.0	2.0	104	70-135			
4-Chlarotohrene 26.3 1.0 ug/l 25.0 ND 105 70-140 Dibromochkoromethane 25.7 1.0 ug/l 25.0 ND 103 65-145 1,2-Dibromo-3-chloropropane 19.2 5.0 ug/l 25.0 ND 77 45-155 1,2-Dibromochtane (EDB) 24.6 1.0 ug/l 25.0 ND 98 70-130 Dibromomethane (EDB) 24.8 1.0 ug/l 25.0 ND 97 65-140 1,2-Dichlorobenzene 24.8 1.0 ug/l 25.0 ND 99 75-130 1,3-Dichlorobenzene 25.0 1.0 ug/l 25.0 ND 99 75-130 1,4-Dichlorobenzene 24.7 1.0 ug/l 25.0 ND 99 80-120 Dichlorodiftuoromethane 24.0 2.0 ug/l 25.0 ND 99 80-120 Dichlorodiftuoromethane 26.6 1.0 ug/l 25.0 ND 96 10-160 1,1-Dichlorothane 26.6 1.0 ug/l 25.0 ND 106 65-135 1,2-Dichlorothane 25.5 0.50 ug/l 25.0 ND 106 65-135 1,2-Dichlorothane 27.1 1.0 ug/l 25.0 ND 108 65-140 cis-1,2-Dichlorothene 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichlorothene 27.1 1.0 ug/l 25.0 ND 107 65-135 1,2-Dichloropropane 25.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 101 66-150 1,1-Dichloropropane 25.7 1.0 ug/l 25.0 ND 101 65-140 2,2-Dichloropropane 25.7 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 25.7 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 25.7 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140	Chloromethane	24.6	- 1.0	ug/I	25.0	ND	98	35-145			
Dibromochkromethane 25.7 1.0 ug/i 25.0 ND 103 65-145 1.2-Dibromoc-3-chloropropane 19.2 5.0 ug/i 25.0 ND 77 45-155 1.2-Dibromoethane (EDB) 24.6 1.0 ug/i 25.0 ND 98 70-130 Dibromomethane (EDB) 24.8 1.0 ug/i 25.0 ND 97 65-140 1.2-Dichlorobenzene 24.8 1.0 ug/i 25.0 ND 99 75-130 1.3-Dichlorobenzene 25.0 1.0 ug/i 25.0 ND 100 75-130 1.4-Dichlorobenzene 24.7 1.0 ug/i 25.0 ND 99 80-120 Dichlorodiftuoromethane 24.0 2.0 ug/i 25.0 ND 96 10-160 1.1-Dichloroethane 26.6 1.0 ug/i 25.0 ND 106 65-135 1.2-Dichloroethane 25.5 0.50 ug/i 25.0 0.63 99 60-150 1.1-Dichloroethene 27.1 1.0 ug/i 25.0 ND 108 65-140 cis-1,2-Dichloroethene 27.1 1.0 ug/i 25.0 ND 108 65-130 trans-1,2-Dichloroethene 27.6 1.0 ug/i 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/i 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/i 25.0 ND 101 60-150 1,1-Dichloropropene 27.3 1.0 ug/i 25.0 ND 101 60-150 1,1-Dichloropropene 27.3 1.0 ug/i 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/i 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/i 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/i 25.0 ND 109 70-140 cis-1,3-Dichloropropene 27.2 0.50 ug/i 25.0 ND	2-Chlorozoluene	26.1	1.0	ug/I	25.0	ИD	104	70-140			
1.2-Dibromo-3-chlorogropane 19.2 5.0 ug/l 25.0 ND 77 45-155 1.2-Dibromoethane (EDB) 24.6 1.0 ug/l 25.0 ND 98 70-130 Dibromomethane 24.3 1.0 ug/l 25.0 ND 97 65-140 1.2-Dichlorobenzene 24.8 1.0 ug/l 25.0 ND 99 75-130 1.3-Dichlorobenzene 25.0 1.0 ug/l 25.0 ND 160 75-130 1.4-Dichlorobenzene 24.7 1.0 ug/l 25.0 ND 99 80-120 Dichlorodifluoromethane 24.0 2.0 ug/l 25.0 ND 96 10-160 1.1-Dichlorothane 25.5 0.50 ug/l 25.0 ND 106 65-135 1.2-Dichlorothane 25.5 0.50 ug/l 25.0 ND 106 65-135 1.2-Dichlorothane 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1.2-Dichlorothene 27.6 1.0 ug/l 25.0 ND 108 65-130 trans-1.2-Dichlorothene 27.6 1.0 ug/l 25.0 ND 108 65-130 trans-1.2-Dichlorothene 27.6 1.0 ug/l 25.0 ND 108 65-135 1.2-Dichloropropane 25.7 1.0 ug/l 25.0 ND 107 65-130 1.3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 107 65-130 1.3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2.2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1.1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 101 60-150 1.1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 2.2-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 2.2-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 2.3-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 2.3-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140	4-Chlorotolnene	26.3	0.1	ug/l	25.0	ND	105	70-140			
1,2-Dibtomochane (EDB) 24.6 1.0 ug/l 25.0 ND 98 70-130 Dibromomethane 24.3 1.0 ug/l 25.0 ND 97 65-140 1,2-Dichlorobenzene 24.8 1.0 ug/l 25.0 ND 99 75-130 1,3-Dichlorobenzene 25.0 1.0 ug/l 25.0 ND 100 75-130 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 ND 99 80-120 Dichlorodifluoromethane 24.0 2.0 ug/l 25.0 ND 96 10-160 1,1-Dichloroethane 26.6 1.0 ug/l 25.0 ND 106 65-135 1,2-Dichloroethane 25.5 0.50 ug/l 25.0 0.63 99 60-150 1,1-Dichloroethane 29.0 1.0 ug/l 25.0 0.91 112 65-140 cis-1,2-Dichloroethane 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichloropropane 26.7 1.0 ug/l	Dibromochloromethane	25.7	1.0	ug/i	25.0	ND	103	65-145			
Dibromomethane 24.3 1.0 ug/l 25.0 ND 97 65-140 1,2-Dichlorobenzene 24.8 1.0 ug/l 25.0 ND 99 75-130 1,3-Dichlorobenzene 25.0 1.0 ug/l 25.0 ND 100 75-130 1,4-Dichlorobenzene 24.7 1.0 ug/l 25.0 ND 99 80-120 Dichlorodifhoromethane 24.0 2.0 ug/l 25.0 ND 96 10-160 1,1-Dichloroethane 26.6 1.0 ug/l 25.0 ND 106 65-135 1,2-Dichloroethane 25.5 0.50 ug/l 25.0 0.63 99 60-150 1,1-Dichloroethane 29.0 1.0 ug/l 25.0 0.91 112 65-140 cis-1,2-Dichloroethane 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichloroethane 27.6 1.0 ug/l 25.0 ND 110 65-135 1,3-Dichloropropane 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropane 27.2 0.50 ug/l 25.0 ND 109 70-140	1.2-Dibtomo-3-chloropropane	19.2	5.0	ug/I	25.0	ND	77	45-155			•
1,2-Dichlorobenzene 24.8 1.0 ug/l 25.0 ND 99 75-130 1,3-Dichlorobenzene 25.0 1.0 ug/l 25.0 ND 100 75-130 1,4-Dichlorobenzene 24.7 1.0 ug/l 25.0 ND 99 80-120 Dichlorotenzentane 24.0 2.0 ug/l 25.0 ND 96 10-160 1,1-Dichlorotenzene 26.6 1.0 ug/l 25.0 ND 106 65-135 1,2-Dichlorotenane 25.5 0.50 ug/l 25.0 0.63 99 60-150 1,1-Dichlorotenane 29.0 1.0 ug/l 25.0 0.91 112 65-140 cis-1,2-Dichlorotene 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichlorotene 27.6 1.0 ug/l 25.0 ND 110 65-135 1,2-Dichlorotene 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 26.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichlorotene 27.3 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 25.2 1.0 ug/l 25.0 ND 109 65-140 2,2-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropane 27.2 0.50 ug/l 25.0 ND 109 70-140	1,2-Dibromoethane (EDB)	24.6	1.0	ug/i	25.0	ИD	98	70-130			
1,3-Dichlorobenzene 25.0 1.0 ug/l 25.0 ND 100 75-130 1,4-Dichlorobenzene 24.7 1.0 ug/l 25.0 ND 99 80-120 Dichlorodifhoromethane 24.0 2.0 ug/l 25.0 ND 96 10-160 1,1-Dichloroethane 26.6 1.0 ug/l 25.0 ND 106 65-135 1,2-Dichloroethane 25.5 0.50 ug/l 25.0 ND 106 65-135 1,2-Dichloroethane 29.0 1.0 ug/l 25.0 0.63 99 60-150 1,1-Dichloroethene 27.1 1.0 ug/l 25.0 ND 108 65-140 cis-1,2-Dichloroethene 27.6 1.0 ug/l 25.0 ND 108 65-135 1,2-Dichloroethene 27.6 1.0 ug/l 25.0 ND 100 65-135 1,2-Dichloroethene 26.7 1.0 ug/l 25.0 ND 110 65-135 1,2-Dichloropropane 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/l 25.0 ND 109 70-140	Dibromomethane	24.3	1.0	ug/I	25.0	ND	97	65-140			
1,4-Dichlorobenzene 24.7 1.0 ug/l 25.0 ND 99 80-120 Dichlorodifluoromethane 24.0 2.0 ug/l 25.0 ND 96 10-160 1,1-Dichloroethane 26.6 1.0 ug/l 25.0 ND 106 65-135 1,2-Dichloroethane 25.5 0.50 ug/l 25.0 0.63 99 60-150 1,1-Dichloroethane 29.0 1.0 ug/l 25.0 0.91 112 65-140 cis-1,2-Dichloroethane 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichloroethane 27.6 1.0 ug/l 25.0 ND 110 65-135 1,2-Dichloropropane 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.2 0.50 ug/l	1,2-Dichlorobenzene	24.8	1.0	¤g/i	25.0	ND	99	75-130			
Dichlorodifluoromethane 24.0 2.0 ug/l 25.0 ND 96 10-160 1,1-Dichloroethane 26.6 1.0 ug/l 25.0 ND 106 65-135 1,2-Dichloroethane 25.5 0.50 ug/l 25.0 0.63 99 60-150 1,1-Dichloroethane 29.0 1.0 ug/l 25.0 0.91 112 65-140 cis-1,2-Dichloroethane 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichloroethane 27.6 1.0 ug/l 25.0 ND 110 65-135 1,2-Dichloropropane 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.2 1.0 ug/l 25.0 ND	1,3-Dichlorobenzene	25.0	1.0	ug/l	25.0	ND	100	75-130			
1,1-Dichloroethane 26.6 1.0 ug/l 25.0 ND 106 65-135 1,2-Dichloroethane 25.5 0.50 ug/l 25.0 0.63 99 60-150 1,1-Dichloroethane 29.0 1.0 ug/l 25.0 0.91 112 65-140 cis-1,2-Dichloroethane 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichloroethane 27.6 1.0 ug/l 25.0 ND 110 65-135 1,2-Dichloropropane 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 2,2-Dichloropropane 27.2 0.50 ug/l 25.0 ND 109 65-140 1,1-Dichloropropene 27.2 0.50 ug/l	1,4-Dichlorobenzene	24.7	1.0	ug/l	25.0	ND	99	80-120			
1,2-Dichloroethane 25.5 0.50 ug/l 25.0 0.63 99 60-150 1,1-Dichloroethene 29.0 1.0 ug/l 25.0 0.91 112 65-140 cis-1,2-Dichloroethene 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichloroethene 27.6 1.0 ug/l 25.0 ND 110 65-135 1,2-Dichloropropane 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/l 25.0 ND 109 70-140	Dichlorodifluoremethrae	24.0	2.0	wg/i	25.0	ИD	96	10-160			
1,1-Dichloroetheue 29.0 1.0 ug/i 25.0 0.91 112 65-140 cis-1,2-Dichloroetheue 27.1 1.0 ug/i 25.0 ND 108 65-130 traus-1,2-Dichloroetheue 27.6 1.0 ug/i 25.0 ND 110 65-135 1,2-Dichloropropane 26.7 1.0 ug/i 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/i 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/i 25.0 ND 101 60-150 1,1-Dichloropropane 27.3 1.0 ug/i 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/i 25.0 ND 109 70-140	1,1-Dichloroethane	26.6	1.0	ug/I	25.0	ND	106	65-135			
cis-1,2-Dichloroethene 27.1 1.0 ug/l 25.0 ND 108 65-130 trans-1,2-Dichloroethene 27.6 1.0 ug/l 25.0 ND 110 65-135 1,2-Dichloropropane 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/l 25.0 ND 109 70-140	1,2-Dichloroethane	25.5	0.50	18/1	25.0	0.63	99	60-150			
trans-1,2-Dichloroethene 27.6 1.0 ug/l 25.0 ND 110 65-135 1,2-Dichloropropane 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropane 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropane 27.2 0.50 ug/l 25.0 ND 109 70-140	1,1-Dichloroethene	29.0	1.0	ug/i	25.0	0.91	112	65-140			
1,2-Dichloropropane 26.7 1.0 ug/l 25.0 ND 107 65-130 1,3-Dichloropropane 25.7 1.0 ug/l 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichloropropene 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/l 25.0 ND 109 70-140	cis-1,2-Dichloroethene	27.1	0.1	ug/l	25.0	ND	801	65-130			
1,3-Dichloropropane 25.7 1.0 ug/i 25.0 ND 103 65-140 2,2-Dichloropropane 25.2 1.0 ug/i 25.0 ND 101 60-150 1,1-Dichloropropene 27.3 1.0 ug/i 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/i 25.0 ND 109 70-140	trans-1,2-Dichloroethene	27.6	1.0	ug/i	25.0	ND	110	65-135			
2,2-Dichkoropropane 25.2 1.0 ug/l 25.0 ND 101 60-150 1,1-Dichkoropropene 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichkoropropene 27.2 0.50 ug/l 25.0 ND 109 70-140	1,2-Dichloropropage	26.7	1.0	ug/I	25.0	ND	107	65-130			
1,1-Dichlompropene 27.3 1.0 ug/l 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/l 25.0 ND 109 70-140	1,3-Dichloropropaue	25.7	0.1	ug/i	25.0	ND	103	65-140			
1,1-Dichlompropene 27.3 1.0 ug/i 25.0 ND 109 65-140 cis-1,3-Dichloropropene 27.2 0.50 ug/i 25.0 ND 109 70-140	2,2-Dichloropropane	25.2	0.1	_	25.0	ND	101	60-150			
cis-1,3-Dichloropropene 27.2 0.50 ug/i 25.0 ND 109 70-140	· · ·	27.3	1.0	-	25 0	ND	109	65-140			
	· ·	27.2	0.50	_	25.0	ND	109	70-140			
				_							

el Mar Analytical, Irvine ris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in fall, without written permission from Del Mar Analytical.

10B1817 < Page 54 of 70>

17461Deran Ave., Suke 100, Invine, CA 92614 (949) 261-1072 FAX (949) 260-1297 1014 E. Godey Dr., Suke A. Colton, CA 921314 (200) 370-4667 FAX (949) 370-1046 9484 Chespoake Dr., Suke 805, San Dirgo, CA 92123 (650) 505-6556 FAX (658) 503-6599 9830 Sauth Stat St., Suke 8-170, Phoenix, AZ 85044 (460) 785-0031 2520 E. Suzoke Rd. #3, Las Wegas, NV 86131 (2702) 798-3670 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

- Analyte	Result	Reporting Limit	Units	Spike Levet	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 5B25031 Extracted: 02/25/0		1211110	Onks	Deves	Kesuk	AREC	Limes	200	Liidk	Quamicis
	-									
Matrix Spike Analyzed: 02/25/2005	(5B25031-MS1)				Source: I	OB 1696-1	5			
Ethylbeazene	26.4	0.50	ug/]	25.0	ND	106	70-130			
Hexachlorobutadiene	25.1	1.0	ug/I	25,0	ND	100	65-140			
lsopropylbenzene	27,2	1.0	ng/I	25.0	ND	109	70-130			
p-Isopropyltoluene	24.8	1.0	ug/I	25,0	ND	99	70-130			
Methylene chloride	26.6	5.0	uջ/I	25.0	ND	106	60-135			
Methyl-tert-buryl Ether (MTBE)	25.4	1.0	ug/I	25.0	ND	102	50-155			
Naphahalene	25.0	1.0	ug/I	25.0	ND	100	50-150			
n-Propylbenzene	25.9	1.0	ug/I	25.0	ND	104	70-135			
Sryrene	17.3	1.0	ug/1	25.0	ND	69	55-145			
1,1,1,2-Tetrachioroethane	26.4	1.0	ug/I	25.0	ND	106	70-145			
1,1,2,2-Tetrachloroethane	24.4	1.0	ug/1	25.0	ND	98	60-145			
Tetrachloroethene	118	1.0	ug/I	25.0	110	32	70-130			M-HA
Tolmene	26.0	0.50	ug/l	25.0	ND	104	70-120			
1,2,3-Trichlorobenzene	25.8	1.0	ng/I	25.0	ND	103	60-140			
1,2,4-Trichlorobeuzene	26.6	1.0	ug/J	25.0	ИD	106	60-140			
1,1,1-Trichlomethane	26.2	1.0	ug/I	25.0	ND	105	75-140			
1,1,2-Trichloroethane	25.0	1.0	ug/I	25.0	ND	100	60-135			
Trichloroethene	27.8	1.0	ug/l	25.0	1.7	104	70-125			
Trichlorofluoromethune	25.9	1,0	ug/J	25.0	ND	104	55-145			
1,2,3-Trichloropropane	24.4	1.0	սց/1	25.0	ND	98	55-140			
1,2,4-Trimethylbenzene	25.4	1.0	ug/I	25.0	ND	102	60-125			
1,3,5-Trimethylbenzene	27.1	1.0	ng/I	25.0	ND	108	70-130			
Vinyl chloride	27.3	0.50	ng/l	25.0	ND	109	40-135			
o-Xylene	24.2	0.50	ug/I	25.0	ND	97	65-125			
m,p-Xylenes	48.5	1.0	ug/I	50.0	ND	97	65-130			
Surroguie: Dibromofluoromethane	27.4		ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	28.0		ug/l	25.0		112	80-120			
Sibrogase: 4-Bromofluorobenzene	27.2		µ द्व∕ी	25.0		109	80-120			

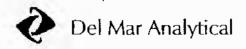
17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1822 FAX (949) 260-3297 1044 E. Cooley Dr., Suite A. Calun, CA 92324 (909) 370-4667 FAX (949) 370-10-6 9884 Chesapeako Dr., Suite 805, Sain Diegu, CA 92123 (858) 595-8596 FAX (858) 505-9689 9830 South Stat St., Suite 8-120, Phomic AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 F, Suite 8-120, Phomic AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 F, Suite Rd. #7, Lot Wegas, NV 89120 (702) 738-1220 FAX (702) 738-1621

MWH Americas - Brea 3050 Sahirn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817


Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25031 Extracted: 02/25/05										
Matrix Spike Dup Analyzed: 02/25/200	5 (5B25031-N	ISD1)			Source: I	OB1696-1	5			
Benzene	25.3	0.50	ug/I	25.0	ИD	101	70-120	1	20	
Bromobenzene	26.4	1.0	ug/I	25.0	NO	106	65-130	2	20	
Bromochloromethane	26.3	1.0	ug/l	25.0	ND	105	65-140	2	25	
Bromodichloromethane	25.7	1.0	ug/I	25.0	ND	103	70-140	2	20	
Bromoform	21.3	1.0	ug/I	25.0	ND	85	55-140	5	25	
Bromomethanc	27.4	1.0	ug/I	25.0	ND	110	50-145	4	25	
n-Butylbenzene	25.6	1.0	ug/l	25.0	ND	102	70-140	1	20	
sec-Butylbenzene	24.9	1.0	ug/l	25.0	ND	100	70-130	0	20	
tert-Butylbenzene	25.5	1.0	ug/I	25.0	ND	102	70-130	2	20	
Carbon terrachloride	26.5	0.50	ug/I	25.0	ND	106	70-145	0	25	
orobenzene	24.8	1.0	ug/l	25.0	ND	99	80-125	0	20	
oroethane	28.8	1.0	ug/l	25.0	ИD	115	50-145	3	25	
Chloroform	27.8	1.0	ug/I	25.0	2.0	103	70-135	1	20	
Chloromethane	24.5	1.0	ug/I	25.0	ND	98	35-145	0	25	
2-Chlorotoluene	25.2	1.0	ug/i	25.0	ND	101	70-140	4	20	
4-Chlorotolueuc	25.6	1.0	ug/I	25.0	ND	102	70-140	3	20	
Dibromochloromethane	26.6	1.0	ug/]	25.0	ND	106	65-145	3	25	
1,2-Dibromo-3-chloropropane	20.2	5.0	ug/I	25.0	ND	81	45-155	5	30	
1,2-Dibromoethane (EDB)	25.9	1.0	ug/I	25.0	ND	104	70-130	5	25	
Dibromomethane	25.0	1.0	ug/l	25.0	ND	100	65-140	3	25	
1,2-Dichlorobenzene	25.2	1.0	ug/l	25.0	ND	101	75-130	2	20	
1,3-Dichlorobenzene	24.7	1.0	ug/I	25.0	ND	99	75-130	1	20	
1,4-Dichlorobenzene	24.4	1.0	ng/I	25.0	ND	98	80-120	1	20	
Dichlorodiffeoremethane	23.6	2.0	ug∕l	25.0	ND	94	10-160	2	30	
1,1-Dichloroethane	26.0	1.0	ug/l	25.0	ND	104	65-135	2	20	
1,2-Dichloroethane	26.7	0.50	ug/i	25.0	0.63	104	60-150	5	20	
1,1-Dichloroetheac	28.7	1.0	ug/l	25.0	0.91	111	65-140	1	20	
cis-1,2-Dichloroethene	26.4	1.0	ug/l	25.0	ND	106	65-130	3	20	
trans-1,2-Dichlorouthene	27.1	1.0	ug/I	25.0	ND	108	65-135	2	20	
1,2-Dichleropropune	27.0	1.0	ag/l	25.0	ND	108	65-130	1	20	
1,3-Dichioropropane	26.1	1.0	ng/l	25.0	ND	104	65-140	2	25	
2,2-Dichloropropure	24.2	1.0	ng/l	25.0	ND	97	60-150	4	- 25	
1,1-Dichlorapropene	27.9	1.0	ug/I	25.0	ND	112	65-140	2	20	
cis-1,3-Dichloropropene	27.4	0.50	ug/I	25.0	ND	110	70-140	1	20	
trans-1,3-Dichloropropene	27.2	0.50	ug/l	25.0	ND	109	70-140	2	25	

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cuchy Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (856) 505-8596 FAX (858) 505-9689 1890 South 51x St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0051 2530 E. Surset Rd. #3, Las Vegas, NV 89120 (707) 798-3620 FAX (707) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Brea, CA 92821 Attention: Lisa Hall Report Number: iOB1817

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

•		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: 5B25031 Extracted: 02/25/05	<u>5</u>										
Matrix Spike Dup Analyzed: 02/25/.	2005 (5B25031-N	(SD1)			Source: I	OB1696-1	5				
Ethylbenzene	26.8	0.50	ug/I	25.0	ND	107	70-130	2	20		
Hexachlorobutadicue	24.8	1.0	ug/I	25.0	ND	99	65-140	1	20		
Lsopropylbenzene	26.7	1.0	ug/I	25.0	ИD	107	70-130	2	20		
p-Isopropyltoluciie	24.3	1.0	ug/l	25.0	ND	97	70-130	2	20		
Methylene chloride	26.2	5.0	ug/I	25.0	ND	105	60-135	2	20		
Methyl-tert-butyl Ether (MTBE)	25.6	0.1	ug/I	25.0	ND	102	50-155	1	25		
Nuphthalene	25.6	0.1	ug/I	25.0	ND	102	50-150	2	30		
n-Propylbenzene	25.1	1.0	ug/I	25.0	ND	100	70-135	3	20		
Styrene	17.0	1.0	ug∕1	25.0	DИ	68	55-145	2	30		
1,1,1,2-Tetrachloroethage	26.8	0.1	ug/I	25.0	ND	107	70-145	2	20		
1,1,2,2-Tetrachloroethane	25.2	1.0	11g/I	25.0	ND	101	60-145	3	30		
Tetrachloroethore	121	1.0	ug/I	25.0	110	44	70-130	3	20	M-HA	
Toleene	26.0	0.50	ug/I	25.0	ND	104	70-120	0	20		
1,2_3-Trichkorobenzene	25.7	1.0	ug/I	25,0	ND	103	60-140	0	20		
1,2,4-Trichlorobeazene	26.6	1.0	ug/I	25.0	ND	106	60-140	0	20		
1,1,1-Trichloroethane	26.0	1.0	11g/I	25.0	ND	104	75-140	1	20		
1,1,2-Trichloroethane	26.1	1.0	11g/l	25.0	ND	104	60-135	4	25		
Trichlaroethene	28.0	1.0	ug/l	25.0	. 1,7	105	70-125	1	20		
Trichlorofluoromethane	25.5	1.0	11g/l	25.0	ND	102	55-145	2	25		
1,2,3-Trichloropropane	25.0	1.0	սց∕1	25.0	ND	100	55-140	2	30		
1,2,4-Trimethylbenzene	25.2	1.0	ug/I	25.0	ND	101	60-125	1	25		
1,3,5-Trimethylbenzene	26,4	1.0	ug/1	25.0	ND	106	70-130	3	20		
Vinyl chloride	26.4	0.50	սց∕1	25.0	ND	106	40-135	3	30		
o-Xylene	24.2	0,50	ug/I	25.0	ND	97	65-125	0	20		
rn,p-Xylenes	48.9	1.0	ug/I	50.0	ND	98	65-130	1	25		
Surrogate: Dibromofluoromethane	27.0		ug/l	25.0		108	80-120				
Surrogate: Toluene-d8	27.8		ug/l	25,0		III	80-120				
Surrogate: 4-Bromofluorobergene	27.7		21g/l	25.0		111	80-120				
•											

17461Ucrion Are., Suite 100, Invine, CA 92614 (149) 261-1022 FAX (949) 260-1297 1014 C. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1066 9484 Chrispinale Dr., Suice 805, San Energa, CA 92123 (858) 505-8596 FAX (858) 505-9599 9830 Sauth Shar S.L., Suite 8-120, Processia, AZ 85044 (460) 783-0041 FAX (460) 785-0051 2520 E. Sunser, Rd. #3, List Viejax, INV 89120 (702) 798-3620 FAX (401) 798-3621

MWH Americas - Brea

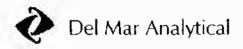
3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Half Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05


Received: 02/23/05

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/8270C MOD)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24040 Extracted: 02/24	/05									
Blank Analyzed: 02/25/2005 (5B2	4040-BLK1)									
1,4-Dioxage	ND	1.0	ug/l							
Surrogate: 1,4-Dioxanc-d8	1.06		υg/l	2.00		53	35-120			
LCS Analyzed: 02/25/2005 (5B24	040-BSI)						*			
1,4-Dioxane	1.16	1.0	ug/l	2.00		58	35-120			
Surrogate: 1,4-Dioxane-d8	1.05		ugA	2.00		52	35-120			
Matrix Spike Analyzed: 02/25/20	05 (5B24040-MS1)				Source: I	OB1817-0	4			
1,4-Dioxane	7.74	2.0	ug/l	4.00	5.4	58	35-120			
Surrogate: 1,4-Dioxane-d8	2.19		ug/I	4.00		55	35-120			
Matrix Spike Dup Analyzed: 02/2	25/2005 (5B24040-N	ASD1)			Source: L	OB1817-0	4			
-Dioxane	7.77	2.0	ug/1.	4.00	5.4	59	35-120	0	25	
arrogate: 1.4-Diaxane-d8	2.29		ug/l	4.00		57	35-120			10

17461 Derun Ave., Suke 100, Irvine, CA 92614 (PHI): 261-1022 FAX (949) 260-3292 (1014 E. Cooley Dr., Saite A. Colom, CA 92324 (1909) 370-4667 FAX (1949) 370-1046 9484 Orrespeake Dr., Suke 805, San Diego, CA 92123 (856) 595-8599 FAX (856) 505-9689 9830 Sowish \$10 St., Suke 8-120, Physicia, AZ 85044 (460) 785-0043 FAX (480) 785-0851 2520 E. Sumet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 794-3621

MWH Americas - Brea

Project ID: Haneywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiera
Batch: 5B24046 Extracted: 02/24/05										
Blank Analyzed: 02/24/2005 (5B24046-	BLK1)									
Метсину	ND	0.00020	mg∕1							
LCS Analyzed: 02/24/2005 (5B24046-B	51)									
Marcery	0.00785	0.00020	ம⊈/1	0.00800		98	90-115			
Matrix Spike Analyzed: 02/24/2005 (5B	24046-MS1)				Source: I	OB1817-0	3			
Mercury	0.00817	0.00020	mg/l	0,00800	ND	102	75-120			
Matrix Spike Dup Analyzed: 02/24/200	5 (5B24046-N	ASD1)			Source: I	OB1817-0	3			
Mercury	0.00750	0.00020	ம்ழ∕1	0.00800	ND	94	75-120	9	20	
Batch: 5B24047 Extracted: 02/24/05										
·										
Blank Analyzed: 02/24/2005-02/25/2005	(5B24047-B	LKI)					•			
Antimony	ND	0.010	raβ\j							
Arsenic	ND	0,0050	mg/l							
Barium	ND	0.010	mg/l							
Beryllium	ND	0.0040	mg/l							

mg/l

mg/l

mg∕l

m**g/**1

mg∕l

mg∕l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

ND

0.0050

0.0050

0.010

0.016

0.0050

0.020

0.010

0.0050

0.010

0.0050

0.010

0.020

Del Mar Analytical, Irvine Chris Roberts Project Manager

Cadmiun

Cobalt

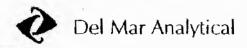
Copper

Lasd

Nickel

Silver

Zinc


Selenium

Thallister

Venadium

Chronium

Molybdenum

17451 Derian Ave., Suite 100, Invine, CA 92614 (549) 761-1022 FAX (649) 260-3297 1014 E. Coolley Dr., Suite A. Ciolian, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chespenkle Dr., Suite 805, San Diegor, CA 92123 (658) 505-8596 FAX (658) 505-8699 9430 South 51st St., Suite 8-120, Phoenex, AZ 85044 (460) 785-0043 FAX (460) 765-0651 2520 E. Sursei Rd. #3, Las Vegas, NV 49120 (707) 798-3640 FAX (702) 798-3621

1WH Americas - Brea 1050 Saturn Ave., Suite 20

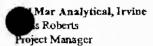
3050 Saturn Ave., Suite 205 Brea, CA 92821

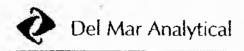
Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817


Sampled: 02/23/05


Received: 02/23/05

METHOD BLANK OF DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24047 Extracted: 02/24/05	<u>.</u>									
LCS Analyzed: 02/24/2005-02/25/200	05 (5B24047-BS)	1)								
Antimony	1.02	0.010	tng/l	1.00		102	021-08			*
Arsenic	0.983	0.0050	mg/l	1 00		98	80-120			
Bariam	0.958	0.010	mg/I	1.00		96	80-120			
Beryllium .	0.963	0.0040	mg/l	00.1		96	80-120			
Cadmium	0.954	0.0050	mg/I	1.00		95	80-120			
Chromium	0.973	0.0050	mg/l	1.00		97	80-120			
Cobalt	0,920	0.010	mg/I	00.1		92	80-120			
Copper	0.936	010.0	mg/I	1.00		94	80-120			
Lead	0.942	0.0050	mg/I	1.00		94	80-120			
Molybdcaum	0.983	0.020	mg/l	1.00		98	80-120			
kel	0.941	0.010	mg/t	00.1		94	80-120			
mion	0.999	0.0050	mg/I	1.00		100	8 0 -120			
Silver	0.486	0.010	ırk/l	0.500		97	80-120			
Thellium	0,989	0.0050	mg/l	1.00		99	80-120			
Vanadami	0.967	0.010	mg/I	1.00		97	80-120			
Zinc	0.948	0.020	Лупі	00.1		95	8 0 -120			
Matrix Spike Analyzed: 02/24/2005-	02/25/2005 (5B2	4047-MS1)			Source: I	OB1817-0	3			2
Antimony	1.06	0.010	mg/l	1,00	0.0053	t05	75-125			
Arsenic	1.04	0.0050	mg/l	1.00	0.0082	103	75-125			
Barium	1.35	0.010	mg/I	20.1	0.36	. 99	75-125			
Beryllium	1.02	0.0040	mg/I	1.00	ND	102	75-125			
Cadmium	0.967	0.0050	mg/l	1.00	מא	97	75-125			
Chromium	1.18	0.0050	mg/l	1.00	0.18	100	75-125			
Cobalt	0.906	0.010	mg/l	1.00	ND	91	75-125			
Copper	0.975	0.010	mg/l	1.00	ND	98	75-125			
Lead *	0.949	0.0050	mg/l	1.00	ND	95	75-125			
Molyhdenum	1.02	0.020	mg/I	1.00	0.0059	101	75-125			
Nickel	0.926	0.010	ന്റേ/1	1.00	ND	93	75-125			
Sclenium	1.04	0.0050	mg/I	1.00	ND	104	75-125			
Silver	0.520	0.010	mg/l	0.500	0.0030	103	75-125			
Thallium	1.02	0.0050	mg∕l	1.00	0.0084	101	75-125			
Venadium	1.03	0.010	mg/l	1.00	0.0036	103	75-125			
Zinc	1.04	0.020	നും/1	1.00	0.072	97	75-125			

17461Derran Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 250-1297 1014 E. Coolley Dii, Suite A. Colom, CA 92314 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeaka Dir., Suite NOS, San Diego, CA 92123 (856) 503-6596 FAX (658) 505-9669 9810 South STU St., Suite B-120, Phoesio, AZ 85044 (480) 783-0043 FAX 1800 765-0851 2520 E. Suite B-120, Phoesio, AZ 85044 (480) 783-0043 FAX (480) 785-0851 2520 E. Suite B-120, Phoesio, AZ 85044 (480) 783-0043 FAX (470) 785-3631

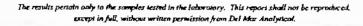
MWH Americas - Brea 3050 Sahm Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05


Received: 02/23/05

METALS

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5824047 Extracted: 02/24/05										
Matrix Spike Dup Analyzed: 02/24/2	005-02/25/2005 ((5B24047-MSI	DJ)		Source: 1	OB1817-0	3			
Antimony	1.06	0.010	mg/I	1.00	0.0053	105	75-125	0	20	
Arsenic	1.02	0.0050	ntg/I	1.00	0.0082	101	75-125	2	20	
Barium	1.32	0.010	mg/l	1.00	0.36	96	75-125	2	20	
Beryllium '	1.01	0.0040	mg/l	1.00	ND	101	75-125	1	20	
Cadmium	0.957	0.0050	mg/I	1.00	ND	96	75-125	1	20	
Chromium	1.16	0.0050	mg/l	1.00	0.18	98	75-125	2	20	
Cobalt	0.901	0.010	ong/1	1.00	ND	90	75-125	1	20	
Copper	0.969	6.010	mg/l	1.00	ND	97	75-125	1	20	
Lead	0.924	0.0050	mg/I	1.00	ND	92	75-125	3	20	
Molybdraum	1.02	0.020	mg/l	1,00	0.0059	101	75-125	0	20	
Nickel	0.915	0.010	mg/l	1,00	ND	92	75-125	1	20	
Selezium -	1.03	0.0050	mg/l	1.00	ND	103	75-125	1	20	
Silver	0.502	0.010	mg/l	0.500	0.0030	100	75-125	4	20	
Thallium	1.02	0.0050	mg/l	1.00	0.0084	101	75-12 5	.c	20	
Vanadium	1.02	0.010	மஓ/1	1.00	0.0036	102	75-125	1	20	
Zinc	1.03	0.020	πg/I	1.00	0.072	96	75-125	1	20	
<u>Batch</u> ; 5B24052 Extracted: 02/24/05										
Blank Analyzed: 02/24/2005 (5B2405)	2-BLK1)									
Thallium	ND	1.0	ag/I							
LCS Analyzed: 02/24/2005 (5B24052-	BS1)									
Thalkum	82.5	0.1	ug/I	0.08		103	80-120			
Matrix Spike Analyzed: 02/24/2005 (5B24052-MS1)				Source: 10	OB1817-0	3			
Thellinum	82.1	1.0	ng/l	80.0	0.17	102	75-125			

Del Mar Analytical, Irvine Chris Roberts Project Manager

17461 Derüm Ave., Sustr 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesprake Dr., Suite 805, Sust Diego, CA 92121 (651) 509-5059 FAX (865) 505-9669 9430 South 514 91, Suite 8-120, Phoenin, AZ 85044 (490) 785-0043 FAX (400) 785-0051 2520 E. Suitet 8d. 493, Las Vegas, NV 89120 (702) 796-3620 FAX (702) 796-3621

IWH Americas - Brea 3050 Saturn Ave., Suite 205

Brea, CA 92821 Anention: Lisa Hall Project ID: Honeywell, North Hollywood

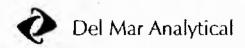
1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

METHOD BLANK OC DATACT


METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24052 Extracted: 02/24/05										
Matrix Spike Dup Analyzed: 02/24/200	5 (5B24052-M	1SD1)			Source: I	OB1817-0	3			
Thallium	81.2	1.0	ug/I	80.0	0.17	101	75-125	t	20	
Batch: 5B25093 Extracted: 02/25/05										
Blank Analyzed: 02/25/2005-02/27/2005	5 (5B25093-B)	LKI)								
Antimony	ND	8,010	mg/l							
Arsenic	ND	0.0050	mg/l							
Berium	ND	0.010	mg/I				-			
Beryllium	ND	0.0040	mg/l							
Cadmium	ND	0.0050	mg/I							
Chromium	ND	0.0050	mg/I							
alt	ND	0.010	mg/l							
Copper	ND	0.010	mg/l							
Lend	ND	0.0050	mg/I							
Molybdenum	ND	0.020	mg/l							
Nicket	ND	0.010	mg/l							
Selezium	ND	0.9050	mg/I							
Silver	ND	0.010	mg/l							
Thallium .	ND	0.0050	mg/l							
Venadium	ND	0.010	rng∕1							
Zinc	ND	0.020	mg/l							
LCS Analyzed: 02/25/2005-02/27/2005	(5B 25093 -BS	I)								
Antimory	1.06	0.010	mg/l	1.00		106	80-120			
Arsenic	1.00	0.0050	mg/I	1.00		001	80-120			
Barrum	0.977	0.010	mg/I	1.00		98	80-120			
Beryllium	0.985	0.0040	mg/I	1.00		98	80-120			
Cadraium	0.975	0.0050	mg/l	00.1		98	80-120			
Сітовішь	0.991	0.0050	mg/I	1.00		99	80-120	•		
Cobalt	0.989	0.010	$m_{\mathbf{g}}/\mathbf{I}$	1.00		99	80-120			
Соррег	0.977	0.010	mg/l	00.1		98	80-120			
Lead	0.978	0.0050	mg/l	1.00		98	80-120			
Molybdenum	0.995	0.020	mg/l	1.00		100	80-120		*	
Nickel	0.974	0.010	ாഉ∕1	1.00		97	80-120			
Selenium	0.972	0.0050	mg/I	1.00		97	80-120			
Silver	0.493	0.010	mg/I	0.500		99	80-t20			
Thailium	1.00	0.0050	mg/l	1.00		100	80-120			
- X										

Mar Analytical, Irvine is Roberts Project Manager

The results perious only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Aealysicol.

10B1817 <Page 62 of 70>

17461/Jeman Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 760-3297 1014 E. Cooley Or., Suite A. Colton, CA 92724 (909) 370-4667 FAX (949) 370-1046 9484 Christynskin Dr., Suite 863, San Diego, CA 92723 (858) 500-5556 FAX (848) 905-9669 9430 Souck 51st St., Suite 8-120, Propris AZ 85044 (440) 785-0043 FAX (440) 785-0051 2520 E. Suitest Rd. #3, Lax Virgas, NV 69120 (702) 798-3520 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821: Attention: Lisa Haft Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25093 Extracted: 02/25/05										
LCS Analyzed: 02/25/2005-02/27/2005	(5B25093-BS1)	,								
Vanadium	0,985	0.010	mg/l	1.00		98	80-120			
Zinc	0.959	0.020	mg∕l	1.00		96	80-120			
Matrix Spike Analyzed: 02/25/2005-02	/2 7 /2005 (5B25	093-MS1)			Source: 1	ÖB1976-1	2			
Antimony	1.09	0.010	mg/l	1.00	ND	109	75-125			
Arsonic	1.04	0.0050	mg/l	1.00	ND	104	75-125			
Barium	1.21	0.010	mg/l	1.00	0.26	95	75-125			
Beryllium	1.01	0.0040	mg/l	1.00	ND	101	75-125			
Cadmium	0.958	0,0050	mg/l	1.00	ND	96	75-125			
Chromium	1.20	0.0050	mg/l	1.00	0.20	100	75-125			
Cobalt	0.938	0.010	mg/l	1.00	ND	94	75-125			
Соррет	0.968	0.010	mg/I	1.00	DM	97	75-125			
Lead	0.972	0.0050	mg/I	1.00	ND	97	75-125			
Molybdenum	1.03	0.020	mg/I	1.00	0.0058	102	75-125			
Nickel	0.923	0.010	mg∕I	1.00	0.0029	92	75-125			
Selezium	0.993	0.0050	mg/l	1.00	ND	99	75-125			
Silver	0.502	0.010	mg/l	0.500	ИD	100	75-125			
Thallium	1.03	0.0050	mg/l	1.00	0.0088	102	75-125			
Vanadium	1.01	0.010	mg∕l`	1.00	0.0037	101	75-125			
Zinc	0.977	0.020	№	1.00	0.024	95	75-125			
Matrix Spike Dup Analyzed: 02/25/200	05-02/27/200 5 (5B25093-MS1	D1)		Source: Y	OB1976-1	2			
Aptimony	1.09	0.010	mg/l	1.00	ND	109	75-125	0	20	
Arsenic	1.05	0.0050	mg/l	1.00	ND	105	75-125	ı	20	
Baritm	1.21	0.010	ւռջ/1	00.1	D.26	95	75-125	0	20	
Beryllium	1.01	0.0040	mg/l	1.00	ND	101	75-125	0	20	
Cadmium	0.956	0.0050	mg/I	1.00	ND	96	75 –125	0	20	
Chromium	1.20	0.0050	mg/l	1.00	0.20	100	75-125	0	20	
Cobalt	0.934	0.010	mg/l	1.00	ND	93	75-125	0	20	
Соррег	0.970	0.010	mg/l	1.00	ND	97	75-125	0	20	
Lead	0.972	0.0050	mg/l	1.00	ND	97	75-125	0	20	
Molybdenum	1.03	0.020	mg/l	1.00	0.0058	102	75-125	0	20	
Nickel	0.920	0.010	mg/l	1.00	0.0029	92	75-125	0	20	
Solenium	0.995	0.0050	mg/l	1.00	ND	100	75-125	0	20	
Silver	0.5 02	0.010	mg/l	0.500	ND	100	75-125	0	20	
Thailine	1.02	0.0050	mg/i	1.00	0.0088	101	75-125	1	20	
			_							

Del Mar Analytical, Irvine Chris Roberts

Project Manager

The results persain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permissian from Del Mar Analytical.

IOB1817 <Page 63 of 70>

17461 Derizo Ave., Suite 100, Invine, CA 92614 (943) 261-1022 FAX (949) 260-3297 1014 E. Coolley Dr., Suite A., Cohim, CA 92324 (1998) 370-4667 FAX (949) 370-1065 9484 Chesipeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9669 9830 South 518 Sr., Soite 8-120, Phomin, AZ 85044 (1908) 785-0043 FAX (800) 785-0651 2500 E. Serbet Rd. #3, Lai Vegas, NV 89120 (702) 788-3620 FAX (707) 759-3621

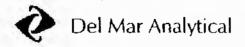
4WH Americas - Brea 3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honcywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05


Received: 02/23/05

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25093 Extracted: 02/25/05										
Matrix Spike Dup Analyzed: 02/25/2005	5-02/27/2005 (5B25093-MSI	01)		Source: I	OB1976-1	2			
Variadium	1,01	0.010	mg/l	1.00	0.0037	101	75-125	0	20	
Zioc	0.977	9,020	mg/l	1.00	0.024	95	75 125	0	20	
Batch: 5B25106 Extracted: 02/25/05					*					
Blank Analyzed: 02/25/2005 (5B25106-l										
Mercury	NĐ	0.00020	mg∕l							
LCS Analyzed: 02/25/2005 (5B25106-B	S1)									
Mercury	0.00841	0.00020	mg/l	0.00800		105	90-115			
Matrix Spike Analyzed: 82/25/2005 (5B)	25106-MS1)				Source: I	OB1976-1	2			
restry	0.00861	0.00020	றஓ∕ி	0.00800	ND	108	<i>75</i> -120			
Matrix Spike Dup Analyzed: 02/25/2009	5 (5B25106-M	ISD1)			Source: I	OB1976-1	2			
Mercury	0.00860	0.00020	mg/l	0.00800	ND	108	75-120	0	20	
Batch: 5B25114 Extracted: 02/25/05										
Blank Analyzed: 02/26/2005 (5B25114-1	BLK1)									
Thallium	ND	1.0	ug/I							
LCS Analyzed: 02/26/2005 (5B25114-B	S1)									
Thellman	77.6	1.0	ug/l	80.0		97	80-120			
Matrix Spike Analyzed: 02/26/2005 (5B	25114-MS1)				Source: I	OB1976-1	2			
Thallium	67.8	1.0	ს g∕1	80.0	11.0	85	75-125			

17467Oenan Ave., Suite 100, Inriae, CA 92614 (949) 261-1022, FAX (949) 260-3292 (1014 E. Cooley On, Suite A, Colton, CA 92334 (909) 370-4667 FAX (849) 370-1066 (9484 Obesapeake On, Suite 105, San Dictgo, CA 97123 (858) 505-8596 FAX (839) 505-9649 (930) Soual S1st St., Suite 8-120, Phoenic, AZ 45044 (460) 785-0043 FAX (480) 785-0651 (930) 5004 (930) 5

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05

METALS

- Anslyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B25114 Extracted: 02/25/05										
Matrix Spike Dup Analyzed: 02/26/200	5 (5B25114-M	ISD1)			Source: I	OB1976-t	2			
Thallium	73.3	1.0	ug/l	80.0	0.11	91	75-125	8	20	

17461Deriaa Ave., Suite 100, Imine, CA 92614 (949) 261-1922 FAX (949) 260 3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Cherapeale Dr., Suite 803, San Diegri, CA 97123 (854) 395-8596 FAX (868) 595-9669 9830 Shufi 513 Sc., Suite 8-176, Phoesia, AZ 85044 (480) 785-0093 FAX (460) 785-0851 2500 E. Suntet Rd. #3, Lis Vegor, NV 89120 (702) 798-3620 FAX (702) 798-3621

AWH Americas - Brea 3050 Saturn Ave., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

Sampled: 02/23/05

Received: 02/23/05

METHOD BLANK/OC DATA

INORGANICS

Limits	RPD	Limit	Qualifiers
			£
•			
90-110			
03			
80-115			
04			
80-115			
03			
80-115	2	15	
04			
80-115	1	15	
85-115			
01			
	04 80-115	04 80-115 1	04 80-115 1 15

Mar Analytical, Irvine is Roberts Project Manager

1745/Donan Ave., Suite 100, Invine, CA 92614 (949) 761-1027 FAX (949) 260-3237 10114. Cookly Cv., Suite A. Cokon, CA 93344 (SS9 370-4667 FAX (949) 370-1046 9484 Che-upeake Dr., Suite 805, San Diegy, CA 92123 (859) 50-8596 TAX (849) 79-809 9830 South S1x St., Suite 8-120, Phornix, AZ 85044 MRIB 785-0043 FAX (440) 785-0051 2520 6, Suite 8-120, Phornix, AZ 85044 MRIB 785-0043 FAX (440) 785-0051 2520 6, Suite 8-120, Phornix, AZ 85044 MRIB 785-0043 FAX (440) 785-0051

MWH Americas - Brea

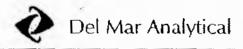
3050 Samm Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Hoseywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05


Received: 02/23/05

INORGANICS

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24061 Extracted: 02/24/05										
Matrix Spike Analyzed: 02/24/2005 (5B2	4061-MS2)				Source: I	OB1817-0	4			
Perchlorate	48.2	2.0	ug/l	50.0	15	93	80-120			
Matrix Spike Dup Analyzed: 92/24/2005	(5B24061-M	SD1)			Source: I	OB1741-0	1			
Perchlorate	50.3	2.0	ug/l	50.0	2.2	96	80-120	0	20	
Matrix Spike Dup Analyzed: 02/24/2005	(5B24061-M	SD2)			Source: I	OB1817-0	4			
Perchlorate	47.0	2.0	սց/1	50.0	1.5	91	80-120	3	20	
Batch: 5B25064 Extracted: 02/25/05										
Blank Analyzed: 02/25/2605 (5B25064-B	LKI)									
Perchlorate	ND	2.0	ug/1							-
LCS Analyzed: 02/25/2005 (5B25064-BS	1)									
Perchlorate	48.4	2.0	ւթ∕1	50.0		97	85-115			
Matrix Spike Analyzed: 02/25/2005 (5B2	25064-MS1)				Source: 1	OB1976-1	3			
Perchlorate	51.3	2.0	ug⁄I	50.0	1.5	100	80-120			
Matrix Spike Dup Analyzed: 02/26/2005	(5B25064-M	SD1)			Source: I	OB1976-1	3			
Perchlorate	51.4	2.0	ug/l	50.0	1.5	100	80-120	0	20	
Batch: 5B25084 Extracted: 02/25/05										
Blank Analyzed: 02/25/2005 (5B25084-B Chromium VI	ILK1) ND	0.0010	mg/l							

Del Mar Analytical, Irvine Chris Roberts Project Manager

124bTUchan Ave., Suite 100, Inine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1074 E. Cookey Or., Suite A. Celon, CA 92324 (909) 370-4667 FAX (949) 370-1066 9484 Chesapenke Or., Suite 803, San Degp. CA 92123 (4638) 505-8596 FAX (868) 305-9669 9630 South S143 K. Seite 8-120, Phornic AZ 85044 (460) 765-8643 FAX (460) 765-8653 2520 E. Suite 8-120, Phornic AZ 85044 (460) 765-8643 FAX (460) 765-8653 2520 E. Suite 8-120, Phornic AZ 85044 (460) 765-8643 FAX (460) 765-8653 2520 E. Suite 8-120, Phornic AZ 85044 (460) 765-8643 2620 FAX (470) 776-3623

TWH Americas - Brea 3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1817

Sampled: 02/23/05

Received: 02/23/05

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data
Aumyte	result	LIMIN	Units	Level	Kezmir	74 KEC	T:thmt2	KFD	Lamit	Qualifiers
Batch: 5B25084 Extracted: 02/25/05										
LCS Analyzed: 02/25/2005 (5B25084-B	SE)									
Chromium VI	0.0473	0.0010	mg/I	0.0500		95	90-110			

Matrix Spike Analyzed: 02/25/2005 (5)	325084-MS1)				Source: I	OB1976-1	3			
Chromium VI	0.395	0.0050	mg/I	0.250	0.17	90	80-115			
Matrix Spike Dup Analyzed: 62/25/200	5 (5B25084-M	ISD1)			Source: I	OB1976-1	3			
Chromium VI	0.397	0.0050	mg/l	0.250	0.17	91	80-115	3	15	

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 250-3297 10114 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (688) 505-9669 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (140) 785-0043 FAX (460) 785-0851 2520 E. Suite 8-120, Phoenix, AZ 85044 (140) 785-0643 FAX (400) 785-0851

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05

Brea, CA 92821

Report Number: 10B1817

Received: 02/23/05

Attention: Lisa Hall

DATA QUALIFIERS AND DEFINITIONS

H Sample analysis performed past method-specified holding time.

M-HA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Deriam Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesspeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8120, Phoenin, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suites Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1817

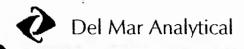
Sampled: 02/23/05

Received: 02/23/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 314.0	Water	NA	X
EPA 6010B	Water	X	X
EPA 6020	Water	X	X
EPA 7199	Water	X	X
EPA 7470A	Water	X	х
EPA 8260B	Water	Х	X
EPA 8270C MOD	Water	X	X


Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Mar Analytical, Irvine is Roberts
Project Manager

3/28/06 104(e) 0729

DEL MAR ANA B23 Allon, Avenue rvine, CA 92606	LYTIC	AL		Honeywell Chain C					in Of	Cust	ody/	Ans	lysis	Rec	uest									(15) (15) (15) (15) (15) (15) (15) (15)
mone (949)261-1012	4x: (949)	435-0BSB			4 Consident	1.7				Site N	1985	NOR	Honey		North I	Kolly	wood Si	le -11	600 SI	ermai	Way.	North	, -	DI DINA
/C Manager: Mike Pa										Locati	on of S		Hotty					_					_	
lieni Contacti (parte. Jike Flaucher/Lisa Hi		Ħ)		Bampler:	J.Plummer 1890933.05				-		0	O	0	0	0	0	ol	0	0	0	0	0	0	ERST. (TOO) CO.
/WH					naround Time:	241		10														7 57		
050 Saturn Street,				Standard	•	2 11	11				3	7												ment selection resident
ichael E. Flaugher ontect Phone/Cell:				Rush Cherps 2 weeks -	Authorized for -		1			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7 (m.)	Ą.			ğ			Ì						
ardeopy He port To:	(714)550	4-3491		, will .	\square	ับ 5	h				12	Ę	5		- 1 d		ping							好的。
woice To:				i week - Next Day -	1	, v –				S Park	Tite 22 CAM Metais List (who Hg)	SW7470 Fulk 22 CAM Mercury	W7199 Chromium VI	SW6020 Thatfiam	SW1770C MOD 1.4-Diaxane	ercionate	El 260 Voladie Organica							
	Sample	Identifica	ition	Sample Date	Sample Time	Şample Type		Sample Parpose			Tirke 22 C	SWIE	661 LMS	SW6020	SW1270X	E314.0 Perclorate	E1260 V.							
	Start Depth	End Depth			The part				(E.).		2	7	4	Z.	2	2								
Location ID	(ft)	(ft)	Field Sample ID		1. 1. 1.				to be	Unite	1	1	5	3	3	ľ	8						_	Eight in Cherk
GW-1			GW-1-2/4/05-F	2/23/0	0845	GN	Meler	Rea	1	\perp	X	X		X		-								
6W-1			GW-1-2/13/05		0845	1	11_	1	6				X		X	X	X							1
6W-3			CW-3-2/23/05-F		1015				1		X	X		X										
6W-3			GW-3-2/23/05		1015				6				×		X	X	χ			-		ļ		
6W-3			(-W-3-2/20/05 M5)		1015				1	1	ĺχ	X	A	X				-						
6W-3			GW-3-42/05 A.T.	1	1015		\sqcap		6				X		Х	X	Χ							
6W-14A			GW-14A-PA-2/3/AC	c	1/00		1	 	1		ĺχ	V		X		·····	-		·					
GW-14A			GW-MA-PA-42400		1/00	1			A	1-1			X	, ·	-		X				·			
GW-14A			CW-14A-2/2405.F		1155				1	1 1	X	$\overline{\chi}$		×					_		_		_	
6N-14A			GW-14A-2/23/05		1155		11-	11-	4	11	13	 '`	X				X				_	<u> </u>		
144-14A			GW-14-PC2/23/01=	- 	1255		11		17	11	X	×	1	×					_					1
2 1.W-14A			CW-144-PC- 2/23/05	₩	1255	V	∀	₩-	4	11	1	 	X	,	-		X			-	1	 	1	
	PA 60108	· Title 22	CAM Metals List - Sb, As, Ba	, B4, Cd, C		, Mq, NL S	e, Ag, Va	, Zn;	EPA 7	670A - 1] ПЦе 22	CAM		s Last	Hg	<u> </u>	17: 1	-				·		
tellinquished by			Соттрилу	· · · ·	(WH	Received	y / .	}		W	M	4	mpeny	DMA			Condi	iqa		_	······································	Custo	ody Se	ads Intact
Dough	PL	-	Date/TimeZ/13/o	19	20	80 M	بالمثار	0-	•	2	Qua/						Coole	Tem	p.	_				
amilia shed by		1	ate Man Company			Received	9.0	27.		D	110	9 ,000	трилу				Condi	Jon /				Cusk	ody Se	als Iniact
Tibelial	Dec		3/21/03 Date 17 10 3			1	4	1	1 00	2	23	OS	2	100			C00]6	Tem (p.					
reservatives: 0 . No	nes (1 = H	(CL): !2 =	HN03); (3 = H2SO4); (4 = Na	OHD: (5 =	Zn. Acetate):	{6 * M=0	W. (7	No HSO41	8 - 0	- 1														

2825 Allon Avenue	DEL MAR ANALYTICAL 825 Allon Avenue vine, CA 92606 hone: (940)261-1022 Fax: (949) 435-0858 /C Manager: Mike Parkinson				lone	ywe	11	Cha	in O	Cust	ody/	Ano	lysis	Rec	uest					J.,				COSE 11 37	070-0023
	Fax: (949)	435-0858		Privileged	C Coalidmi	tal .				Site N	ame:	NOR'	гнно	LLY											
				EDD To:						Locali	on of S	are.		wood.		Hally	wood \$	ite -11	600 S	herma	n Way	North		Lap IV. a D	MA
Client Contact: (name		(125		Sampler:	J.Plumme	_						rvally		W 9004	un.								_	entitions and	
Mike Flaucher∆Llsa H			······································	PO#	1890933.0						0	0	0	0	0	0	0	0	0	0	0	0	0	200.700 医	A189093310501
MWH				Analysis Tur	naround Times	211	ı	10																S PEN ME	加加多
3050 Saturn Street,	Suite 20	Brea, C	A 92821	Standard		24	1				3						1 1								
Micheel, E. Flaugher	@mwhg	obal.com	1	Rush Cherges	Authorized for		,				(who Hg)	ĝ			¥									高速電視的	
Contact Phone/Cell	(714)93	6-3397		2 weeks ·		D	i.			臘	3	3			200		ايرا							A STATE OF	
Hardcopy Report To:				l wayk -		KU	5 h	\				3	IV ma	E	3	L.	Ognics								
Invoice To:				Next Day							CAM Metals	SW7470 Tide 22 CAM	SW7199 Chromium VI	SW6020 Thattium	SW8270C MOD 1.4-Die	E314.0 Perctorate	Votable							Prince and the second s	
	Commit	: [dentifics	atla-	Sample Date	Sample	Sample		Sample Purpose			1 2	W7470	947199	0Z09M	W8270	314.08	E8260 V							1 A 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	Start	End	tion	WELL ST		STATE OF	TO STATE OF			Section of	1	V1	V1	¥7	Ψ)	-		-						STATE OF	
Location ID	GW-140 GW-148-PA-21									Units	13	mg/L	mg/L		Mary	mell	L'EAT.								
1 GW-140					1		X	X		X															
1 GW-14B	GW-14B GW-140-Major J 1510			1	1	1,	4				Χ				X										
, 772			TB-02230-			V		1	2			_	1				X				_				
15-101-14A	2	<u></u>	TB-022305 GW-14A-PD2	127/4	14:00		120	Reg		1	_						4				-	1		Marell	subject
10074			G-N-1/A-TU-	12300	17.00	V/V	TIME.	145)		++	-				-			-				-	_	1/2 3/05	at an col
.5				ļ			ļ <u>.</u>		 	1	ļ										ļ			of solled	tet-
6				1																				nucleu	Hangle p
,																					" -			2/25/	IS WHL
							 			 - ;	1								-			1	-	· · · · · · · · · · · · · · · · · · ·	
8					ļ	 	 	-			1-				-									ļ	
9					ļ		<u> </u>	<u> </u>	ļ	 	ļ							_			<u> </u>				
10									<u> </u>													-			
									T		-]			
12				 			—			11				-							1	1-	_		
	PA 6010B	- Title 22	CAM Metals List - So, As, B	Be, Ca, C	, Co, Cu, Pt	, Mo, NL S	e, Ag, Va	, Zn;	EPA 7	70A - T	Itie 22	CAM	Metal	s Llst -	Hg	_					<u> </u>	1			
						т—-		C-		DMA			Condi					TA	du Ca	ala Intact					
Relinquished by	1.	-	Compan	1		Record to t	^ -),		67	Day #			#J/NE/4			Щ			<u> </u>		CHEIO	Jy 36.	#1# 117talk(
Lough	<u> </u>		Date/Time2/23/0		D	$\langle \nabla \rangle$		ell.			Date/						L	Terns				1	1.0	ala lawara	
A SA	$\langle . \rangle$		A Compan	1		Received b	22	*		$\perp I$	rry	9/CB	прапу			Captains Castody Se			dy S¢	ars United					
Olillie	lee		1/23 AS Time (1)	ĺ		711/h		12/	23/	01	290	b		Cobler Temp.											
Proportalives 0 = None 11 = HCL 1: 12 = HNO31; Cl = H250H1; Id = H		CALL (4 = NaCHE) (5 a Za Acciosa) (5 a MaCAE) (7 a NaHSDA) (8 a Other Ca			12/23/85 296												·								

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92124 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9699 9830 South 51st S., Saite B-120, Phoenin, AZ 85044 (460) 785-0043 FAX (480) 785-0851 2520 E. Sunset RJ., Lis Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For: MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05 Received: 02/23/05 Issued: 03/01/05 15:25

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.

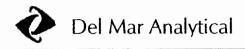
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID 10B1818-01 CLIENT ID

EB-02-02/23/05

MATRIX


Water

Reviewed By:

l Mar Analytical, Irvine

enris Roberts
Project Manager

IOB1818 <Page 1 of 24>

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Cr., Suite A. Cubun, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Tr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9699 9830 South 514 St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

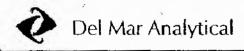
1890933.0501

Report Number: 10B1818

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)


Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1818-01 (EB-02-02/23/0	5 - Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	5B24029	0.50	ND	1	2/24/2005	2/24/2005	
Bromobenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Bromochloromethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Bromodichloromethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Bromoform	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Bromomethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
n-Butylbenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
sec-Butylbenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
tert-Butylbenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Carbon tetrachloride	EPA 8260B	5B24029	0.50	ND	1	2/24/2005	2/24/2005	
Chlorobenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Chloroethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Chloroform	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Chloromethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
2-Chlorotoluene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
4-Chlorotoluene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Dibromochloromethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	. `
1,2-Dibromo-3-chloropropane	EPA 8260B	5B24029	5.0	ND	1	2/24/2005	2/24/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Dibromomethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichlorobenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichlorobenzenc	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
1,4-Dichlorobenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Dichlorodifluoromethane	EPA 8260B	5B24029	2.0	ND	1	2/24/2005	2/24/2005	
1,1-Dichloroethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichloroethane	EPA 8260B	5B24029	0.50	ND	1	2/24/2005	2/24/2005	
1,1-Dichloroethene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
1,2-Dichloropropane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
1,3-Dichloropropane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
2,2-Dichloropropane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
1,1-Dichloropropene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B24029	0.50	ND	1	2/24/2005	2/24/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B24029	0.50	ND	1	2/24/2005	2/24/2005	
Ethylbenzene	EPA 8260B	5B24029	0.50	ND	1	2/24/2005	2/24/2005	
Hexachlorobutadiene	EPA 8260B	5B24029	1.0	ND	i	2/24/2005	2/24/2005	
Isopropylbenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
p-Isopropyltoluene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Methylene chloride	EPA 8260B	5B24029	5.0	ND	1	2/24/2005	2/24/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B24029	1.0	ND	i	2/24/2005	2/24/2005	
Del Mar Analytical, Irvine	2.1.02000	JD2702)	1.0	1.10	•	22,2003		4

Del Mar Analytical, Irvine

Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1818 <Page 2 of 24>

17461Denan Ave., Suite 100, Irvine, CA 92614 (049) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dr., Suite A. Cokon, CA 92724 (999) 370-4667 FAX (949) 370-1046 9484 Chesapeule Dr., Suite 805, San Okego, CA 92727 (058) S05-8596 FAX (058) S05-9689 9836 South 51s. Sc., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 E. Smitet Rd. #3, Cas Vegas, NV 89120 (200) 798-3629 FAX (702) 798-3621

IWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1818

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

4.			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1818-01 (EB-02-02/23/05 - Wa	iter) - coat						•	
Reporting Units: ag/l								
Naphthalene	EPA 8260B	5B24029	1.0	ND	3	2/24/2005	2/24/2005	
n-Propylbenzene	EPA 8260B	5B24029	1.0	ND	}	2/24/2005	2/24/2005	
Styrene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Tetrachloroethene	EPA 8260B	5B24029	0,1	ND	1	2/24/2005	2/24/2005	
Toluene	EPA 8260B	5B24029	0.50	0.70	1	2/24/2005	2/24/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B24029	0.1	ND	1	2/24/2005	2/24/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
I, I, I-Trichloroethane	EPA 8260B	5B24029	0.1	ND	1	2/24/2005	2/24/2005	
1,1,2-Trichloroethane	EPA 8260B	5B24029	1.0	ND	ì	2/24/2005	2/24/2005	
Trichloroethene	EPA 8260B	5B24029	0.1	ND	1	2/24/2005	2/24/2005	
Trichlorofluoromethane	EPA 8260B	5B24029	0.1	ND	1	2/24/2005	2/24/2005	
1,2,3-Trichloropropane	EPA 8260B	5B24029	1.0	ND	}	2/24/2005	2/24/2005	
12,4-Trimethylbenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
5-Trimethylbenzene	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
vinyl chloride	EPA 8260B	5B24029	0.50	ND	1	2/24/2005	2/24/2005	
o-Xylene	EPA 8260B	5B24029	0.50	ND	3	2/24/2005	2/24/2005	
m,p-Xylenes	EPA 8260B	5B24029	1.0	ND	1	2/24/2005	2/24/2005	
Surragate: Dibromofluoromethane (80-120%)				105 %				-1-
Surrogate: Toluene-d8 (80-120%)				96 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				95 %				

Mar Analytical, Irvine hris Roberts Project Manager

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1027 FAX (949) 260-3292 total E. Cockey Dr., Suite A. Culkun, CA 92324 (909) 370-4647 FAX (949) 370-1046 (1948) 370-1046 (Decapeake Dr., Suite 865, Saip Diego, CA 9212) 1678 505-8596 FAX (859) 505-9669 9830 Small 516 St., Suite 8-128, Processo, AZ 85044 4460 785-0043 FAX (480) 785-0851 2520 E. Suiter Rd. #3, Las Vegas, NV #9120 (702) 798-3630 FAX (702) 798-3620

MWH Americas - Brea

Project ID: Haneywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: 40B1818

Received: 02/23/05

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/8270C MOD)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1818-01 (EB-02-02/23/05 -	Water)							RL-4
Reperting Units: ug/l 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 (35-120%)	EPA 8270C MOD	5B24040	1.1	ND 60%	1.11	2/24/2005	2/25/2005	

17461Derian Ave., Suite 106, Irvine, CA 92614 (1949) 261-1072 FAX (1949) 260-3.297 1014 E. Cooliny Dr., Suite A. Colion, CA 97324 (1909) 370-4667 FAX (1949) 370-1046 9484 Chesspeake Dr., Suite 805, San Olego, CA 97123 (1858) 505-8096 FAX (1960) 505-9699 9430 South 51sr Sa, Suite 8-126, (Hoomin, AZ 85044 (1809 785 0043 FAX (1900) 786-3045) 2570 E. Suinet Rd. #7, Las Virgas, NV 89170 (1702) 798-3670

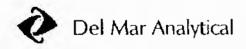
WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1818


Sampled: 02/23/05

Received: 02/23/05

METALS

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: 10B1818-01 (EB-02-02/	23/05 - Water)				-8-			
Reporting Units: mg/l								
Antimony	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005	
Arsenic	EPA 6010B	5B24047	0.0050	0.9057	1	2/24/2005	2/25/2005	
Barium	EPA 6010B	5B24047	0.010	ИD	1	2/24/2005	2/25/2005	
Beryllium	EPA 6010B	5B24047	0.0040	ND	I	2/24/2005	2/25/2005	
Cadmium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/25/2005	
Chromium	EPA 6010B	5B24047	0.0050	ND	ı.	2/24/2005	2/25/2005	
Cobalt	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005	
Copper	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005	
Lead	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/25/2005	
Mercury	EPA 7470A	5B24046	0.00020	ND	1	2/24/2005	2/24/2005	
Molybdenum	EPA 6010B	5B24047	0.020	ND	1	2/24/2005	2/25/2005	
Nickel	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005	
Selenium	EPA 6010B	5B24047	0.0050	ND	1	2/24/2005	2/25/2005	
Silver	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005	
Wanadium	EPA 6010B	5B24047	0.010	ND	1	2/24/2005	2/25/2005	
c	EPA 6010B	5B24047	0.020	ND	1	2/24/2005	2/25/2005	
Sample ID: IOB1818-01 (EB-02-02	723/05 - Water)							
Reporting Units: ug/l								
Thallium	EPA 6020	5B24052	1.0	ND	ì	2/24/2005	2/24/2005	

17461Derian Avt., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Celeon, CA 92324 (909) 3/0-4647 FAX (949) 3/0-1046 9464 Orcsypcalse Dr., Suite 805, San Dicea, CA 92723 (838) 305-8596 FAX (869) 305-9649 9830 South Stat St., Suite 8-120, Prio-rela, AZ 85044 (480) 785-0043 FAX (480) 785-0851 1530 E. Suite 8-120, Prio-rela, AZ 85044 (480) 785-0043 FAX (480) 785-0851

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/23/05

Brea, CA 92821 Attention: Lisa Hall Report Number: 10B1818

Received: 02/23/05

INORGANICS

Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
5 - Water)							
EDA 7100	5022062	0.0010	MIN	,	1/22/2005	2/22/2005	
	3 D23 W (3	0.0010	עא	•	212312003	2/25/2005	
5 - Water)							
EPA 314.0	5B24061	2.0	ND	1	2/24/2005	2/24/2005	
	Method 5 - Water) EPA 7199 5 - Water)	Method Batch 5-Water) EPA 7199 SB23063 5-Water)	Method Batch Limit 5 - Water) EPA 7199 5B23063 0.0010 5 - Water)	Method Batch Limit Result 5-Water) EPA 7199 5B23063 0.0010 ND 5-Water)	Method Batch Limit Result Factor 5 - Water) EPA 7199 5B23063 0.0010 ND 1 5 - Water)	Method Batch Limit Result Factor Extracted 5 - Water) EPA 7199 5B23063 0.0010 ND 1 2/23/2005 5 - Water)	Method Batch Limit Result Factor Extracted Analyzed 5-Water) EPA 7199 5B23063 0.0010 ND 1 2/23/2005 2/23/2005 5-Water)

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805. San Diego, CA 92132 (850 305-8396 FAX (858) 505-9689 9830 South S14 St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

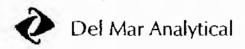
WH Americas - Brea 3050 Saturn Ave., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818


Sampled: 02/23/05

Received: 02/23/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: EB-02-02/23/05 (IOB1818-01)	- Water				
EPA 7199	ì	02/23/2005 15:40	02/23/2005 21:00	02/23/2005 21:15	02/23/2005 23:50

17461 Denian Ave., Sude 100, Invinc, CA 92614 (949) 261-1022 FAX (949) 260-1297 1014 C. Cockey Cr., Swine A, Cokun, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Ohcsapeske Or., Swite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 Soud-51st Sc., Swite 8120, Phomeio, AZ 85044 (480) 785-0041 FAX (400) 785-0651 2570 E. Sumet Rd. #3, Las Vegos, NV 69120 (702) 796-3620 FAX (701) 796-1621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24029 Extracted: 02/24/6	<u>05</u>									
D1 - 1 - 1 1 - 02/2 (D00F /FT/24	000 DE 1/15									
Blank Analyzed: 02/24/2005 (5B24)	•	0.60								
Beazene Bromobenzene	DM DM	0,50 1.0	ug∕l ug/l							
Bromochloromethane	ND	1.0	π8\]							* .
Bromodichloromethane	ND	1.0	րջ/I							
Вготоботв	ND	1.0	ng/I							
Bromomethane	ND	1.0	ug/I							
a-Butylbenzene	ND	1.0	ug/I							
sec-Buryibenzene	ND	1.0	ug/I							
tert-Butylbenzene	ND	1.0	ng/I							
Carbon tetrachloride	ND	0.50	ug/I							
Chorabenzene	ND	1.0	ug/I							- 1
Chlomethane	ND	1.0	ug/1			8				
Caloroform	ND	1.0	ug/I							
Chloromethane	ND	1.0	ug∕1							
2-Chlorotoluere	ND	1.0	ug/I							
4-Choroohiene	ND	1.0	ug/I							
Dibromochloromethane	ND	1.0	ug/I							
1,2-Dibromo-3-chloropropane	ND	5.0	ng/l							
2-Dibromoethane (EDB)	ND	1.0	ug/I							
Dibromemethane	ND	1.0	υgA							
1,2-Dichlorobenzene	ND	1.0	ngA							
1,3-Dichlorobenzene	ND	1.0	ug/I							
1.4-Dichlorobenzene	ND	1.0	ug/I							
Dichlorodifluoromethane	ND	2.0	ug/1							
1,1-Dichloroethane	ND	1.0	ug/1							
1,2-Dichleroethane	ND	0.50	ug/I							
1,1-Dichloroetheae	ND	1.0	ug/I							
cis-1,2-Dichloroethene	ND	1.0	ug/I							
trans-1,2-Dichloroethene	ND	1.0	ng/I							
1,2-Dichloropropage	ND	1.0	ug/I							
1,3-Dichloropropese	ND	1.0	ng/I							
2,2-Dichloropropane	ND	1.0	ug/l							
1,1-Dichloropropene	ND	1.0	սց/1						•	
cis-1,3-Dichloropropene	ND	0.50	ug/I							
trans-1,3-Dichloropropene	ND	0.50	ng/l							
-,										

Del Mar Analytical, Irvine

Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permbasion from Del Mar Analytical.

10B1818 <Page 8 of 24>

17461 Derian Ave., Suite 100, levine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Conley Or., Suite A. Colton, CA 92324 (908) 370-4667 FAX (949) 370-T046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (658) 505-8596 (AX (658) 505-9689 9830 South STst St., Suite 8-120, Phoenia, AZ 85044 (480) 285-0043 FAX (480) 785-0851

WH Americas - Brea

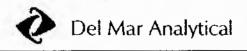
3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818

Sampled: 02/23/05


Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24029 Extracted: 02/24/05										
Blank Analyzed: 02/24/2005 (5B24029	-BLK1)									
Ethylbenzenc	ND	0.50	ug/I							
Hexachlorobutadiene	ИД	1.0	ug/I							
lsopropy/benzene	ND	1.0	ug/I							
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	5.0	ug/I							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
Naphthalene	ИD	1.0	ug/I							
n-Propylbenzene	ИD	1.0	ug/I							
Styrene	ND	0.1	ug/l							
1,2-Tetrachloroethane	ND	1,0	ug/I							
2,2-Tetrachloroethane	ND	1.0	ug/l							
Tetrachloroethene	ND.	1.0	vg/1							
Tolerac	ND	0.50	სც/1							
1,2,3-Trichlorobenzeon	ND	1.0	ug/l							
1,2,4-Trichlorobenzene	ND	1.0	8g/1							
1,1,1-Trichlorocthane	ИD	1.0	ug/I				*			
1,1,2-Trichloroethane	ND	1.0	ug/I							
Trichloroethene	ND	10	ug/I							
Trichlorofluoromethane	ND	1.0	սջ/1							
1,2,3-Trichkropropane	ND	1.0	սց/1							
1,2,4-Trimethylbenzene	ИD	1.0	ug/I							
1,3,5-Trimethylbenzeue	ND	1,0	ug/I							
Vinyl chloride	ND	0.50	ug/I							
o-Xylene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/I							
Surrogate: Dibromofluoromethane	25.6		v _S /ī	25.0		102	80-120			
Surrogate: Toluene-då	23.8		ug/ī	25.0		95	80-120			
Surrogate: 4-Branofluorobenzene	23.6		ugfl	25.0		94	80-120			

17461Darian Ave., Suite 100, Innne, CA-92614 (945) 261-1022 FAX (949) 260-3297 1014 £ Cooky Dr., Seite A Colton, CA 92324 (909) 370-1667 FAX(949) 370-1046 9484 Chesipeskii Dr., Svite 805, Sim Dilego, CA 92123 (ASB) 505-8596 FAX (BSB) 505-9689 9830 South STor St., Swite 8-120. Phoenic, AZ 85044 (48/7) 785-0/143 FAX (48/7) 785-0851 1520 E. Sunset Rd. #3, Las Vegas, NV 89170 (707) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Sourte Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers	
Batch: 5B24029 Extracted: 02/24/				20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,				4	
Dates Dates Dates Value	<u></u>										
LCS Analyzed: 02/74/2005 (5B240	29-BS1)										
Benzene	26.9	0.50	ug/I	25.0		108	70-120				
Втопобендене	25.1	1.0	ug∕I	25.0		100	80-120				
Bromochloromethane	27.7	1,0	ug∕l	25.0		111	65-135				
Bromodichloromethane	26.1	1.0	ug∕I	25.0		104	70-140				
Bromoform	20.7	1.0	սջ/I	25.0		83	55-135				
Bromomethane	26.8	1.0	ր&∖	25.0		107	60-140				
n-Butylbenzene	27.9	1.0	ug/l	25.0		112	75-130				
sec-Butylbenzene	25.5	1.0	սց/1	25.0		102	75-125				
tert-Butylbenzere	25.0	1.0	ug/l	25,0		100	75-125				
Carbon tetrachloride	24,7	0.50	ug/l	25.0		99	70-140				1
Chlorobenzene	25.7	1.0	ug/l	25.0		103	80-125				٨
Chloroethane	26.7	1.0	ug/l	25.0		107	60-145				
Chloreform	29.6	1.0	ug/l	25.0		118	75-130				
Chloromethane	24.6	1.0	ug/l	25.0		98	40-145				
2-Chlarotoluene	25.1	1.0	ug/l	25.0		100	75-125				
4-Chlorotoluene	25.9	1.0	υg/I	25.0		104	75-125				
Dibromochloromethane	25.6	1.0	чք⁄П	25.0		102	65-145				
1,2-Dibromo-3-chloropropane	23.6	5.0	ng∕I	25.0		94	50-135				
(2-Dibromoethane (EDB)	26.2	0,1	ug/l	25.0		105	75-125				
Dibromomethane	26.2	1.0	ug/l	25.0		105	75-130				
1,2-Dichlorobenzene	25.8	1.0	ug∕I	25.0		103	80-120				
1,3-Dichlorobenzene	25.4	1.0	ug/l	25.0		102	80-120				
1,4-Dichkrobenzene	25.0	1.0	ug∕l	25.0		100	80-120				
Dichlorodifluoremethane	21.4	2.0	աջ/1	25.0		86	10-160				
1,1-Dichloroethane	28.1	1.0	ս ջ∕I	25.0		112	70-135				
1,2-Dichloroethane	27.2	0_50	ug/l	25.0		109	60-150				
1,1-Dichlomethese	27.2	1.0	ug/l	25.0		109	75-135				
cis-1,2-Dichloroethene	28.1	1.0	ug/l	25.0		112	70-125				
trans-1,2-Dichloroethene	28.2	1_0	ug/l	25.0		113	70-130				
1,2-Dichloropropuse	26.7	1.0	ug/I	25.0		107	70-120				
1,3-Dichloropropane	26.5	1.0	ug/l	25.0		106	70-130				
2,2-Dichloropropage	28.2	0.5	ug/l	25.0		113	65-150				
1,1-Dichloropropene	26.6	1.0	чg/I	25.0		106	75-130				
cis-1,3 Dichloropropene	27.6	0.50	ug/l	25.0		110	75-130				
trans-1,3-Dichloropropene	27.8	0.50	_g.' υg/l	25.0		m	75-135				
			ъ.								

Del Mar Analytical, Irvine Chris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from Del Mor Analytical.

10B1818 <Page 10 of 24>

77461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Couley Dr., Swite A. Colkin, CA 921324 (909) 3714-1647 FAX (949) 3701-1046 9464 Cheappalk Dr., Swite 805, San Diego, CA 92123 (808) 901-6596 FAX (828) 505-9669 9830 South 519 St., Swite 8-120, Phorenic AZ 85044 (460) 765-0043 FAX (460) 765-0651 2520 E. Swites Rd. #J., Lei Vegat, 4N 99120 (702) 798-3620 FAX (707) 798-3621

WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1818

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

-		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24029 Extracted: 02/24/0	<u>5</u>									
LCS Analyzed: 02/24/2005 (5B2402	9-RS1)									
Ethylbenzene	27.2	0.50	ug/I	25.0		109	80-120			
Hexachlorobutadiene	23.4	0.1	ug/l	25.0		94	65-140			
Isopropylbenzene	25.8	1.0	ug/I	25.0		103	75-125			
p-Isopropyltolucae	25. 7	1.0	ug/I	25.0		. 103	75-125			
Methylene chloride	29.8	5.0	ug/l	25.0		119	60-135			
Methyl-tert-butyl Ether (MTBE)	29.4	1.0	ug/l	25.0		118	55-145			
Naphthalene	25.9	1.0	ug/I	25.0		104	50-145			
n-Propy/benzene	26.1	1.0	ug/I	25.0		104	75-130			
Styrene	27.1	1.0	ug/l	25,0		108	80-135			
,2-Tetrachleroculana	25.5	1.0	ug/I	25.0		102	70-145			
,2-Tetrachloroethane	25.6	1.0	ug/l	25.0		102	60-135			
Tetrachloroethene	23.5	1.0	ug/I	25.0		94	75-125			
Toluene	26.7	0.50	ug/l	25.0		107	75-120			
1,2,3-Trichlorobenzene	26.5	1.0	ug/I	25.0		106	65-135			
1,2,4-Trichlorobenzene	27.4	1.0	ug/l	25.0		110	70-140			
1,1,1-Trichtoroethane	27.6	1.0	ոջ/1	25,0		110	75-140			
1,1,2-Trichloroethane	26.7	1.0	ug/I	25.0		107	70-125			
Trichloroethene	25.0	1.0	ug/I	25.0		100	80-120			
Trichlorofluoromethane	27.3	1.0	ug/l	25.0		109	65-145			
1,2,3-Trichloropropane	24.9	1.0	ug/I	25.0		100	60-130			
1,2,4-Trimethylbenzene	26.1	1.0	ug/l	25.0		104	75-125			
1,3,5-Trimethylbenzeue	26.2	1.0	ug/l	25.0		105	75-125			
Viuyl chloride	24.8	0.50	ug/I	25.0		99	50-130			
o-Xylene	25.9	0.50	ug/l	25.0		104	75-125			
m_p-Xylenes	52.8	1.0	ug/l	50.0		106	75-120			
Surrogate: Dibromofluoremethane	26,5		ug/I	25,0		106	80-120			
Surrogate: Tolvene-d8	24.2		ug/l	25.0		97	80-120			
Surrogate: 4-Bramofluorobenzene	24.6		ug/I	25.0		98	80-120			

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 266-3297 1014 E. Cooley Cr., Suite A. Colsan, CA 92324 (907) 370-4667 FAX (949) 370-1046 (348) Chrispeake Dr., Suite 805, San Olego, Ca 92123 (2018) 505-5594 FAX (858) 505-9689 9630 South 514 St., Suite 81-120, Phoenix, AZ 85044 (460) 785-0043 FAX (400) 785-0851 2520 E. Suites 81-20, Phoenix, AZ 85044 (460) 785-0043 FAX (400) 785-0851 2520 E. Suites 81-20, Phoenix, AZ 85044 (460) 785-0043 FAX (400) 785-0851

MWH Americas - Brea

3050 Sanun Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: 5B24029 Extracted: 02/24/05										
Matrix Spike Analyzed: 02/24/2005 (5	B24029-MSI)				Source: I	OB1696-0	1			
Benzene	22.1	0.50	ug/I	25.0	ИD	88	70-120			
Bromobeazene	21.4	1.0	ug/l	25. 0	ND	86	65-130			
Bromochloroynethane	23.0	1.0	ug/I	25.0	ND	92	65-140			
Bromodichloromethane	22.1	1.0	ug/I	25.0	ND	88	70-140			
Bromoform	38.1	10	ng/I	25.0	ND	72	55-140			
Bromomethane	20.8	1.0	ug/I	25.0	ИD	83	50-145			
n-Butylbenzene	22.2	1.0	ug/I	25.0	ND	89	70-140			
sec-Butylb enzene	20.5	1.0	ug/1	25.0	ND	82	70-130			
tert-Butyltenzeue	20.0	1.0	ug/1	25.0	ND	80	70-130			
Carbon tetrachloride	19-6	0.50	ug/I	25.0	ND	78	70-145			
Chlorobenzene	21.6	1.0	ug/I	25.0	ND	86	80-125			
Chloroethane	21.3	1.0	ug/I	25.0	ND	'85	50-145			
Chloroform	25.4	1.0	εg/ Ι	25.0	1.7	95	70-135			
Chloromethane	19.4	1.0	ug/l	25. 0	ND	78	35-145			
2-Chlorotoluene	20.6	1.0	ug/I	25.0	ND	82	70-140			
4-Chlorotohiene	21.3	1.0	ug/I	25.0	ND	85	70-140			
Dibremechioromethane	21.9	1.0	ug/I	25.0	ИD	88	65-145			
1,2-Dibromo-3-chloropropane	19.9	5.0	ug/l	25.0	ND	80	45-155			
1,2-Dibromoethane (EDB)	22,4	1.0	ug/I	25.0	ND	90	70-130			
Dibrumomethane	22.5	1.0	ug/I	25.0	ND	90	65-140			
! ,2-Dichlorobenzene	22.0	1.0	ug/1	25.0	ND	88	75 -130			
1,3-Dichlorobenzene	21.1	1.0	ug/1	25.0	ND	84	75-130			
1,4-Dichlorobenzene	21.1	1.0	ug/1	25.0	ND	84	60-120			
Dichlorodiffnoromethane	16.6	2.0	ng/l	25.0	ND	66	10-160			
1,1-Dichloroethane	22,6	1.0	ug/I	25.0	ND	90	6 5 -135			
1,2-Dichloroethane	23.7	0.50	ug/I	25.0	0_50	93	60-150			
1,1-Dichloroethese	22.2	1.0	υg/l	25.0	13	84	65-140			
cis-1,2-Dichloroethene	22.9	1.0	ug/l	25.0	ND	92	65-130			
trans-1,2-Dichloroethene	22.1	1.0	ug/I	25.0	ND	88	65-135			
1,2-Dichloropropane	22.5	1.0	υg/I	25.0	ИD	90	65-130			
1,3-Dichloropropane	22.6	1.0	wg/l	25.0	ND	90	65-140			
2,2-Dichloropropune	22.2	1,0	ug/l	25.0	ND	89	60-150		4	
1,1-Dichloropropene	21.1	1.0	reg/l	25.0	ND	84	65-140			
cis-1,3-Dichloropropene	73.7	0.50	ug/l	25.0	ND	95	70-140			
trans-1,3-Dichloropropene	23.6	0.50	ц г/ 1	25.0	ND	94	70-140			
• •			-							

Del Mar Analytical, Irvine Chris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1818 < Page 12 of 24>

17461Derian Ave., Suke 100, Imine, CA 92614 (94th 261-1027 FAX (94th 260-2927 1014 E. Coolery Dr., Suite A. Cokun, CA 92024 (M/B) 330-4667 FAX (94th 9370-1046 9484 Chesopeale Dr., Suite 055, Sain Diego, CA 92123 (83th) 350-8566 FAX (94th) 370-1046 9830 Shindh 51tt St., Suite 8-120, Phinesin, AZ 65044 1400, 785-0043 FAX (400, 785-0657 1520 E. Suite 8-120, Phinesin, AZ 65044 1400, 785-0043 FAX (400, 785-0657 1520 E. Suite Rd. #3, Las Vegas, NV 69120 (2017) 798-3620 FAX (707) 738-3621

WH Americas - Brea

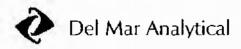
3050 Salum Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1818

Sampled: 02/23/05


Received: 02/23/05

WETHOD BEANK OC DATA

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Matrix Spike Analyzed: 02/24/05 (SB24029-MS1) Source: SB24029 Extracted: 02/24/05 (SB24029-MS1) Source: SB24029 Extracted: 02/24/05 (SB24029-MS1) Source: SB24029-Bx1 Source: SB24029-Bx			Reporting		Spike	Source		%REC		RPD	Data
Matrix Spike Analyzed: 02/24/2005 (SB24029-MS1) Source: IOB1696-01 Ethylbenzene 22.1 0.50 ugl 25.0 ND 88 70-130 Hexachlorobusadiene 18.4 1.0 ugl 25.0 ND 63 70-130 Jespropylbeurene 20.7 1.0 ugl 25.0 ND 83 70-130 Methyl-teric budyl Ether (MTBE) 25.0 1.0 ugl 25.0 ND 50-135 Methyl-teric budyl Ether (MTBE) 25.0 1.0 ugl 25.0 ND 100 50-155 Naphthaleae 22.0 1.0 ugl 25.0 ND 46 55-145 Augherene 11.5 1.0 ugl 25.0 ND 46 55-145 42 All 2-Teurachlorochune 21.8 1.0 ugl 25.0 ND 46 55-145 42 2-Tetrachlorochune 21.8 1.0 ugl 25.0 ND 87 70-145 2-Tet	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Quelifiers
Ethylbenzene	Batch: 5B24029 Extracted: 02/24/0	5_									
Hexachlorobundiene	Matrix Spike Analyzed: 02/24/2005	(5B24029-MS1)				Source: I	OB1696-0	1			
Supropylbenzeae 20.7 1.0 ug/l 25.0 ND 83 70-130	Ethylbenzene	22.1	0.50	ug∕l	25.0	ND	88	70-130			
p-Lopropyltokiene 20.6 1.0 ug/l 25.0 ND 82 70-130 Methyl-ter-butyl Ether (MTBE) 25.0 1.0 ug/l 25.0 ND 100 50-155 Methyl-ter-butyl Ether (MTBE) 25.0 1.0 ug/l 25.0 ND 100 50-155 Methyl-ter-butyl Ether (MTBE) 25.0 1.0 ug/l 25.0 ND 100 50-155 MD 88 50-150 ug/l 25.0 ND 87 70-145 ug/l 25.0 ND 87 70-145 ug/l 25.0 ND 91 60-145 ug/l 25.0 ND 91 60-135	Hexachlorobundiene	18.4	1.0	րջ/1	25.0	ND	74	65-140			
Methylene chloride 25.2 5.0 ug/l 25.0 1.4 95 60-135 Methyl-tert-butyl Ether (MTBE) 25.0 1.0 ug/l 25.0 ND 100 50-155 Naphthalene 22.0 1.0 ug/l 25.0 ND 88 50-150 n-Propylbeazzne 21.2 1.0 ug/l 25.0 ND 85 70-135 Styrene 11.5 1.0 ug/l 25.0 ND 85 70-135 Styrene 11.5 1.0 ug/l 25.0 ND 87 70-145 11.2-Teraschloroethane 21.8 1.0 ug/l 25.0 ND 87 70-145 12.7-Terthelloroethane 21.8 1.0 ug/l 25.0 ND 91 60-145 12.3-Terthellorobenzene 21.1 1.0 ug/l 25.0 ND 87 70-120 12.3-Terthellorobenzene 22.1 1.0 ug/l 25.0 ND 86 60-140	Isopropylbruzene	20.7	1.0	υgΛ	25.0	ND	83	70-130			
Methyl-tert-butyl Ether (MTBE) 25.0 1.0 ug/l 25.0 ND 100 50-155 Naphthaleae 22.0 1.0 ug/l 25.0 ND 88 50-150 n-Propylbeazzue 21.2 1.0 ug/l 25.0 ND 85 70-135 Styrene 11.5 1.0 ug/l 25.0 ND 46 55-145 L1_2-Teurachloroethane 21.8 1.0 ug/l 25.0 ND 87 70-145 2-2-Teorachloroethane 21.8 1.0 ug/l 25.0 ND 91 60-145 1-1,2-Teurachloroethane 21.8 1.0 ug/l 25.0 ND 91 60-145 1-1,2-Teurachloroethane 21.8 0.50 ug/l 25.0 ND 87 70-120 1,2,3-Trichlorobenzene 22.1 1.0 ug/l 25.0 ND 88 60-140 1,2,4-Trichlorobenzene 21.6 1.0 ug/l 25.0 ND 86	p-Isopropyitokiene	20.6	1.0	ug/l	25.0	ND	82	70-130			
Naphthalene 22.0 1.0 ug/l 25.0 ND 88 50-150 u-Propylbeazzne 21.2 1.0 ug/l 25.0 ND 85 70-135 Styrene 31.5 1.0 ug/l 25.0 ND 46 55-145 M2 1-1,2-Tetrachloroethane 21.8 1.0 ug/l 25.0 ND 87 70-145 2-Tetrachloroethane 21.8 1.0 ug/l 25.0 ND 91 60-145 1-1,2-Tetrachloroethane 151 1.0 ug/l 25.0 ND 91 60-145 1-1,2-Trichloroethane 21.8 0.50 ug/l 25.0 ND 87 70-120 1-1,2-Trichloroethane 21.8 0.50 ug/l 25.0 ND 87 70-120 1-1,2-Trichloroethane 22.1 1.0 ug/l 25.0 ND 88 60-140 1-1,1-Trichloroethane 21.6 1.0 ug/l 25.0 ND 91 60-140 1-1,1-Trichloroethane 21.6 1.0 ug/l 25.0 ND 91 60-135 1-1,1-Trichloroethane 21.0 1.0 ug/l 25.0 ND 91 60-135 1-1,2-Trichloroethane 20.8 1.0 ug/l 25.0 ND 91 60-135 1-1,2-Trichloroethane 20.8 1.0 ug/l 25.0 ND 83 55-145 1-2,3-Trichloropropane 21.5 1.0 ug/l 25.0 ND 83 55-145 1-2,3-Trichloropropane 21.5 1.0 ug/l 25.0 ND 86 55-140 1-2,4-Trimethylbenzene 21.0 1.0 ug/l 25.0 ND 85 70-135 1-2,3-Trichloroethane 21.3 1.0 ug/l 25.0 ND 86 65-140 1-2,4-Trimethylbenzene 21.1 0.50 ug/l 25.0 ND 85 70-130 Vinylchloride 19.3 0.50 ug/l 25.0 ND 86 65-125 1-3,5-Trimethylbenzene 21.1 0.50 ug/l 25.0 ND 86 65-125 1-4,0-Trimethylbenzene 21.1 0.50 ug/l 25.0 ND 86 65-130 2-3-Trichloroethane 26.0 ug/	Methylene chloride	25.2	5.0	ug/l	25.0	1.4	95	60-135			
n.Propylbeazzue 21.2 1.0 agl 25.0 ND 85 70-135 Styrene 11.5 1.0 ugl 25.0 ND 46 55-145 MZ 1.1.2-Tetrachloroethane 21.8 1.0 ugl 25.0 ND 87 70-145 2.2-Tetrachloroethane 22.8 1.0 ugl 25.0 ND 91 60-145 Toluene 21.8 0.50 ugl 25.0 ND 87 70-120 1,2,3-Trichlorobenzene 21.8 0.50 ugl 25.0 ND 87 70-120 1,2,3-Trichlorobenzene 21.1 1.0 ugl 25.0 ND 88 60-140 1,2,4-Trichlorobenzene 22.7 1.0 ugl 25.0 ND 91 60-140 1,1,1-Trichlorobenzene 21.6 1.0 ugl 25.0 ND 96 75-140 1,1,2-Trichlorobenzene 21.0 1.0 ugl 25.0 ND 91 60-135 Trichloroethane 22.8 1.0 ugl 25.0	Methyl-tert-butyl Ether (MTBE)	25.0	1.0	ug/l	25.0	ND	100	50-155			
Styrene 11.5 1.0 ug/l 25.0 ND 46 55-145 M2	Naphthaleac	22.0	1.0	ug∕I	25,0	ND	88	50-150			
1.1.2-Tetrachloroethane 21.8 1.0 ug/l 25.0 ND 87 70-145	n-Propylbenzene	21.2	1.0	ng/I	25.0	ND	85	70-135			
1.7 Tetrachkroethane 22.8 1.0 ug/l 25.0 ND 91 60-145 Tetrachloroethene 151 1.0 ug/l 25.0 140 44 70-130 M-HA Toluene 21.8 0.50 ug/l 25.0 ND 87 70-120 1,2,3-Trichlorobenzene 22.1 1.0 ug/l 25.0 ND 88 60-140 1,2,4-Trichloroethane 21.6 1.0 ug/l 25.0 ND 91 60-140 1,1,1-Trichloroethane 21.6 1.0 ug/l 25.0 ND 86 75-140 1,1,2-Trichloroethane 22.8 1.0 ug/l 25.0 ND 91 60-135 Trichloroethane 21.0 1.0 ug/l 25.0 ND 91 60-135 Trichloroethane 20.8 1.0 ug/l 25.0 ND 83 55-145 1,2,3-Trichloropthane 21.5 1.0 ug/l 25.0 ND 83 55-145 1,2,3-Trichloropthane 21.5 1.0 ug/l 25.0 ND 86 55-140 1,2,4-Trinethylbenzene 21.0 1.0 ug/l 25.0 ND 86 65-145 1,3,5-Trimethylbenzene 21.0 1.0 ug/l 25.0 ND 86 60-125 1,3,5-Trimethylbenzene 21.3 1.0 ug/l 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ug/l 25.0 ND 84 65-125 m,p-Xylene 21.1 0.50 ug/l 25.0 ND 86 65-130 Surragate: Dibromofbuoromethane 26.0 ug/l 25.0 ND 86 65-130 Surragate: Toluene-d8 24.2 ug/l 25.0 ug/l 25.0 97 80-120	Styrene	11.5	1.0	ug/l	25.0	ND	46	55-145			M2
Toluene 151 1.0 ug/l 25.0 140 44 70-130 M-HA	1,2-Tetrachloroethane	21.8	1.0	ng/l	25.0	ND	87	70-145			
Toluene 21.8 0.50 ug/l 25.0 ND 87 70-120 1,2,3-Trichlorobenzene 22.1 1.0 ug/l 25.0 ND 88 60-140 1,2,4-Trichloroethane 22.7 1.0 ug/l 25.0 ND 91 60-140 1,1,1-Trichloroethane 21.6 1.0 ug/l 25.0 ND 86 75-140 1,1,2-Trichloroethane 22.8 1.0 ug/l 25.0 ND 91 60-135 Trichloroethane 21.0 1.0 ug/l 25.0 ND 91 60-135 Trichloroethane 21.0 1.0 ug/l 25.0 ND 83 55-145 1,2,3-Trichloropropane 21.5 1.0 ug/l 25.0 ND 83 55-145 1,2,3-Trichloropropane 21.5 1.0 ug/l 25.0 ND 86 55-140 1,2,4-Trimethylbenzene 21.0 1.0 ug/l 25.0 ND 84 60-125 1,3,5-Trimethylbenzene 21.3 1.0 ug/l 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ug/l 25.0 ND 84 65-125 m,p-Xylene 21.1 0.50 ug/l 25.0 ND 86 65-130 Surragate: Dibromofhoromethane 26.0 ug/l 25.0 ug/l 25.0 ND 86 65-130 Surragate: Toluene-d8 24.2 ug/l 25.0 ug/l 25.0 97 80-120 Surragate: Toluene-d8 24.2 ug/l 25.0 ug/l 25.0 97 80-120 Surragate: Toluene-d8 24.2 ug/l 25.0 ug/l 25.0 97 80-120	2-Tetrachkroethane	22.8	1.0	ug∕l	25.0	ND	91	60-145			
1,2,3-Trichlorobenzene 22.1 1.0 ug/l 25.0 ND 88 60-140 1,2,4-Trichlorobenzene 22.7 1.0 ug/l 25.0 ND 91 60-140 1,1,1-Trichlorobenzene 21.6 1.0 ug/l 25.0 ND 86 75-140 1,1,2-Trichlorobenzene 22.8 1.0 ug/l 25.0 ND 91 60-135 Trichlorobenzene 21.0 1.0 ug/l 25.0 ND 91 60-135 Trichloropropane 21.0 1.0 ug/l 25.0 ND 83 55-145 1,2,3-Trichloropropane 21.5 1.0 ug/l 25.0 ND 86 55-140 1,2,4-Trimethylbenzene 21.0 1.0 ug/l 25.0 ND 84 60-125 1,3,5-Trimethylbenzene 21.3 1.0 ug/l 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ug/l 25.0 ND 84 65-125 m,p-Xylenes 42.9 1.0 ug/l 25.0 <td>retrachlomethene</td> <td>151</td> <td>1.0</td> <td>ug/I</td> <td>25.0</td> <td>140</td> <td>44</td> <td>70-130</td> <td></td> <td></td> <td>M-HA</td>	retrachlomethene	151	1.0	ug/I	25.0	140	44	70-130			M-HA
1,2,4-Trichlorobenzene 22.7 1.0 ugA 25.0 ND 91 60-140 1,1,1-Trichloroethane 21.6 1.0 ugA 25.0 ND 86 75-140 1,1,2-Trichloroethane 22.8 1.0 ugA 25.0 ND 91 60-135 Trichloroethane 21.0 1.0 ugA 25.0 ND 83 55-145 Trichloropropane 21.5 1.0 ugA 25.0 ND 86 55-146 1,2,3-Trichloropropane 21.5 1.0 ugA 25.0 ND 86 55-140 1,2,4-Trimethylbenzene 21.0 1.0 ugA 25.0 ND 84 60-125 1,3,5-Trimethylbenzene 21.3 1.0 ugA 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ugA 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ugA 25.0 ND 84 65-125 o-Xylene 21.1 0.50 ugA 25.0 ND	Toluene	21.8	0.50	ugA	25.0	ND	87	70-120			
1,1,1-Trichloroethane 21.6 1.0 ugA 25.0 ND 86 75-140 1,1,2-Trichloroethane 22.8 1.0 ugA 25.0 ND 91 60-135 Trichloroethane 21.0 1.0 ugA 25.0 ND 83 55-145 Trichloropropane 21.5 1.0 ugA 25.0 ND 86 55-145 1,2,3-Trichloropropane 21.5 1.0 ugA 25.0 ND 86 55-140 1,2,4-Trimethylbenzene 21.0 1.0 ugA 25.0 ND 84 60-125 1,3,5-Trimethylbenzene 21.3 1.0 ugA 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ugA 25.0 ND 77 40-135 0-Xylene 21.1 0.50 ugA 25.0 ND 86 65-125 m,p-Xylenes 42.9 1.0 ugA 25.0 ND 86 65-130 Surrogate: Dibromofluoromethane 26.0 ugA 25.0 97 80-120<	1,2,3-Trichlorobenzene	22.1	1.0	ug/l	25.0	ND	88	60-140			
1,1,2-Trickloroethane 22,8 1.0 ug/l 25.0 ND 91 60-135 Trickloroethane 21.0 1.0 ug/l 25.0 ND 83 70-125 Tricklorofluoromethane 20.8 1.0 ug/l 25.0 ND 83 55-145 1,2,3-Trickloropropane 21.5 1.0 ug/l 25.0 ND 86 55-140 1,2,4-Trimethylbenzene 21.0 1.0 ug/l 25.0 ND 84 60-125 1,3,5-Trimethylbenzene 21.3 1.0 ug/l 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ug/l 25.0 ND 77 40-135 0-Xylene 21.1 0.50 ug/l 25.0 ND 84 65-125 m,p-Xylenes 42.9 1.0 ug/l 30.0 ND 86 65-130 Surrogate: Dibromofluoromethane 26.0 ug/l 25.0 104 80-120 Surrogate: Toluene-d8 24.2 ug/l 25.0 97 80-120 </td <td>1,2,4-Trichlorobenzene</td> <td>22.7</td> <td>1.0</td> <td>ug/I</td> <td>25.0</td> <td>ND</td> <td>91</td> <td>60-140</td> <td></td> <td></td> <td></td>	1,2,4-Trichlorobenzene	22.7	1.0	ug/I	25.0	ND	91	60-140			
Trichlorosetheus 21.0 1.0 ug/l 25.0 1.5 78 70-125 Trichlorofluoromethane 20.8 1.0 ug/l 25.0 ND 83 55-145 1,2,3-Trichloropropane 21.5 1.0 ug/l 25.0 ND 86 55-140 1,2,4-Trimethylbenzene 21.0 1,0 ug/l 25.0 ND 84 60-125 1,3,5-Trimethylbenzene 21.3 1.0 ug/l 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ug/l 25.0 ND 77 40-135 0-Xylene 21.1 0.50 ug/l 25.0 ND 84 65-125 m,p-Xylenes 42.9 1.0 ug/l 30.0 ND 86 65-130 Surragate: Dibromofluoromethane 26.0 ug/l 25.0 97 80-120 Surragate: Toluene-d8 24.2 ug/l 25.0 97 80-120	1,1,1-Trichloroethane	21.6	1.0	ug/l	25.0	ND	86	75-140			
Trichlorofluoromethane 20.8 1.0 ug/l 25.0 ND 83 55-145 1,2,3-Trichlompropane 21.5 1.0 ug/l 25.0 ND 86 55-140 1,2,4-Trimethylbenzene 21.0 1.0 ug/l 25.0 ND 84 60-125 1,3,5-Trimethylbenzene 21.3 1.0 ug/l 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ug/l 25.0 ND 77 40-135 o-Xylene 21.1 0.50 ug/l 25.0 ND 84 65-125 m.p-Xylenes 42.9 1.0 ug/l 50.0 ND 86 65-130 Surragate: Dibromofluoromethane 26.0 ug/l 25.0 104 80-120 Surrogate: Toluene-d8 24.2 ug/l 25.0 97 80-120	1,1,2 Trickloroethane	22.8	1.0	ug/I	25.0	ND	91	60-135			
1,2,3-Trichlompropane 21.5 1.0 ug/l 25.0 ND 86 55-140 1,2,4-Trimethylbenzene 21.0 1,0 ug/l 25.0 ND 84 60-125 1,3,5-Trimethylbenzene 21.3 1,0 ug/l 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ug/l 25.0 ND 77 40-135 o-Xylene 21.1 0.50 ug/l 25.0 ND 84 65-125 m,p-Xylenes 42.9 1.0 ug/l 50.0 ND 86 65-130 Surragate: Dibromofluoromethane 26.0 ug/l 25.0 104 80-120 Surrogate: Toluene-d8 24.2 ug/l 25.0 97 80-120	Trichloroethese	21.0	1,0	ug/l	25.0	1.5	78	70-125			
1.2,4-Trimethylbenzene 21.0 1.0 ugA 25.0 ND 84 60-125 1,3,5-Trimethylbenzene 21.3 1.0 ugA 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ugA 25.0 ND 77 40-135 o-Xylene 21.1 0.50 ugA 25.0 ND 84 65-125 m.p-Xylenes 42.9 1.0 ugA 50.0 ND 86 65-130 Surragate: Dibromofluoromethane 26.0 ugA 25.0 104 80-120 Surragate: Toluene-d8 24.2 ugA 25.0 97 80-120	Trichlorofluoromethane	20.8	1.0	ug/l	25.0	ND	83	55-145			
1,3,5-Trimetry/benzenz 21.3 1.0 ug/l 25.0 ND 85 70-130 Vinyl chloride 19.3 0.50 ug/l 25.0 ND 77 40-135 o-Xylene 21.1 0.50 ug/l 25.0 ND 84 65-125 m,p-Xylenes 42.9 1.0 ug/l 50.0 ND 86 65-130 Surragate: Dibromofluoromethane 26.0 ug/l 25.0 104 80-120 Surragate: Toluene-d8 24.2 ug/l 25.0 97 80-120	1,2,3-Trichlompropane	21.5	1.0	ug/l	25.0	ND	86	55-140			
Vinyl chloride 19.3 0.50 ug/l 25.0 ND 77 40-135 o-Xylene 21.1 0.50 ug/l 25.0 ND 84 65-125 m.p-Xylenes 42.9 1.0 ug/l 50.0 ND 86 65-130 Surragate: Dibromofluoromethane 26.0 ug/l 25.0 104 80-120 Surragate: Toluene-d8 24.2 ug/l 25.0 97 80-120	1,2,4-Trimethylbertene	21.0	1.0	ug/l	25.0	ND	84	60-125			
o-Xylene 21,1 0.50 ugA 25.0 ND 84 65-125 m.p-Xylenes 42.9 1.0 ugA 50.0 ND 86 65-130 Surragate: Dibromoftworomethane 26.0 ugA 25.0 104 80-120 Surragate: Toluene-dB 24.2 ugA 25.0 97 80-120	1,3,5-Trimethylbenzene	21.3	1.0	սջ∕1	25.0	ND	85	70-130			
m.p-Xylenes 42.9 1.0 ug/l 50.0 ND 86 65-130 Surragate: Dibromoftworomethane 26.0 ug/l 25.0 104 80-120 Surragate: Toluene-d8 24.2 ug/l 25.0 97 80-120	Vinyl chloride	19.3	0.50	ug/l	25.0	ND	77	40-135			
Surragate: Dibromoftworomethane 26.0 ugft 25.0 104 80-120 Surragate: Toluene-d8 24.2 ugft 25.0 97 80-120	o-Xylene	21,1	0.50	սջ/Լ	25.0	ND	84	65-125			
Surrogate: Toluene-d8 24.2 ug/1 25.0 97 80-120	m,p-Xylenes	42.9	1.0	ng/I	50.0	ND	86	65-130			
Surrogate: Toluene-d8 24.2 ug/l 25.0 97 80-120	Surragate: Dibromofhoromethane	26.0		ugA	25.0		104	80-120			
Surrogate: 4-Bromoftworobenzene 24.4 ug/l 25.0 98 80-120	Surrogate: Toluene-d8	24.2			25.0		97	80-120			
	Surrogate: 4-Bromoftworobenzene	24.4		ugA	25.0		98	80-120			

17461/Derian Ave., Suiz. 100, Imine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Soice A. Cultum, CA 93374 (90% 370-4667 FAX (949) 378-1046 9484 Chesapeake Dr., Suize 805, San Dega, CA 93123 (658) 505-8596 FAX (848) 505-9659 9630 Suids 51st St., Suize 8-120, Procesia, AZ 85044 (44f) 785-0043 FAX (440) 785-0651 2520 E. Suize 82 43, Las Vegas, NV 89120 (702) 798-3420 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Brea, CA 92821 Amention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte Batch: 5B24029 Extracted: 02/24/05 Matrix Spike Dup Analyzed: 02/24/200 Benzene Bromobenzene Bromochloromethene Bromodichloromethene	Result 05 (5B24029-M 23.7 22.7 24.8 23.2	0.50 1.0	Units ug/I	Levei	Result Source: I	%REC	Limits	RPD	Limit	Qualifiers
Matrix Spike Dup Analyzed: 02/24/200 Benzene Bromobenzene Bromochloromethene	23.7 22.7 24.8	0.50 1.0	ч g/1		Source: Ic	ODYEGE B				
Benzene Bromobenzene Bromochloromethene	23.7 22.7 24.8	0.50 1.0	че/1		Source: Id	OD4404 0				
Bromochloromethene	22.7 24.8	1.0	ug/I			CRIDAP-A	i .			
Bromochloromethene	24.8			25.0	ND	95	70-120	7	20	
			սց/1	25.0	ND	91	65-130	6	20	
Bromodichloromethane	23.2	1.0	ug/I	25.0	ND	99	65-140	8	25	
		1.0	wg/I	25.0	ND	93	70-140	5	20	
Bromoform	18.7	1.0	սջ∕1	25.0	ND	75	55-140	3	25	
Bromomethane	23.0	1.0	ug/I	25.0	ND	92	50-145	10	25	
n-Butylbenzene	23.9	1.0	սջ∕I	25.0	ND	96	70-140	7	20	
soc-Burylbenzene	22.4	1.0	wg/I	25,0	ND	90	70-130	9	20	
text-Butylbenzene	21.9	1.0	ug/l	25,0	ND	88	70-130	9	20	
Carbon tetrachloride	21.9	0.50	սջ/ Լ	25.0	ND	88	70-145	11	25	
Chlorobenzene	23.2	1.0	wg/I	25.0	ND	93	80-125	7	20	
Chlorocthane	23.7	1.0	ʻug/I	25.0	ND	95	50-145	11	25	
Chloroform	27.5	1.0	սջ∕I	25.0	1.7	103	70-135	8	20	
Chloromethane	21.7	1.0	ug/l	25.0	ND	87	35-145	11	25	0
2-Chlorotoluene	22.1	1.0	ug/I	25.0	ND	88	70-140	7	20	
4-Citlerotulume	22.7	1.0	ug/I	25.0	ND	91	70-140	6	20	
Dibromochloromethane	23.1	1,0	սց/Լ	25.0	ND	92	65-145	5	25	
1,2-Dibromo-3-chloropropause	19.6	5.0	ug/I	25.0	ND	78	45-155	2	30	
1,2-Dibromoethune (EDB)	23.2	1,0	ug/I	25.0	ND	93	70-130	4	25	
Dibromomethene	23.1	1.0	ug/I	25.0	ND	92	65-140	3	25	
1,2-Dichlorobeazene	23.0	1.0	ug/1	25.0	ND	92	75-130	4	20	
1,3-Dichlorobeazene	22.7	1.0	ug/I	25.0	ND	91	75-130	7	20	
1,4-Dichlorobenzene	22.4	1,0	ug/I	25.0	ND	90	80-120	6	20	
Dichlorodifluoromethana	18.7	2.0	ug/I	25.0	ND	75	10-160	12	30	
1,1-Dichloroethme	24.9	1.0	ug/I	25.0	ND	100	65-135	10	20	
1,2-Dichloroethane	24.5	0.50	ug/I	25.0	0.50	96	60-150	3	20	
1,1-Dichloroethese	24.6	1.0	ug∕I	25.0	1.3	93	65-140	10	20	
cis-1,2-Dichlorocthene	24.6	1.0	ug/I	25.0	ND	98	65-130	7	20	
trans-1,2-Dichloroethene	24.4	1.0	ug/I	25.0	ND	98	65-135	10	20	
1,2-Dichleropropuec	24.2	1.0	ug/I	25.0	ND	97	65-130	7	20	
1,3-Dichloropropane	23.5	1.0	սջ/1	25.0	ND	94	65-140	4	25	
2,2-Dichloropropuse	24.3	1.0	υg∕1	25.0	ND	97	60-150	9	. 25	
1,1-Dichloropropene	23.0	1.6	ug/I	25.0	ND	92	65-140	9	20	
cis-1,3-Dichloropropene	25.0	0.50	ug/l	25.0	ND	100.	70-140	5	20	
trans-1,3-Dichloropropeae	24.3	0.50	це/1	25.0	ND	97	70-140	3	25	

Del Mar Analytical, Irvine Chris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical,

IOB1818 < Page 14 of 24>

17461 Drainn Ave., Soile 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Coolley Dr., Suite A. Colton, CA 931324 (909) 370-4667 FAX (949) 370-1066 9484 Chevapenke Dr., Suite 605, San Diego, CA 93173 (658) 505-6596 FAX (868) 505-9669 9630 Souds 518 St., Suite 8-120, Phoenix, AZ 85044 (489) 785-0643 FAX (809) 785-0635 2506 Suite 8-120, Phoenix, AZ 85044 (489) 785-0643 FAX (809) 785-0635 2506 Suite 8-120, Phoenix, AZ 85044 (489) 785-3620 FAX (202) 798-3621

WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818

Sampled: 02/23/05

Received: 02/23/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24029 Extracted: 02/24/05										
Matrix Spike Dup Analyzed: 02/24/26	005 (5B24029-M	ISD1)			Source: I	OB1696-0	1			
Ethylbenzene	24.0	0.50	ug/l	25.0	ND	96	70-130	8	20	
Hexachiorobutadiene	19.7	1.0	ug/l	25,0	ND	79	65-140	7	20	
lsopropylbenzene	22.5	1.0	ug∕I	25.0	ND	90	70-130	8	20	
p-Isopropyholuene	22.4	1.0	ug/l	25.0	ND	90	70-130	8	20	
Methylene chloride	27.2	5.0	ug/l	25.0	1.4	103	60-135	8	20	
Methyl-tert-butyl Ether (MTBE)	26.1	1.0	ug/l	25.0	ИD	104	50-155	4	25	
Naphthaleuc	22.0	1.0	ug/l	25.0	ND	88	50-150	9	30	
a-Propylbenzene	22.8	1.0	ug/l	25.0	ИD	91	70-135	7	20	
Styrene	11.7	1.0	ug/l	25.0	ND	47	55-145	2	30	M2
1,2-Tetrachloroethane	23.3	1.0	ug/I	25.0	ND	93	70-145	7	20	
2,2-Tetrachloroethane	23.1	1.0	u g/ ໂ	25.0	ND	92	60-145	1	30	
Tetrachioroethene	156	1.0	ug/l	25.0	140	64	70-130	3	20	M-HA
Toluenc	23.2	0.50	ug/l	25.0	ND	93	70-120	6	20	
1,2,3-Trichlorobenzene	22.7	0.1	ug/l	25.0	ND	91	60-140	3	20	
1,2,4-Trichlorobenzene	23.4	1.0	ug/l	25.0	ND	94	60-140	3	20	
1,1,1-Trichloroethane	23.9	1.0	υg/l	25.0	ND	96	75-140	10	20	
1,1,2-Trichloroethane	23.7	1.0	ug/l	25.0	ND	95	60-135	4	25	
Trichloroethene	23.0	0.1	பத/1	25.0	1ے	86	70-125	9	20	
Trichlorofhoromethane	23.4	1.0	ug/l	25.0	ND	94	55-145	12	25	
1,2,3-Trichloropropane	21.5	1.0	ug/l	25.0	ND	86	55-140	0	30	
1,2,4-Trimethylbenzene	22.5	1.0	ug/l	25.0	ND	90	60-125	7	25	
1,3,5-Trimethylbenzene	23.1	1.0	ug/l	25.0	ND	92	70-130	8	20	
Vinyl chloride	21.9	0.50	ug/l	25.0	ND	88	40-135	13	30	
o-Xylene	22.6	0.50	ug/l	25.0	ND	90	6 5 -125	7	20	
m.p-Xylenes	46.2	1.0	ug/l	50.0	ND	92	65-130	7	25	
Surrogate: Dibromofluoromethone	26.7		ug/l	25.0		<i>F07</i>	80-120			
Surrogate: Tohrene-de	23.8		ug/l	25.0		95	80-120			
•										

Mar Analytical, Irvine iris Roberts Project Manager

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cicaley Dr., Suite A., Cataon, CA 92324 (904) 370-4667 FAX (949) 370-1046 9484 Chesapeathe Dr., Suite 805 Sen Diego, CA 92123 (830 305-6596 FAX (860) 505-9689 9830 Socials 51u Sc., Soite 8120, Phoenia, AZ 85044 (800 785-004) FAX (800) 785-0651 2520 E. Suite 61 49, Las Vegas, AV 89120 (702) 788-3627 FAX (702) 758-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205 Brea, CA 92821

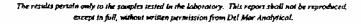
Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818

Sampled: 02/23/05


Received: 02/23/05

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/8270C MOD)

•		Reporting		Spike	Source		%REC		RPD	Date
Analyte	Result	Limit	Units	Level	Result	%REC	Limiu	RPD	Limit	Qu*lifiers
Batch: 5B24040 Extracted: 02/24/05										
Blank Analyzed: 02/25/2005 (5B24040	-BLK1)				- 7					
1,4-Dioxane	ND	1.0	υ g/ 1							
Surrogate: 1,4-Dioxane-d8	1.06		ug/l	2.00		53	35- 120			
LCS Analyzed: 02/25/2005 (5B24040-1	3S1)									
1,4-Dioxane	1.16	1.0	υ g/ 1	2.00		58	35-120			
Surrogate: 1,4-Dioxane-di	1.05		ug/l	2.00		52	35-120			
Matrix Spike Analyzed: 02/25/2005 (5	B24040-MS1)				Source: J	OB1817-0	4			
1,4-Dicxane	7.74	2.0	ug/I	4.00	5.4	58	35-120			
Surrogate: 1,4-Diozane-d8	2.19		ug/I	4.00		55	35-120			
Matrix Spike Dup Analyzed: 02/25/20	DS (SB24040-M	ISD1)			Source: I	OB1817-0	4			
1,4-Dioxane	7.77	2.0	ug/I	4.00	5.4	59	35-120	0	25	
Surrogate: 1,4-Dioxane-dB	2.29		ug/I	4.00		57	35-120			

Del Mar Analytical, Irvine Chris Roberts Project Manager

1746) Denair Aver, Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Goldey Dr., Suite A. Cotton, CA 92314 (949) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (848) 350-9669 9830 South 573 Sc., Suite 8.170, Phorniz, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suite 8.170, Phorniz, AZ 85044 (480) 785-0043 FAX (480) 785-0851

WH Americas - Brea 3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1818

Sampled: 02/23/05

Received: 02/23/05

METALS

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24046 Extracted: 02/24/05										
Blank Analyzed: 02/24/2005 (5B2404	6-BLK1)									
Макшу	ND	0.00020	mg/I							
LCS Analyzed; 02/24/2005 (5B24046	-BS1)									
Mercury .	0.00785	0.00020	աջ∕1	0.00800		98	90-115			
Matrix Spike Analyzed: 02/24/2005 (5B24046-MS1)				Source: I	OB1817-6	3			
Mercury	0.00817	0.00020	mg/l	0.00800	ND	192	75-120			
Matrix Spike Dup Analyzed: 02/24/2	005 (5B24046-N	(SDI)			Source: I	OB1817-0	3			
Mercury	0.00750	0.00020	nig/I	0.00800	ND	94	75-120	9	20	

tch: 5B24047 Extracted: 02/24/05

olank Analyzed: 02/24/2005-02/25/2005 (5B24047-BLK1)

Antimouy	ND	0.010	mg/l
Arsenic	ND	0.0050	mg/I
Burium	ND	0.010	mg/I
Beryltium	ND	0.0040	മുള⁄ി
Cadmium	[®] ND	0.0050	mg/I
Chromium	ND	0.0050	mg/I
Cobalt	ND	0.010	िश्रया
Copper	ND	010.0	mg/l
Lead	NTD	0.0050	mg/I
Molybdenum	ND	0.020	mg/l
Nickel	ND	0.010	mg/l
Sclenium	ND	0.0050	mg/l
Silver	ND	0.010	mg/I
Thelligum	ND	0.0050	ուշ/1
Vanadium	ND	0.010	ωg/I
Zinc	NTD	0.020	mg/l

17461 Derian Ave., Suite 100, Ivane, CA 92514 (949) 261-1022 FAN (949) 260-3297 1014 E. Gooley Dr., Suite A. Ciskon, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Onspipeake Dr., Suite 805, San Diego, CA 97123 (838) 505 8596 FAX (838) 505-9649 9830 South 51st Sr., Suite B-120, Procesin, AZ 83044 (410) 785-0043 FAX (460) 785-0851 2570 E. Samet Rd 43, Las Vegas, AV 89120 (709) 798-360

MWH Americas - Brea

3050 Saturn Ave., Suite 205 Brea, CA 92821

Attention: Lisa Hall

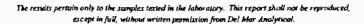
Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818

Sampled: 02/23/05

Received: 02/23/05


METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyle	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24047 Extracted: 02/24/05										
LCS Analyzed: 02/24/2005-02/25/2005	(5B24047-BS)	1)								
Antimony	1,02	0.010	ពg∕l	1.00		102	80-120			
Arsenic	0.983	0,0050	mg/l	1,00		98	80-120			
Barsum	0.958	0.010	mg∕l	1,00	1.4	96	80-120			
Beryllium	0.963	0.0040	mg/l	1.00		96	80-120			
Cadmium	0.954	0.0050	mg/1	1.00		95	80-120			
Chromium	0.973	0.0050	mg∕I	1.00		97	80-120			
Cobalt	0.920	0.010	mg/l	1.00		92	80-120			
Copper	0.936	0.010	mg∕I	1.00		94	80-120			
Lead	0.942	0.0050	mg/l	1.00		94	80-120			
Molybdemun	0.983	0.020	mg/l	1.00		98	80-120			
Nickel	0.941	0.010	mg∕I	1.00		94	80-120			
Selenium	0.999	0.0050	mg/l	1.00		100	80-120			
Silver	0.486	0.010	mg/l	0.500		97	80-120			
Thalliam	0.989	0.0050	mg/l	1.00		99	80-120			
Vanadium	0.967	0.010	mg/l	1.00		97	80-120			
Zinc	0.948	0.020	mg/l	1.00		95	80-120			
Matrix Spike Analyzed: 02/74/2005-02/	25/2005 (5B2	4047-MS1)		Source: IOB1817-0			3			
Antimony	1.06	0.010	mg/l	1.00	0.0053	105	75-125			
Arsenic	1.04	0.0050	mg/I	1.00	0.0082	103	75-125			
Barium	1.35	0.010	mg/l	1.00	0.36	99	75-125			
Beryllium	1.02	0.0040	mg/l	1.00	ND	102	75-125			
Cadmium	0.967	0.0050	mg/l	1.00	ND	97	25-125			
Chromium	1.18	0.0050	mg/l	1.00	0.18	100	75-125			
Cobalt	0.906	010.0	mg/l	1.00	ND	91	75-125			
Copper ·	0.975	0.010	mg/l	1.00	ΝD	98	75-125			
Lead	0.949	0.0050	mg/t	1.00	ND	95	75-125			
Molybdenum	1.02	0.020	mg∧	1.00	0.0059	101	75-125			
Nickel	0.926	0.010	mg/l	1.00	ND	93	75-125			
Selenium	1.04	0.0050	mg/l	1.00	ND	104	75-125			
Silver	0.520	0.010	mg/l	0.500	0.0030	103	75-125			
Thallium	1.02	6.0050	mg/l	1.00	0.0084	101	75-125			
Vanadium	1.03	0.010	mg/l	1.00	0.0036	103	75-125		3.	

Del Mar Analytical, Irvine Chris Roberts Project Manager 1,04

0.020

Zinc

1.00

0.072

75-125

17461 Derika Ave., Switz 100, Irvine, CA 92614 (849) 261-1022 FAX (949) 260-3297 (014 €, Curdley Dr., Switz A, Cellon, CA 97324 (909) 370-4667 FAX (949) 370-1046 (948) 470-4669 PAX (949) 470-1046 (948) 470-4669 PAX (948) 470-9669 PAX (948) 470-9669 PAX (948) 470-9669 PAX (948) 470-4669 PAX (948) 4

WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honsywell, North Hellywood

1890933.0501

Report Number: 10B1818

Sampled: 02/23/05

Received: 02/23/05

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24047 Extracted: 02/24	4/05									
Matrix Spike Dup Analyzed: 02/	24/2005-02/25/2005	(5B24047-MS	(D1)		Source: I	OB1817-0	3			
Antimony	1.06	0.010	mg/I	1.00	0.0053	105	75-125	0	20	
Arsenic	1.02	0.0050	mg/l	1.00	0.0082	101	75-125	2	20	
Barium	1.32	0.010	tng/l	1.00	0.36	96	75-125	2	20	
Beryllium	1.01	0.0040	mg/1	1.00	ИD	101	75-125	1	20	
Cadmium	0.957	0.0050	mg/l	1.00	מא	96	75-125	I	20	
Chromium	1.16	0.0050	mg/l	1.00	0.18	98	75-125	2	20	
Cobalt	0.901	0.010	mg/l	1.00	ND	90	75-125	1	20	
Сорфег	0.969	0.010	mg/l	1.00	ND	97	75-125	I	20	
Lead	0.924	0.0050	mg/I	1.00	ND	92	75-125	3	20	
Molybdenum	1.02	0.020	mg/l	1.00	0.0059	101	75-125	0	20	
kel	0.915	0.010	mg/l	1.00	ND	92	75-12 5	I	20	
Selenium	1.03	0.0050	mg/I	1.00	ND	103	75-125	1	20	
Silver	0.502	0.010	mg/l	0.500	0.0030	100	75-125	4	20	
Thallium	1.02	0.0050	ng∕l	1.00	9.0084	161	75-125	0	20	
Vanadium	1.02	0.010	mg/l	1.00	0.0036	102	75-125	I	20	
Zinc	1.03	0.020	mg/l	1.00	0.072	96	75-125	1	20	
Batch: 5B24052 Extracted: 02/2	4/05									
Blank Analyzed: 02/24/2005 (5B)	24052-BLK1)									
Thallium	ND	1.0	ug/I							
LCS Analyzed: 02/24/2005 (5B24	1052-BS1)									
Thallium	82.5	1.0	ug/I	80.0		103	80-120			
Matrix Spike Analyzed: 02/24/20	05 (5B24052-MS1)				Source: I	OB1817-0	3			
Thallium	82.1	1.0	ug/l	80.0	0.17	102	75-125			

17461 Derian Avr., Suite 101, Invine, CA 92514 (949) 251-1022 FAX (949) 250-3297 1014 E, Cockey Dr., Swite A, Colton, CA 92324 (909) 370-4667 FAX (849) 370-1046 9484 Chesapeake Dr., Swite 805, San Diega, CA 92123 (858) 505-6596 FAX (858) 502-9689 9830 South Stal Sc., Swite 8-120, Phoenia, AZ 85044 (468) 785-0043 FAX (460) 785-0651 3520 E. Suntet Rd. #3, Las Vegas, NV 89120 (NX) 788-1670 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

3050 Saturn Ave., Suite 20: Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1818

Sampled: 02/23/05

Received: 02/23/05

METALS

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24052 Extracted: 02/24/05										
Matrix Spike Dup Analyzed: 02/24/2005 (5B24052-MSD1)					Source: 1	OB1817-0	3			
Thallium	81.2	1.0	ug/1	80.0	0.17	101	75-125	1	20	

17461 Derian Ave., Sate 100, hvere, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Sute A. Colkon, CA 92324 (939) 370-4667 FAX (949) 370-1046 3484 Chesqueale Dr., Saite 805, San Dergo, CA 92323 (930) 500-8596 FAX (848) 505-9589 9830 South 514 St., Saite 8110, Phoenic AZ 85044 (440) 785-043 FAX (440) 785-0551 2520 E. Susset Rd. #3, 4as Vega, NV 89120 (702) 298-3620 FAX (172) 298-3621

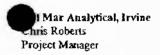
AWH Americas - Brea 3050 Saturn Ave., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Project ID: Heneywell, North Hollywood

1890933.0501

Report Number: IOB1818


Sampled: 02/23/05

Received: 02/23/05

INORGANICS

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B23063 Extracted: 02/23/05										
Blank Analyzed: 02/23/2005 (5B23063	-BLK1)									
Chromium V	ND	0.0010	നുള/1							
LCS Analyzed: 02/23/2005 (5B23063-E	BS1)									
Chromium VI	0.0493	0.0010	ശg/ I	0.0500		99	90· 110			
Matrix Spike Analyzed: 02/23/2005 (5)	B23063-MS1)				Source: 10	OB1727-0	3			
Chromium VI	0.0466	0.0010	mg/l	0.0500	0.00078	92	80-115			
Matrix Spike Analyzed: 02/24/2005 (5)	B23063-MS2)				Source: It	OB1817-0	4			
Chromium VI	0.379	0.0050	mg/l	0.250	0.17	84	80-115			
atrix Spike Dup Analyzed: 82/23/20	05 (5B23063-M	SD1)			Source: I	OB1727-6	13			
omium V!	0.0476	0.0010	mg/l	0.0500	0.00078	94	80-115	2	15	
Matrix Spike Dup Analyzed: 02/24/20	05 (5B23063-M	SD2)			Source: I	OB1817-0	14			
Chromium V]	0.384	0.0050	mg/l	0.250	0.17	86	80-115	ī	15	
Batch: 5B24061 Extracted: 02/24/05										
Blank Analyzed: 02/24/2005 (5B24061	BLK1)									
Perchlomte	ND	2.0	ug/I						-	
LCS Analyzed: 02/24/2005 (5B24061-I	351)									
Perchlorate	46.3	2.0	ug/I	50.0		93	85-115			
Matrix Spike Analyzed: 02/24/2005 (5)	B24061-MS1)				Source: I	OB1741-0	1			
Perchlorate	50.3	2.0	ug/I	50.0	2.2	96	80-120			

17463 Decian Ave., Sote 100, Irvine, CA 97614 (549) 261-1022 FAX (949) 260-3297 1014 E. Cooky Du, Suite A, Colkum, CA 92374 (599) 379-4667 FAX (949) 370-1046 (340) 476-47

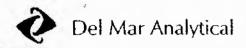
MWH Americas - Brea 3050 Sarum Ave., Suite 205

Project ID: Honeywell, North Hollywood

1020.8890981

Samp

Sampled: 02/23/05


Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1818

Received: 02/23/05

INORGANICS

_		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B24061 Extracted: 02/24/05										
Matrix Spike Analyzed: 02/24/2005 (5B)	24061-MS2)				Source: I	OB1817-0	4			
Perchlorate	48.2	2.0	ng/I	50_0	1.5	93	80-120			
Matrix Spike Dup Analyzed: 02/24/2005	(5B24061-M	SD1)			Source: I	OB1741-0	1			
Perchlorate	50.3	2.0	ug/I	50.0	2.2	96	80-120	0	20	
Matrix Spike Dup Analyzed: 02/24/2005	(5B24061-M	SD2)			Source: Je	OB1817-0	4			
Perchlorate	47.0	2.0	ug∕l	50.0	3.5	91	80-120	3	20	

1/461 Design Ave., Suite 100, Indine, CA 92614 (949) 761-1022 FAX (949) 760-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92374 (909) 170-4667 FAX (949) 370 1046 9484 Chesapeake Dr., Suize 805, San Diego, CA 97123 (858) 505-8596 FAX (858) 505-9689 98/30 South Stur St., Suite 8-120, Phornia, AZ 85644 (480) 785-0043 FAX (480) 785-0851 2520 E. Samet Rd. #3, Eas Virges, NV 69120 (2021 796-3620) FAX (207) 798-1621

WH Americas - Brea 3050 Saturn Ave., Suite 205

Attention: Lisa Hall

Brea, CA 92821

Project ID: Honeywell, North Hollywood

1890933.0501

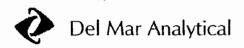
Report Number: 10B1818

Sampled: 02/23/05

Received: 02/23/05

DATA QUALIFIERS AND DEFINITIONS

The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS). M2


M-HA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

Reporting limit raised due to insufficient sample volume. RL-4

Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified. ND

Relative Percent Difference RPD

17461Derian Avre., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92124 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diega, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suitset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/23/05

Brea, CA 92821

Report Number: IOB1818

Received: 02/23/05

Attention: Lisa Hall

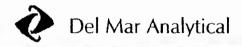
Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 314.0	Water	N/A	х
EPA 6010B	Water	X	x
EPA 6020	Water	X	х
EPA 7199	Water	X	х
EPA 7470A	Water	X	х
EPA 8260B	Water	X	х
EPA 8270C MOD	Water	· . X	х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Del Mar Analytical, Irvine Chris Roberts Project Manager


The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1818 <Page 24 of 24>

10B(8(8

DEL MAR AN 2825 Alion Avenue Irvino, CA 92606	ALYTI	CAL		H	lone	ywe	H	Cha	in Of	Cust	ody /	Ana	lysis	Rec	quest									cole a	37070-0024
Phone: (949) 261-1022	Fax: (949)	415-0858		Privileged &	Confident	tial				Site N	ame	NOR	тино	LLY	Vanh	Alestin.	wood \$1	- 11	200 BT		. 117	March			
A/C Manager: Mike	Purkinson			EDD To:						Locat	on of S		Holly			Holly	MD00 21	te -114	000 37	erman	i way,	NOTO			DMA
Client Contact: (bam		ess)		Sampler:						200	_	rvaliv							_	-				MANUTED WHEEL	25310000000000
Mike Flaugher/Lisa I	ial)			PO#	1890933.0						0	0	0	0	0	0	0	0	0	0	0	0	0		
MWH	Cular 20	5 D C	34 00001	Artalysis Turks	round Time:	24hr		10		選	2								1				77	BALL SANGER	HERE THE THE PARTY OF THE
3050 Saturn Street Michael E. Plaughe				Standard - Rush Charges A	unhadand for	(, -(20	(alt aku)	🚡 [1							DESKE D	(金属)
Contact Phone/Ce			1	2 weeks -	OUNDATION TO	$\dot{\sigma}$	1.			33	2	Mercury			8					- [i				36 EXCEPT
Hardenpy Report To		0 3,5,				KU	51	`			and stee	22 CAM)	10 makee	_	74. P		Organica				ļ				
Involce To:				Next Day		.,					CAM ME	Tule 22	Chrotist	W6020 Thullium	SW\$270C MOD L.4-Diso	erclorate	Volatile O				1			Writen (n	
	Samole	ident/fice	ution	Sample Date	Sample	Sample	Sample Matrix	Sample Purpose	ø of Coos,		Fish: 22 (SW7470	661LMS	5 W 6020	SW\$270	EJ14.0Pe	E8260 V								
	Start	End	all all all all all all all all all all	新亚国亚科	[2] 经现金	HITCH	WATER STATE	BACK IN	1											1				河流是市	对设地 转距数
Location ID	Depth (ft)	Depth (f)	Fleid Sample ID					42.7		Units	mg/L.	mg/L.	mg/L	Z'a	ng/l.	Mg/L	3							1 6 Strip	
, EB			EB-02-02/25/05	2/27/05	1540	EB	Water	Rey	7		X	X	X	X	X	Χ	X								
2																		_	_	_		_			
3		_									ļ							-				_			
4							 			-								_							
5											H			-				+					_		
-	 	<u></u>								H							-+	-	-	-					
	 						 -			\vdash		-		\exists			5	5	-	+					
9	-						-				<u> </u>				-										
10	1						 								_		_		T	-	7				1
11																									
12																						-			
	EPA 6010B	- 31110-22	CAM Metule List - Sb, Az, Ba	, Be, Cd, Cz,	Co, Cu, Pe	, Mo, NI, S	, Ag. Va,	, Zn; i	EPA 74	70A - T	1i)e 22 (CAM I	victals	List .	Hg			J.		··· Ł		1			
Relinquished by	0	34.	Company			Recolved b		\					припу	DMA			Condition					Custos	y Sea	s Intact	
Brichs	1	 ,		2/25/55	900	Received b	إملتاي	i-	- '	2/2	Dy 4/T		_				Cooler		-			Curran	lu faci	e long.	1
A Juin	(0)		Onte/Tipps			21	101	-		2/	Dark/Ti	S Con	728)	_		Cooler (-			C01100	y 3021	s Intect	
Preservalives: 0 a. No	000:11 # H	CU: (2 = 1	HNO3): [3 = H2SO4]: [4 = Na	OHI: (5 + 2a	Assistati	16 - Man	7) (7 = N	AHSOAL	8 = O(b	L (spe	elfu).		!				٠,	(1			······································	

3/28/06 104(c) 0756

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (838) 505-9699 9830 South 51st St., Suita 8-120, Procesis, AZ 85044 (488) 785-7043 FAX (480) 785-0851 2520 E. Suntet Rd. #), Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For: MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project: Honeywell, North Hollywood

1890933.0501

Sampled: 02/24/05-02/25/05

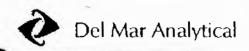
Received: 02/25/05 Issued: 03/01/05 16:19

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE


LABORATORY ID	CLIENT ID	MATRIX
1OB1976-01	GW-14B-2/24/05-F	Water
IOB1976-02	GW-14B-2/24/05	Water
1OB1976-03	GW-14B-PC-2/24/05-F	Water
IOB1976-04	GW-14B-PC-2/24/05	Water
IOB1976-05	GW-14B-PD-2/24/05-F	Water
IOB1976-06	GW-14B-PD-2/24/05	Water
IOB1976-07	GW-7-2/24/05-F	Water
IOB1976-08	GW-7-2/24/05	Water
IOB1976-09	DUP-01-2/24/05-F	Water
1OB1976-10	DUP-01-2/24/05	Water
IOB1976-11	TB-022405	Water
IOB1976-12	GW-10-2/24/05-F	Water
IOB1976-13	GW10-2/24/05	Water
IOB1976-14	GW-15-2/25/05-F	Water
IOB1976-15	GW-15-2/25/05	Water
IOB1976-16	DUP-03-2/25/05-F	Water
10B1976-17	DUP-03-2/25/05	Water
IOB1976-18	EB-03-2/25/05-F	Water
IOB1976-19	GW-5-2/25/05-F	Water
IOB1976-20	GW-5-2/25/05	Water
IOB1976-21	GW-4-2/25/05-F	Water
IOB1976-22	GW-4-2/25/05	Water
IOB1976-23	EB-04-2/25/05-F	Water

Reviewed By:

Del Mar Analytical, Irvine

Chris Roberts Project Manager

IOB1976 < Page 1 of 62>

17461 Denain Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Crichig Dr., Switz A. Crahan, CA 92324 (991) 370-4667 FAX (949) 370-1046 9486 Cheaspeake Dr., Switz 805, San Diego, CA 92123 (810) 505-6096 FAX (100) 505-6099 9810 South 51st St., Switz 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (400) 785-0651 2520 E. Sumet Rd. #3. Cas Vegas, NV 89120 (702) 798-3620 FAX (100) 798-3621

WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sa urpie Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10B1976-02 (GW-14B-2/24					02/24/05			•
Reporting Units: eg/l	HUS - Water)			Sampieu	. 042403			
Benzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
Bromodichloromethane	EPA 8260B	5B25039	1.0	ND	ì	2/25/2005	2/25/2005	
Bromoform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromomethane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
n-Butylbeazene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
sec-Butylbenzene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
tert-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Carbon tetrachloride	EPA 8260B	5B25039	0.50	ND	i	2/25/2005	2/25/2005	
Chlorobenzene	EPA 8260B	5B25039	1.0	ND	- ;	2/25/2005	2/25/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloreform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloromethane	EPA 8260B	5B25039	1.0	ND	- ;	2/25/2005	2/25/2005	
2.Chlorotoluene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
				ND	1			
hlorotoluene	EPA 8260B	5B25039	1.0 1.0	ND	- ;	2/25/2005	2/25/2005 2/25/2005	
1 - 1 - 1 - 1	EPA 8260B	5B25039		ND	-			
1,2-Dibromo-3-chloropropane	EPA 8260B EPA 8260B	5B25039 5B25039	5.0 1.0	ND .	1 1	2/25/2005 2/25/2005	2/25/2005 2/25/2005	
1,2-Dibromoethane (EDB)			1.0	ND	- ;			
Dibromomethane 1,2-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005 2/25/2005	2/25/2005 2/25/2005	
	EPA 8260B EPA 8260B	5B25039		ND	1		2/25/2005	
1,3-Dichlorobenzene		5B25039	1.0			2/25/2005		
1,4-Dichlorobenzenc	EPA 8260B	5B25039	1.0	ND	l ,	2/25/2005		
Dichlerodifluoromethane	EPA 8260B	5B25039	2.0	16	ł	2/25/2005	2/25/2005	
1,1-Dichlorocthane	EPA 8260B	5B25039	1.0	43	1	2/25/2005	2/25/2005	
1,2-Dichloroethane	EPA 8260B	5B25039	0.50	1.7	1	2/25/2005	2/25/2005	
1,1-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	37	1	2/25/2005	2/25/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005		
1,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	!	2/25/2005	2/25/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005		
trans-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Ethylbenzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005		
Hexachlorobutadiene	EPA 8260B	5B25039	1.0	ND	1		2/25/2005	
Isopropylbenzene	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	
p-Isopropyltolucue	EPA 8260B	5B25039	1.0	ND	I	2/25/2005	2/25/2005	
Methylene chloride	EPA 8260B	5B25039	5.0	ND	I	2/25/2005	2/25/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	

Mar Analytical, Irvine aris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

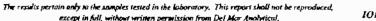
10B1976 <Page 2 of 62>

17461Derlan Ave., Suite 100, Irvine, CA 92814 (949) 261-1022 FAX (949) 260-3297 1914 E. Cookey Dt., Same A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapanha Dr., Suite NOS, San Chego, CA 97123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Swim 8-120, Phoenic, AZ 65044 (488) 285-0043 FAX (480) 285-0853 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/24/05-02/25/05


Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-02 (GW-14B-2/24/05 - V	Vater) - cont			Sampled:	02/24/05			
Reporting Units: ug/l								
Naphihalene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
n-Propylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Styrene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2,2-Tetrachloroethanc	EPA 8260B	5B25039	1.0	MD	1	2/25/2005	2/25/2005	
Tetrachloroethene	EPA 8260B	SB25039	1.0	16	1	2/25/2005	2/25/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2-Trichloroethane	EPA 8260B	SB25039	1.0	ND	1	2/25/2005	2/25/2005	
Trichloroethese	EPA 8260B	5B25039	1.0	9.5	,	2/25/2005	2/25/2005	
Trichlorofluoromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trimethyfbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5D25039	1.0	ND	1	2/25/2005	2/25/2005	
Vinyl chloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
o-Xylene	EPA 8260D	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
m.p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Surrogate: Dibromofluoromethane (80-120%)				107 %				
Surrogate: Toluene-d8 (80-120%)				99 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				100 %				

except in full, without written permission from Del Mar Analytical.

17461Denzin Ave., Suite 100, Irvine, CA 92614 (849) 261-1022, FAX (849) 760-3297 1014 E. Cooley Dr., Suite A. Cokon, CA 92124 (909) 370-4667 FAX (849) 370-1046 9464 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 655-6596 FAX (858) 655-9669 9810 Smath 51st St., Suite 8-120, Phoenix, AZ 85544 (460) 785-0043 FAX (460) 785-0051 2500 E. Suitet 8-120, Phoenix, AZ 85544 (460) 785-0043 FAX (460) 785-0051 2500 E. Suitet 8-120, Phoenix, AZ 85544 (460) 785-0043 FAX (460) 785-0051

WH Americas - Brea 3050 Saturn Ave. Spite 2

3050 Saturn Ave., Suite 205 Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilutten Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10B1976-04 (GW-14B-PC-	1/24/B5 - Water)				: 02/24/05		•	
Reporting Units: ug/I	,			Бамрич	. VA = 11 03			
. Benzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromodichloromethane	EPA 8260B	5B25039	1.0	ND	t	2/25/2005	2/25/2005	
Втовобогш	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
Bromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
n-Butylbenzene	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	
sec-Butylbenzene	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	
tert-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Carbon tetrachloride	EPA 8260B	5B25039	0.50	ND	ı	2/25/2005	2/25/2005	
Chlerobenzene	EPA 8260B	5B25039	1.0	ND	ì	2/25/2005	2/25/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	
Chloroform	EPA 8260B	5B25039	1.0	ND	l	2/25/2005	2/25/2005	
Chloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2.Chlorotoluene	EPA 8260B	5B25039	1.0	ND	ì	2/25/2005	2/25/2005	
hlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dibromochioromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25039	5.0	ND	ı	2/25/2005	2/25/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dibromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichtorobenzene	EPA 8260B	5B25039	1.0	ND	l	2/25/2005	2/25/2005	
1,3-Dicblorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,4-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	
Dichlorodifluoromethane	EPA 8260B	5B25039	2.0	18	ì	2/25/2005	2/25/2005	
1,1-Dichloroethane	EPA 8260B	5B25039		4.8	1	2/25/2005	2/25/2005	
1,2-Dichloreethane	EPA 8260B	5B25039		1.9	ı	2/25/2005	2/25/2005	
1,1-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
cis-1,2-Dickloruethene	EPA 8260B	5B25039		40	ì	2/25/2005	2/25/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichtoropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2,2-Dichtoropropane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
l,l-Dichloropropene	EPA 8260B	5B25039	1.0	ND	ŀ	2/25/2005	2/25/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	i	2/25/2005	2/25/2005	
Ethylbenzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Hexachlorobutadiene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005		
Isopropylbenzene	EPA 8260B	5B25039	1.0	ND	ì	2/25/2005	2/25/2005	
p-Isopropykoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Methylene chloride	EPA 8260B	5B25039	5.0	ND	ì	2/25/2005	2/25/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
monty recurrency (Edici (M 1DE)	El A 0200D		1.0	1412	,	27712003	2234003	

Mar Analytical, Irvine Aris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical,

10B1976 <Page 4 of 62>

17461Derüm Ave., Suite 100, Inrine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1814 E. Cookey Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (838) 305-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suinte Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Haneywell, North Hollywood

1890933.0501

Sampled: 02/24/05-02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-04 (GW-14B-PC-2/24/0	5 - Water) - cont.			Sampled:	02/24/05			
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
n-Propylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Styrene	EPA 8260B	5B25039	-1.0	ND	1	2/25/2005	2/25/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Tetrachloroethene	EPA 8260B	5B25039	1.0	18	1	2/25/2005	2/25/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	10	1	2/25/2005	2/25/2005	
Trichlorofluoromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	_
1,3,5-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Vinyl chloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	•
o-Xylene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
m,p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Surrogate: Dibromofluoromethane (80-120%)				110 %				
Surrogate: Toluene-d8 (80-120%)				99 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				100 %				

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92173 (859) 505-6596 FAX (869) 505-9689 9830 South 51st Sr., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Senset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID; Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

414-	Method	Batch	Reporting Limit	Sample Result	Dilution	Date Extracted	Date Analyzed	Data Qualifiers
Analyte	Method	Battn	Limit	Kesuit	Factor	Extracted	Anaryzeu	Quantiers
Sample ID: IOB1976-06 (GW-14B-PD-2/24/	05 - Water)			Sampled:	02/24/05			
Reporting Units: ug/l								
Benzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromodichloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromoform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
n-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
sec-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
tert-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Carbon tetrachloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Chlorobenzene	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/25/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloroform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2-Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
hlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dioromochloromethane	EPA 8260B	5B25039	1.0	ND	1.	2/25/2005	2/25/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/25/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dibromomethane	EPA 8260B	5B25039	1.0	ND .	1	2/25/2005	2/25/2005	
1,2-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,4-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005 ·	
Dichlorodifluoromethane	EPA 8260B	5B25039	2.0	16	1	2/25/2005	2/25/2005	
1,1-Dichloroethane	EPA 8260B	5B25039	1.0	4.5	1	2/25/2005	2/25/2005	
1,2-Dichloroethane	EPA 8260B	5B25039	0.50	1.8	1	2/25/2005	2/25/2005	
1,1-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	37	1	2/25/2005	2/25/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Ethylbenzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Hexachlorobutadiene	EPA 8260B	5B25039	1.0	ND	1		2/25/2005	
Isopropylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
p-lsopropyltoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Methylene chloride	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/25/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Months Intical Variation					-			

Mar Analytical, Irvine dis Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1976 <Page 6 of 62>

17461Derian Ave., Suite 100. Irvane, CA 92614 (949) 251-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapanic Dr., Suite 805, San Olego, CA 92137 (858) 505 8596 FAX (858) 505-9669 9930 Suizh 513 SL, Suite 8-170, Phoenix, AZ 85044 (440) 785-0043 FAX (460) 781-0851 2520 E. Suntet Pd. 43, Lin Vegor, NV 89120 (702) 798-3600 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/24/05-02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

	•		Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: JOB1976-06 (GW-14B-PD-2/24/0)	5 - Water) - cont.			Sampled	02/24/05			
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B25039	1.0	ИD	ì	2/25/2005	2/25/2005	
n-Propylbenzene	EPA 8260B	5B25039	1.0	ИD	1 -2	2/25/2005	2/25/2005	
Styrene	EPA 8260B	5B25039	1.0	ИD	1	2/25/2005	2/25/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ИD	1	2/25/2005	2/25/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	.1	2/25/2005	2/25/2005	
Tetrachloroethene	EPA 8260B	5B25039	1.0	19	1	2/25/2005	2/25/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	0.1	ND	ì	2/25/2005	2/25/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	9.7	1	2/25/2005	2/25/2005	
Trichlorofluoromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Vinyl chloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	100
o-Xylene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
m_p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Surrogate: Dibromofluoromethane (80-120%)				106 %				
Surrogate: Toluene-d8 (80-120%)				99 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				100 %				

27461 Denan Ave., Suite 100, Inrine, CA 92614 (849) 261-1022 FAX (849) 260-3297 1014 E. Cooley Di., Suite A. Coton, CA 92324 (869) 270-4667 FAX (949) 370-1046 9464 Clesapeake Di., Suite 805, San Diego, CA 921723 (859) 303-8596 FAX (860) 765-9669 9830 South 514 St., Suite 8-120, Phoenic, AZ 85044 (440) 785-0043 FAX (400) 785-0861 2520-E. Suites Rd. 43, Eas Virgas, NV 89138 (700) 798-3620 FAX (702) 798-3621

1WH Americas - Brea 3050 Saturn Ave., Suite 205 Brea, CA 92821

Attention: Lisa Hall

1890933.0501

Sampled: 02/24/05-02/25/05

Report Number: 10B1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Project ID: Honeywell, North Hollywood

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifier
•		DateM	Link			1)ATT DETECT	71,147,224	Quidale
Sample ID: 10B1976-08 (GW-7-2/24/05	- Water)			Sampled	: 02/24/05			
Reporting Units: ug/l	EB + 63/0D	£D3£D3D	0.60	ND	1	2/25/2005	2/26/2005	
Benzene	EPA 8260B	5B25039	0.50	ND	!	2/25/2005	2/26/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Bromochloromethane	EPA 8260B EPA 8260B	5B25039 5B25039	1.0 1.0	ND	1	2/25/2005	2/26/2005	
Bromodichloromethane Bromoform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Brogromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
	EPA 8260B	5B25039	1.0	ND	, 1	2/25/2005	2/26/2005	
n-Butylbenzene sec-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
teri-Butylbenzene Carbon tetraehloride	EPA 8260B	5B25039	0,50	ND	1	2/25/2005	2/26/2005	
Calbon tetraentonide Chlorobenzene	EPA 8260B	5B25039	1.0	ND	ı I	2/25/2005	2/26/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/26/2005	
****	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chloroform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chlorenethane			1.0	ND	1	2/25/2005	2/26/2005	
2-Chlorotolucue	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/26/2005	
Chlorotolaene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
abromochloromethane	EPA 8260B	5B25039		ND	1	2/25/2005	2/26/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25039	5.0 1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dibromocthane (EDB)	EPA 8260B	5B25039	1.0	ND	ŀ	2/25/2005	2/26/2005	
Dibromomenhane	EPA 8260B	5B25039		ND	1	2/25/2005	2/26/2005	
1,2-Dichlorobenzene	EPA 8260B	5B25039	1.0 1.0	ND ND	, !	2/25/2005	2/26/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25039		עא סא	1	2/25/2005	2/26/2005	
1,4-Dichlorobenzene	EPA 8260B	5B25039	1.0		ı L	2/25/2005	2/26/2005	
Dichlorodifluoromethane	EPA 8260B	5B25039		11 5.2		2/25/2005	2/26/2005	
1,1-Dichloroethane	EPA 8260B	5B25039			1			
1,2-Dichloroethane	EPA 8260B	5B25039		1.0	Į,	2/25/2005	2/26/2005	
1,1-Dichloroethene	EPA 8260B	5B25039		1.5	1 !	2/25/2005	2/26/2005 2/26/2005	
cts-1,2-Dichloroethene	EPA 8260B	5B25039		27	-	2/25/2005	2/26/2005	
trans-1,2-Dichloroethene	EPA 8260B	5025039		ND	1	2/25/2005		
1,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	t	2/25/2005	2/26/2005	
2.2 Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	МD	1	2/25/2005	2/26/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	Į.	2/25/2005	2/26/2005	
Ethylbenzene	EPA 8260B	5B25039	0.50	ИD	1	2/25/2005	2/26/2005	
Hexachlorobutadiene	EPA 8260B	5B25039		ND	l .		2/26/2005	
Isopropylbenzene	EPA 8260B	5B25039		ND	1	2/25/2005	2/26/2005	
p-Isopropyltaluene	EPA 8260B	5B25039		ND	i	2/25/2005	2/26/2005	
Methylene chloride	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/26/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	

Mar Analytical, Irvine iris Roberts Project Manager

The results periain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1976 <Page 8 of 62>

17461 Derian Ave., Suize 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suize A. Colton, CA 92234 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suize 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suize 8-120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunet Rd. #3, Las Vega, NY 89120 (702) 798-3670 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/24/05-02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-08 (GW-7-2/24/05 - Wat	ter) - cont.			Sampled	02/24/05			
. Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
n-Propylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Styrene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Tetrachloroethene	EPA 8260B	5B25039	1.0	14	1	2/25/2005	2/26/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	•
1,2,3-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	53	1	2/25/2005	2/26/2005	
Trichlorofluoromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	_
1,3,5-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Vinyl chloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	•
o-Xylene	EPA 8260B	5 B25039	0.50	ND	1	2/25/2005	2/26/2005	
m,p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Surrogate: Dibromofluoromethane (80-120%)				111%				
Surrogate: Toluene-d8 (80-120%)				100 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				98 %				

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Prioriik, AZ 85044 (450) 785-0043 FAX (460) 785-0651 2520 E. Suitet 8-120, Prioriik, AZ 85044 (450) 785-3043 FAX (460) 785-3651

WH Americas - Brea _050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/24/05-02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
·		Daten	Zanan			DATI Teled	111111,200	Quamicis
Sample ID: IOB1976-10 (DUP-01-2/24/05 - V	Water)			Sampled	: 02/24/05			
Reporting Units: ug/l	ED 4 92/0D	£D2£020	0.60	MD		2050005	2060005	
Benzene	EPA 8260B	5B25039	0.50	ND ND	! !	2/25/2005 2/25/2005	2/26/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND ND	1	2/25/2005	2/26/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0		1	2/25/2005	2/26/2005 2/26/2005	
Bromodichloromethane Bromoform	EPA 8260B	5B25039	1.0 1.0	ND ND	1	2/25/2005	2/26/2005	
Bromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
	EPA 8260B	5B25039		ND	1	2/25/2005		
n-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005 2/26/2005	
sec-Butylbenzene	EPA 8260B EPA 8260B	5B25039 5B25039	1.0 1.0	ND	1	2/25/2005	2/26/2005	
tert-Butylbenzene								
Carbon tetrachloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Chlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chloroform	EPA 8260B	5B25039	1.0	1.0	1	2/25/2005	2/26/2005	
Chloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
2-Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
oromochloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/26/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Dibromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,4-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Dichlorodlfluoromethane	EPA 8260B	5B25039	2.0	11.	1	2/25/2005	2/26/2005	
1,1-Dichloroethane	EPA 8260B	5B25039	1.0	5.0	1	2/25/2005	2/26/2005	
1,2-Dichloroethane	EPA 8260B	5B25039	0.50	1.1	1	2/25/2005	2/26/2005	
1,1-Dichloroethene	EPA 8260B	5B25039	1.0	1.4	1	2/25/2005	2/26/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	25	1	2/25/2005	2/26/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
2,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Ethylbenzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Hexachlorobutadiene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Isopropylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
p-Isopropyltoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005		
Methylene chloride	EPA 8260B	5B25039	5.0	ND	1	2/25/2005		
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005		

"el Mar Analytical, Irvine

ıris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1976 < Page 10 of 62>

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Goolley Dr., Suite A. Colton, CA 92334 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenic, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suitet Rd. #3, Lax Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Sampled: 02/24/05-02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	I Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
•		Date	Lana			23411 20100		Qualificity
Sample ID: IOB1976-10 (DUP-01-2/24/05 - Wa	ater) - cont.			Sampled	02/24/05			
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
n-Propylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Styrene	EPA 8260B	5B25039	1.0	ND	ì	2/25/2005	2/26/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Tetrachioroethene	EPA 8260B	5B25039	1.0	13	1	2/25/2005	2/26/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5 B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	51	1	2/25/2005	2/26/2005	
Trichlorofluoromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Vinyl chloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
o-Xylene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
m,p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Surrogate: Dibromofluoromethane (80-120%)				111%				
Surrogate: Toluene-d8 (80-120%)		-		100 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				101 %				

174btT/eriam Avm., buist 100, finane, CA 92614 (949) 261-1022 EAX (949) 260-3297 1014 E. Codely Dr., Soite A. Cofron, CA 92324 (909) 370-4667 EAX (949) 370-1046 9484 Cheuipmate Dr., Soite 805, San Diego, CA 92123 (858) 509-8596 EAX (868) 509-946 9830 South 51st SC, Soite 8-178, Phoenic, AZ 85044 (4807-785-004) EAX (

WH Americas - Brea

050 Satura Ave., Suite 205

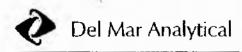
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Amalado	Method	Batch	Reporting Limit	Sample Result	Dilution	Date Extracted	Date Analyzed	Data Qualifiers
Analyte		Ваць	Lamat			Littatien	Analyzeu	Ó∉πiier2
Sample ID: IOB1976-11 (TB-022405 - V	Vater)			Sampled	: 02/24/05			
Reporting Units: ng/l								
- Benzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	
Bromodichloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromoform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/2 5/ 2005	
Bromomethane	EPA 8260B	5B25039	1.0	ND	- 1	2/25/2005	2/25/2005	
n-Butylbenzene	EPA 8260B	5B25039	1.0	ND	- 1	2/25/2005	2/25/2005	
sec-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
tert-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Carbon tetrachloride	EPA 8260B	5B25039	0.50	ND	- 1	2/25/2005	2/25/2005	
Chlorobenz <i>e</i> ne	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloroform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloromethane	EPA 8260B	5B25039	1.0	ND	- 1	2/25/2005	2/25/2005	
2-Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
hlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
romochloromethane	EPA 8260B	5B25039	1.0	ND	l	2/25/2005	2/25/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25039	5.0	ND	- 1	2/25/2005	2/25/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dibromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	- 1	2/25/2005	2/25/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,4-Dichlorobenzene	EPA 8260B	5B25039	1.0	·ND	ı	2/25/2005	2/25/2005	
Dichlorodifluorospethane	EPA 8260B	5B25039	2.0	ND	1	2/25/2005	2/25/2005	
1,1-Dichloroethane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
1,2-Dichloroethane	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
I,I-Dichloroethene	EPA 8260B	5B25039	1.0	ND	í	2/25/2005	2/25/2005	
cis-1.2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
2,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
	EPA 8260B	5B25039	0.50	ND	ì	2/25/2005	2/25/2005	
trans-1,3-Dichloropropene	EPA 8260B		0.50	ND	- ;	2/25/2005	2/25/2005	
Ethylbenzene		5B25039						
Hexachlorobutadiene	EPA 8260B	SB25039	1.0	ND	1		2/25/2005	
Isopropylbenzene	EPA 8260B	5B25039	1.0	ND	!	2/25/2005	2/25/2005	
p-Isopropyliolucae	EPA 8260B	5B25039	1.0	ND	!	2/25/2005	2/25/2005	
Methylene chloride	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/25/2005	
Methyl-tert-buryl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	

Mar Analytical, Irvine ris Roberts Project Manager

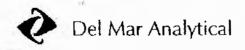
The results pertain only to the samples sested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1976 <Page 12 of 62>

174610erian Ave., Sute 100. Invine, CA 97614 (949) 261-1022 FAX (949) 260-3732 1014 E. Cooley Dr., Sute A. Collam, CA 97324 (909) 370-4667 FAX (949) 370-4669 9464 Chesapeake Dr., Sute 605, San Diego, CA 92123 (858) 505-6596 FAX (656) 505-9469 9630 Soudh S14 K., Sute B-120, Physicia, AZ 85044 (460) 785-0043 FAX (460) 785-0651 505-2659 FAX (4707) 786-3620 5250 E. Sutest Rd. 43, Las Vega, NV 69120 (702) 796-3620 FAX (707) 786-3620

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501


Sampled: 02/24/05-02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: iOB1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dibution	Date	Dute	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-11 (TB-022405 - Water)	- cont.			Sampled	: 02/24/05			
Reporting Units: ng/l								
Naphthalene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
n-Propyibenzene	EPA 8260B	5B25039	1,0	ND	1	2/25/2005	2/25/2005	
Styreac	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Tetrachloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Toluzne	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trichlorobenzeue	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/25/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Trichlorofluorumethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichtoropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Vinyl chloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
o-Xylene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
m,p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Surrogate: Dibromofluoromethane (80-120%)				110 %				
Surrogate: Toluene-d8 (80-120%)				100 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				100 %				

17461 Decisio Ave., Saite 100, Invine, CA 92614 (949) 281-1022 FAX (949) 260-3297 1014 E. Conliny Dt., Suite A. Calton, CA 92324 (909) 370-4667 FAX (949) 370-1466 9484 Chesapeale Dt., Suite 805, San Dirigo, CA 92123 (858) 503-6596 FAX (858) 505-9669 9830 South Stu St., Suite 3-120, Procesia, AZ 85044 (460) 785-0043 FAX (460) 785-0652 2570 E. Sanset Rd. #3, Las Vegus, AV 89120 (702) 798-3620 FAX (702) 798-3621

IWH Americas - Brea

3050 Saturu Ave., Suite 205

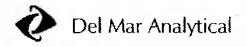
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilation Factor	Date Extracted	Date Analyzed	Data Qualifier:
· ·		Marcin	Link			Extractica	Audyteu	Qualities.
Sample ID: IOB1976-13 (GW10-2/24/09	5 - Water)			Sampled	07/25/05			
Reporting Units: ug/l			0.45	. In		A to a to a se	an	
Benzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Bromobenzene	EPA 8260B	5 B25039	0.1	ND	1	2/25/2005	2/25/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0	ND	t	2/25/2005	2/25/2005	
Bromodichloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromoform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromomethane	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/25/2005	
n-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
sec-Butylbenzene	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	
tert-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Carbon tetrachloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Chlorobenzene	EPA 8260B	5B25039	1.0	ND	I	2/25/2005	2/25/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloroform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2-Chlorototuene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
foromochloromethane	EPA 8260B	5B25039	1.0	ND	ſ	2/25/2005	2/25/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/25/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dibromomethane	EPA 8260B	5B25039	1.0	ND	t	2/25/2005	2/25/2005	
1.2-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	t	2/25/2005	2/25/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1.4-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dichloredifluoromethane	EPA 8260B	5B25039	2.0	13	t	2/25/2005	2/25/2005	
1,1-Dichloroethane	EPA 8260B	5B25039	1.0	2.6	t	2/25/2005	2/25/2005	
1,2-Dichloroethane	EPA 8260B	5B25039	0.50	1.2	t	2/25/2005	2/25/2005	
1,1-Dichloroethene	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/25/2005	
cis-1,2-Dichloroethene	EPA 8260B	5 BZ50 39		23	1	2/25/2005	2/25/2005	
trans-1,2-Dickloroethene	EPA 8260B	5B25039	1.0	ND	t	2/25/2005	2/25/2005	
1,2-Dichloropropane	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/25/2005	
1,3-Dichloropropage	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	t	2/25/2005		
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005		
cis-t,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	í	2/25/2005	2/25/2005	
•	EPA 8260B	5B25039	0.50	ND	i	2/25/2005		
Ethylbenzene Herzehlerehutediane	EPA 8260B	5B25039	1.0	ND	1		2/25/2005	
Hexachlorobutadiene			1.0	ND	1	2/25/2005		
fsopropylbenzene	EPA 8260B	5B25039						
p-Isopropyliolucae	EPA 8260B	5B25039	1.0	ND	1	2/25/2005		
Methylene chloride	EPA 8260B	5B25039	5.0	ND	t	2/25/2005		
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ИĎ	t	2/25/2005	2/25/2005	

el Mar Analytical, Irvine hris Roberts Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1976 <Page 14 of 62>

12461Denam Ave., Swee 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3792 1014 E. Gookly Dr., Swie A. Cokun, CA 979324 (909) 370-4667 FAX (849) 370-1046 9484 Chenyreske Dr., Swie 865, San Origo, CA 92123 (856) 505-8596 FAX (858) 505-9669 9810 Suids 51st Sr., Swie 8-120, Physmin, AZ 85984 4690 785-9043 FAX (860) 785-9051 2570 E. Swiesel Rd. #3, Las Vegas, NV 89120 (702) 798-3620 (FAX (702) 798-362)

MWH Americas - Brea

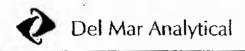
Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Brea, CA 92821


Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Report Number: IOB1976

			Reporting	Sample	Düuden	Date	Date	Datu
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-13 (GW10-2/24/05 - Wa	ter) – cont.			Sampled:	: 02/25/05			
Reporting Units: ug/i								
Naphthalene	EPA 8260B	5B25039	1.0	ND	- 1	2/25/2005	2/25/2005	
n-Propylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Styrene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Tetrachloroethene	EPA 8260B	5B25039	1.0	13	- 1	2/25/2005	2/25/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichlorobenzece	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	- 1	2/25/2005	2/25/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	ı	2/25/2005	2/25/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	18	1	2/25/2005	2/25/2005	
Trickloro fluoromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	I	2/25/2005	2/25/2005	4
Vinyl chloride	EPA 8260B	5B25039	0.50	מא	1	2/25/2005	2/25/2005	
o-Xylene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
m,p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Surrogate: Dibromofhioromethane (80-120%)			-	112%				
Surrogate: Toluene-d8 (80-120%)				100 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				101 %				

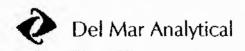
17461Cerran Ave., Suite 100, Innoe, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Conley Dr., Suite A. Colom, CA 92324 (949) 370-4667 (AX (949) 370-1046 9484 Chemapeake Dr., Suite 805, San Olego, CA 92123 (618) 505-6516 FAX (651) 505-9669 98)0 South STB St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (4007 785-0851 35046 518 St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (4007 785-0851 3504 518) St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (4007 785-0851) 3504 F. Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (4007 785-0851)

WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501


Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Anslyzed	Data Qualifiers
Sample ID: IOB1976-15 (GW-15-2/25/0	5 - Water)			Sampled	: 02/25/05			
Reporting Units: ug/l	,			-				
- Benzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/26/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Bromodichloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Bromoform	EPA 8260B	5B25039	1.0	ND]	2/25/2005	2/26/2005	
Bromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
n-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
sec-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
urt-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Carbon tetrachloride	EPA 8260B	5B25039	0.50	0.51	1	2/25/2005	2/26/2005	
Chlorobenzene	ÉPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chloroform	EPA 8260B	5B25039	1.0	2.2	1	2/25/2005	2/26/2005	
Chloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
2-Chlorotoluene	EPA 8260B	5B25039	1.0	ND	. 1	2/25/2005	2/26/2005	
hlorotoluene	EPA 8260B	5B25039	1.0	ИD	1	2/25/2005	2/26/2005	
bromochloromethane	EPA 8260B	5B25039	1.0	ND	J	2/25/2005	2/26/2005	
1,2-Dihromo-3-chloropropane	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/26/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25039	1.0	MD	1	2/25/2005	2/26/2005	
Dibromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,4-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Dichlorodifluoromethane	EPA 8260B	5B25039	2.0	8.2	1	2/25/2005	2/26/2005	
1,1-Dichloroethane	EPA 8260B	5B25039	1.0	8.0	1	2/25/2005	2/26/2005	
1,2-Dichloroethane	EPA 8260B	5B25039	0.50	1.2	1	2/25/2005	2/26/2005	
1,1-Dichloroethene	EPA 8260B	5B25039	1.0	7.6	1	2/25/2005	2/26/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	26	1	2/25/2005	2/26/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	ī	2/25/2005	2/26/2005	
2,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	- 1	2/25/2005	2/26/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
trans-1,3-Dichloropropene	ÉPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Ethylbenzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Hexachlorobutadiene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	. 2/26/2005	
ksopropylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
p-lsopropyituluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Methylene chloride	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/26/2005	
Methyi-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	

174610erian Ave., Suite 100, Iovine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cauley Dr., Suite A. Calbun, CA 93124 (909) 370-4667 EAX (949) 370-1046 9444 Overapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9669 9830 South 514 Kr., Suite B-120, Phoenic, AZ 85044 (480) 745-0043 FAX (480) 785-0855 505-5045 514 Kr., Suite B-120, Phoenic, AZ 85044 (480) 785-3043 FAX (480) 785-3651

MWH Americas - Brea 3050 Satura Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933,0501

Sampled: 02/24/05-02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: 10B1976 Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Sample ID: IOB1976-15 (GW-15-2/25/05 - Water) - cont. Sampled: 02/25/05	*
Naphthalene	
Naphthalene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 n-Propylbenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Styrene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2-Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2-Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Toluene EPA 8260B 5B25039 0.50 ND 1 2/25/2005 2/26/2005 1,2,3-Trichloroethazene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,2,4-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1-Trichloroethane EPA 8260B	
n-Propylbenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Styrene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2-Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2-Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Toluene EPA 8260B 5B25039 0.50 ND 1 2/25/2005 2/26/2005 1,2,3-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,2,4-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2-Trichloroethane	
Styrene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1,2-Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2,2-Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Tetrachloroethene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Toluene EPA 8260B 5B25039 0.50 ND 1 2/25/2005 2/26/2005 1,2,3-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,2,4-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethene	
1,1,2-Tetrachloroethane EPA 8260B SB25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2,2-Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Tetrachloroethane EPA 8260B 5B25039 1.0 13 1 2/25/2005 2/26/2005 Toluene EPA 8260B 5B25039 0.50 ND 1 2/25/2005 2/26/2005 1,2,3-Trichloroethazene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,2,4-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethane	
1,1,2,2-Tetrachloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Tetrachloroethene EPA 8260B 5B25039 1.0 13 1 2/25/2005 2/26/2005 Toluene EPA 8260B 5B25039 0.50 ND 1 2/25/2005 2/26/2005 1,2,3-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,2,4-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,2-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005	
Tetrachloreethene EPA 8260B 5B25039 1.0 13 1 2/25/2005 2/26/2005 Toluene EPA 8260B 5B25039 0.50 ND 1 2/25/2005 2/26/2005 1,2,3-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,2,4-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1-Trichloroethane EPA 8260B 5B25039 1.0 4.0 1 2/25/2005 2/26/2005 1,1,2-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005	
Tolurne EPA 8260B 5B25039 0.50 ND 1 2/25/2005 2/26/2005 1,2,3-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,2,4-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1-Trichloroethane EPA 8260B 5B25039 1.0 4.6 1 2/25/2005 2/26/2005 1,1,2-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethane EPA 8260B 5B25039 1.0 160 1 2/25/2005 2/26/2005	
1,2,3-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,2,4-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1-Trichloroethane EPA 8260B 5B25039 1.0 4.6 1 2/25/2005 2/26/2005 1,1,2-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethane EPA 8260B 5B25039 1.0 160 1 2/25/2005 2/26/2005	
1,2,4-Trichlorobenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 1,1,1-Trichloroethane EPA 8260B 5B25039 1.0 4.0 1 2/25/2005 2/26/2005 1,1,2-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethane EPA 8260B 5B25039 1.0 160 1 2/25/2005 2/26/2005	
1,1,1-Trichloroethane EPA 8260B 5B25039 1.0 4.6 1 2/25/2005 2/26/2005 1,1,2-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethane EPA 8260B 5B25039 1.0 160 1 2/25/2005 2/26/2005	
1,1,2-Trichloroethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005 Trichloroethene EPA 8260B 5B25039 1.0 160 1 2/25/2005 2/26/2005	
Trichloroethene EPA 8260B 5B25039 1.0 160 1 2/25/2005 2/26/2005	
Trichlorofluoromethane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005	
1,2,3-Trichloropropane EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005	
1,2,4-Trimethylbenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005	
1,3,5-Trimethylbenzene EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005	
Vinyl chloride EPA 8260B 5B25039 0.50 ND 1 2/25/2005 2/26/2005	
o-Xylene EPA 8260B 5B25039 0.50 ND } 2/25/2005 2/26/2005	
m,p-Xylenes EPA 8260B 5B25039 1.0 ND 1 2/25/2005 2/26/2005	
Surrogate: Dibromofluoromethane (80-120%) 112 %	
Surrogate: Toluene-d8 (80-120%) 101 %	
Surrogate: 4-Bromofluorobenzene (80-120%) 100 %	

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Cokon, CA 92324 (909) 370-4667 FAX (949) 370-1046 9481 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st 9., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3. Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

WH Americas - Brea

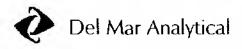
050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05


Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1976-17 (DUP-03-2/25/	(05 - Water)			Sampled:			,	Q
Reporting Units: ug/l	os - water,			Sampica.	02123103			
Benzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Bromodichloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Bromoform	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/26/2005	
Bromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
n-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
sec-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
tert-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Carbon tetrachloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Chlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chloroform	EPA 8260B	5B25039	1.0	2.2	1	2/25/2005	2/26/2005	
Chloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
2-Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
oromochloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/26/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25039	1.0	ND	I	2/25/2005	2/26/2005	
Dibromomethane	EPA 8260B	5B25039	1.0	ND	ì	2/25/2005	2/26/2005	
1,2-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,4-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Dichlorodifluoromethane	EPA 8260B	5B25039	2.0	8.2	1	2/25/2005	2/26/2005	
1,1-Dichloroethane	EPA 8260B	5B25039	1.0	7.8	1	2/25/2005	2/26/2005	
1,2-Dichloroethane	EPA 8260B	5B25039	0.50	1.2	1	2/25/2005	2/26/2005	
1,1-Dichloroethene	EPA 8260B	5B25039	1.0	7.4	1	2/25/2005	2/26/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	25	1	2/25/2005	2/26/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dichloropropane	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/26/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
2,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Ethylbenzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
Hexachlorobutadiene	EPA 8260B	5B25039	1.0	ND	1		2/26/2005	
Isopropylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
p-Isopropyltoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Methylene chloride	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/26/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	

I Mar Analytical, Irvine ris Roberts Project Manager

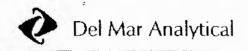
The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

17461Denan Ave., Suite 100, Inrine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dr., Suite A. Colkon, CA 92324 (909) 370-4667 FAX (949) 370-4166 9484 Chesapeake Dr., Suite 805, San Dingo, CA 97173 (858) 505-6596 FAX (9058 505-968) 9830 South Star St., Suite 8-120, Promits, AZ 85044 (480) 785-7043 FAX (880) 785-20851 2570 E. Suntee Rd. #3, Lay Vegys, NV 89120 (702) 798-3630 FAX (702) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Stite 205


1890933.0501

Sampled: 02/24/05-02/25/05 Received: 02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1976

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dílution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: 10B1976-17 (DUP-03-2/25/05 - W	ater) - cont.			Sampled	02/25/05			
Reporting Units: ug/l								
Naphthalene	EPA 8260 B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
n-Propylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Styrene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	ì	2/25/2005	2/26/2005	
Tetrachloroethene	EPA 8260B	5B25039	1.0	13	1	2/25/2005	2/26/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	l	2/25/2005	2/26/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,3-Trichloreethane	EPA 8260B	51325039	1.0	3.9	1	2/25/2005	2/26/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	150	1	2/25/2005	2/26/2005	
Trichlorofluoromethane	EPA 8260B	5B25039	1.0	ND	l	2/25/2005	2/26/2005	
1,2,3-Trichloropropane	EPA 8260 B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,3,5-Trimethylbenzene	EPA 8260 B	5B25039	1.0	ND	l	2/25/2005	2/26/2005	4
Vinyl chloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
o-Xylene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
m.p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Surrogate: Dibromofluoromethane (80-120%)				112%				
Surrogate: Toluene-d8 (80-120%)				100 %				
Survogate: 4-Bromofluorobenzene (80-120%)				99%				

17461 Dynam Ave., Suice 100, trvine, CA 9261 4 (149) 261-1022 FAX (949) 260-329/ 1014 E, Cookey Dr., Suice A Collum, CA 92324 (959) 370-4667 FAX (949) 370-1046 9484 Chempheste Dr., Suice 605, San Deggs, CA 92123 (650) 505-6596 FAX (488) 505-9699 9430 South Star V., Suice 8-170, Phoenix, AZ 65044 (460) 765-0043 FAX (460) 765-0651 2500 E, Suivet Rd. 43, 124 Vegas, INV 89120 (702) 788-3620 FAX (702) 758-3621

IWH Americas - Brea

050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1976-18 (EB-03-2	/25/0S-F - Water)			Samoled	02/25/05			`
Reporting Units: ug/t	,							
- Benzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromodichloromethane	EPA 8260B	5B25039	1.0	ND	•	2/25/2005	2/25/2005	
Bromoform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromomethane	EPA 8260B	5B25039	1.0	ND	l	2/25/2005	2/25/2005	
n-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
sec-Butylbenzene	EPA 8260B	SB25039	1.0	ND	1	2/25/2005	2/25/2005	
tert-Butylbenzese	EPA 8260B	SB25039	1.0	ND	1	2/25/2005	2/25/2005	
Carbon tetrachloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Chlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloroform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloromethane	EPA 8260B	SB25039	1.0	ND	1	2/25/2005	2/25/2005	
2-Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005		
Chlorotolnene	EPA 8260B	SB25039	1.0	ND	1	2/25/2005	2/25/2005	
promochioromethage	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/25/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dibromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005		
1,2-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,4-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dichlorodifluoromethane	EPA 8260B	5B25039	2.0	ND	1	2/25/2005	2/25/2005	
1,1-Dichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
I.2-Dichloroethane	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
1,1-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	I	2/25/2005	2/25/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
cis-1,3-Dichleropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Ethylbenzene	EPA 8260B	5B25039	0.50	ND	1		2/25/2005	
Hexachlorobutadiene	EPA 8260B	5B25039	1.0	ND	1		. 2/25/2005	
Isopropyibenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005		
p-lsopropyllohæne	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
Methylene chloride	EPA 8260B	5B25039	5.0	ND	i	2/25/2005	2/25/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
- Constitution	21110200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				112311005	14 4.51 EU/J	

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeuke Dr., Suite 80.5 San Diego, CA 92123 (858) 505-869 9830 South 51st St., Suite 88-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 1250 E. Sunset Rd. #J., Las Vegas, NY 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-18 (EB-03-2/25/05-F - V	Vater) - cont.			Sampled:	02/25/05			
Reporting Units: ug/i								
Naphthalene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
n-Propylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Styrene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Tetrachloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	٠.
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	•
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Trichlorofluoromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	4
Vinyl chloride	EPA 8260B	5B25039	0.50	ND	. 1	2/25/2005	2/25/2005	•
o-Xylene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
m,p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Surrogate: Dibromofluoromethane (80-120%)				110 %				
Surrogate: Toluene-d8 (80-120%)				99 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				100 %				

17461Denan Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Codley Dt., Suite A, Coltum, CA 97324 (1903) 370-4667 FAX (949) 370-1046 9484 Chesppeale Dt., Suite 605, San Diego, CA 973121 (6319) 505-6596 FAX (658) 505-9699 (9830 South S1d St., Suite 6-120, Phirmish AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 E. Suite 6-120, Phirmish AZ 85044 (480) 785-0043 FAX (480) 785-3651

IWH Americas - Brea

050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID; Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte Sample ID: IOB1976-20 (GW-S-2/25/05 - Water) Reparting Unit: mg/l Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromoform Bromomethane EPA 82 Bromomethane Bromomethane EPA 82 Bromomethane Bromomethane EPA 82 Carbon tetrachloride Chlorotenzene Chloroform EPA 82 Chlorotoluene EPA 82	.60B 5B2503 .60B 5B2503	39 I .0	ND	1: 02/25/05			
Reporting Unit: mg/l Benzene EPA 82 Bromoehloromethane EPA 82 Bromoehloromethane EPA 82 Bromoethane EPA 82 Bromomethane EPA 82 Bromomethane EPA 82 n-Butylbenzene EPA 82 sec-Butylbenzene EPA 82 carbon tetrachloride EPA 82 Chlorotehane EPA 82 Chlorotehane EPA 82 Chlorotehane EPA 82 Chlorotomethane EPA 82 Chlorotohuene EPA 82 L,2-Dibromo-3-chloropropane EPA 82	.60B 5B2503 .60B 5B2503	39 I .0	ND				
Benzene EPA 82 Bromochloromethane EPA 82 Bromochloromethane EPA 82 Bromodichloromethane EPA 82 Bromoform EPA 82 Bromomethane EPA 82 n-Butylbenzene EPA 82 tert-Butylbenzene EPA 82 Carbon tetrachloride EPA 82 Chlorotenane EPA 82 Chlorotenane EPA 82 Chlorotenane EPA 82 Chlorotenane EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 1,2-Dibromo-3-chloropropane EPA 82	.60B 5B2503 .60B 5B2503	39 I .0		1			
Bromochloromethane EPA 82 Bromochloromethane EPA 82 Bromodichloromethane EPA 82 Bromodichloromethane EPA 82 Bromomethane EPA 82 n-Butylbenzene EPA 82 sec-Butylbenzene EPA 82 tert-Butylbenzene EPA 82 Carbon tetrachloride EPA 82 Chlorotenane EPA 82 Chlorotenane EPA 82 Chlorotenane EPA 82 Chlorotomethane EPA 82 Chlorotoluene EPA 82 1,2-Dibromo-3-chloropropane EPA 82	.60B 5B2503 .60B 5B2503	39 I .0			2/25/2005	2/26/2005	
Bromochloromethane EPA 82 Bromodichloromethane EPA 82 Bromoform EPA 82 Bromomethane EPA 82 n-Butylbenzene EPA 82 tert-Butylbenzene EPA 82 Carbon tetrachloride EPA 82 Chlorotenane EPA 82 Chlorotenane EPA 82 Chlorotomethane EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 1,2-Dibromo-3-chloropropane EPA 82	.60B 5B250		ND	ì	2/25/2005	2/26/2005	
Bromodichloromethane EPA 82 Bromoform EPA 82 Bromomethane EPA 82 n-Butylbenzene EPA 82 sec-Butylbenzene EPA 82 tert-Butylbenzene EPA 82 Carbon tetrachloride EPA 82 Chlorobenzene EPA 82 Chloroform EPA 82 Chloroform EPA 82 Chloromethane EPA 82 Chlorotoluene EPA 82 1,2-Dibromo-3-chloropropane EPA 82		0.1 9	ND	1	2/25/2005	2/26/2005	
Bromomethane EPA 82 n-Butylbenzene EPA 82 sec-Butylbenzene EPA 82 tert-Butylbenzene EPA 82 Carbon tetrachloride EPA 82 Chlorobenzene EPA 82 Chlorotethane EPA 82 Chlorotethane EPA 82 Chlorotoluene EPA 82 2-Chlorotoluene EPA 82 1,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82	60B 5B250		ND	1	2/25/2005	2/26/2005	
n-Butylbenzene EPA 82 sec-Butylbenzene EPA 82 tert-Butylbenzene EPA 82 Carbon tetrachloride EPA 82 Chlorobenzene EPA 82 Chlorothane EPA 82 Chloroform EPA 82 Chlorothane EPA 82 Chlorotoluene EPA 82 2-Chlorotoluene EPA 82 1,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82	:60B 5B250;	39 1.0	ND	1	2/25/2005	2/26/2005	
sec-Butylbenzene EPA 82 tert-Butylbenzene EPA 82 Carbon tetrachloride EPA 82 Chlorobenzene EPA 82 Chloroform EPA 82 Chloroform EPA 82 Chloromethane EPA 82 2-Chlorotoluene EPA 82 Chlorotoluene EPA 82 1,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82	60B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
tert-Butylbenzene EPA 82 Carbon tetrachloride EPA 82 Chlorobenzene EPA 82 Chloroform EPA 82 Chloroform EPA 82 Chloromethane EPA 82 2-Chlorotoluene EPA 82 Chlorotoluene EPA 82 1,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82	60B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
Carbon tetrachloride EPA 82 Chlorobenzene EPA 82 Chloroform EPA 82 Chloroform EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 1,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82	60B 5B250	39 1.0	ND	ı	2/25/2005	2/26/2005	
Chlorobenzene EPA 82 Chloroform EPA 82 Chloroform EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 L,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82	60B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
Chloroethane EPA 82 Chloroform EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 Chlorotoluene EPA 82 L,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82	260B 5B250	39 0.50	ND	1	2/25/2005	2/26/2005	
Chloroform EPA 82 Chloromethane EPA 82 2-Chlorotoluene EPA 82 Chlorotoluene EPA 82 I,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82	.60B 5B250	39 1.0	ND	ı	2/25/2005	2/26/2005	
Chloromethane EPA 82 2-Chlorotoluene EPA 82 Chlorotoluene EPA 82 Intromochloromethane EPA 82 1,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
2-Chlorotoluene EPA 82 Chlorotoluene EPA 82 Intromochloromethane EPA 82 I,2-Dibromo-3-chloropropane EPA 82 I,2-Dibromoethane (EDB) EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
Chlorotoluene EPA 82 Intromochloromethane EPA 82 I,2-Dibromo-3-chloropropane EPA 82 I,2-Dibromoethane (EDB) EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromo-dane (EDB) EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dibromo-3-chloropropane EPA 82 1,2-Dibromoethane (EDB) EPA 82			ND	1 💠	2/25/2005	2/26/2005	
1,2-Dibromoethane (EDB) EPA 82	260B \$B250	39 1.0	ND	1	2/25/2005	2/26/2005	
,	260B 5B250	39 5.0	ND	1	2/25/2005	2/26/2005	
,	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
Dibromomethane EPA 82	260B SB250	39 1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dichlorobenzene EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
1,3-Dichlorobenzene EPA 82	260B 5B250	39 1.0	ND	ŀ	2/25/2005	2/26/2005	
1,4-Dichlerobenzene EPA 82	260B 5D250	39 1.0	ND	1	2/25/2005	2/26/2005	
Dichlorodifluoromethane EPA 82	260B 5B250	39 2.0	18	1	2/25/2005	2/26/2005	
1,1-Dichloroethane EPA 82	60B 5B250	39 1.0	5.6	1	2/25/2005	2/26/2005	
1,2-Dichloroethane EPA 82	260B 5B250	39 0.50	1.3	1	2/25/2005	2/26/2005	
1,1-Dichtoroethene EPA 82	260B 5B250	39 1.0	ND	l.	2/25/2005	2/26/2005	
cis-1,2-Dichloroethene EPA 82	60B 5B250	39 1.0	34	ł.	2/25/2005	2/26/2005	
trans-1,2-Dichloroethene EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
1,2-Dichleropropane EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
1,3-Dichloropropane EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
2,2-Dichloropropane EPA 82	260B SB250	39 1.0	ND	ı	2/25/2005	2/26/2005	
1,1-Dichloropropene EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
cis-1,3-Dichloropropene EPA 82	260B 5B250	39 0.50	ND	1	2/25/2005	2/26/2005	
trans-1,3-Dichloropropene EPA 82	260B 5B250	39 0.50	ND	t	2/25/2005	2/26/2005	
Ethylbenzene EPA 82	260B 5B250	39 0.50	ND	1	2/25/2005	2/26/2005	
Hexachloroburadiene EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	.2/26/2005	
Isopropythenzene EPA 82	260B 5B250	39 1.0	ND	1	2/25/2005	2/26/2005	
p-Isopropyltolaene EPA 82							
Methylene chloride EPA 82		39 1.0	ND	1	2/25/2005	2/26/2005	
Methyl-test-butyl Ether (MTBE) EPA 82			ND ND	l I	2/25/2005 2/25/2005	2/26/2005 2/26/2005	

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (658) 505-9689 9830 South 51st St., Suite 8-120, Phoeniz, AZ 85044 (480) 785-0043 FAX (480) 785-0043 15X (480) 785-0851 2520 E. Suntet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date .	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-20 (GW-5-2/25/05 - Wat	er) - cont.			Sampled	02/25/05			
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
n-Propylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Styrene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/26/2005	
Tetrachloroethene	EPA 8260B	5B25039	1.0	18	1	2/25/2005	2/26/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	15	1	2/25/2005	2/26/2005	
Trichlorofluoromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	_
1,3,5-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	4
Vinyl chloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
o-Xylene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/26/2005	
m,p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/26/2005	
Surrogate: Dibromofluoromethane (80-120%)				112 %				
Surrogate: Toluene-d8 (80-120%)				100 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				98 %				

17461Derian Ave., Suita 100, Irvine, CA 52614 (949) 241-1022 J'AX (949) 250-3297 1014 E. Cooley Or., Suite A. Cokun, CA 92324 (989) 370-4667 FAX (949) 370-1046 9484 Chesaperake Dr., Swite 805, San Diego, CA 92123 (893) 505-6559 FAX (848) 505-9669 9630 South 51st St., Swite 8-120, Phoenia, AZ 85044 (480) 745-0043 FAX (480) 745-0051 2570 E. Suitet Rd. #3, Eas Vegas, NV 89124 (702) 748-1870 FAX (702) 798-3627

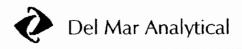
WH Americas - Brea

050 Sahim Ave., Suite 205 Brea, CA 92821

Attention: Lisa Half

Project ID: Honeywell, North Hollywood

1890933.0501


Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1976-22 (GW-4-2/25/0	S. Water)			Samuled	: 02/25/05			
Reporting Units: ng/l	3- Water)			0-mpico				
Benzene	EPA 8260B	5B26009	0.50	ND		2/26/2005	2/26/2005	
Bromobenzene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Bromochloromethane	EPA 8260B	5B26009	1.0	ND	ı	2/26/2005	2/26/2005	
Bromodichloromethane	EPA 8260B	5B26009	1.0	ND	ŧ	2/26/2005	2/26/2005	
Bromoform	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Bromomethane	EPA 8260B	5B26009	1.0	ND	ı	2/26/2005	2/26/2005	
n-Butylbenzene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
sec-Butylbenzene	EPA 8260B	5B26009	1.0	ND	ı	2/26/2005	2/26/2005	
tert-Butylbenzene	EPA 8260B	5D26009	1.0	ND	1	2/26/2005	2/26/2005	
Carbon tetrachloride	EPA 8260B	5B26009	0.50	ND	1	2/26/2005	2/26/2005	
Chlorobenzene	EPA 8260B	5B26009	1.0	ND	ı	2/26/2005	2/26/2005	
Chloroethane	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Chloroform	EPA 8260B	5B26009	1.0	ND		2/26/2005	2/26/2005	
Chloromethane	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
2-Chlorotoluene	EPA 8260B	5B26009	1.0	ND	ı	2/26/2005	2/26/2005	
hlorotoluepe	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
romochloromethane	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B26009	5.0	ND		2/26/2005	2/26/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Dibromomethane	EPA 8260B	5B26009	0.1	ND	ı	2/26/2005	2/26/2005	
1,2-Dichlorobenzene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
1,3-Dichlorobenzene	EPA 8260B	5B26009	1.0	ND	I	2/26/2005	2/26/2005	
1,4-Dichlorobenzene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Dichlorodifinoromethane	EPA 8260B	5B26009	2.0	14	ı	2/26/2005	2/26/2005	
1,1-Dichloroethane	EPA 8260B	5B26009	1.0	3.9	ı	2/26/2005	2/26/2005	
1,2-Dichtoroethane	EPA 8260B	5B26009	0.50	1.0	ı	2/26/2005	2/26/200 5	
1,1-Dichloroethene	EPA 8260B	5B26009	1.0	ND	ı	2/26/2005	2/26/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B26009	1.0	27	1	2/26/2005	2/26/200 5	
trans-1,2-Dichloroethene	EPA 8260B	5B26009	1.0	ND	l	2/26/2005	2/26/2005	
1,2-Dichloropropane	EPA 8260B	5B26009		ND	1	2/26/2005	2/26/2005	
1,3-Dichloropropane	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
2,2-Dichloropropane	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
1,1-Dichloropropeue	EPA 8260B	5B26009		ND	Į.	2/26/2005	2/26/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B26009	0.50	ND	1	2/26/2005	2/26/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B26009	0.50	ND	ı	2/26/2005	2/26/2005	
Ethylbenzene	EPA 8260B	5B26009		ND	1	2/26/2005	2/26/2005	
Hexachlorobutadiene	EPA 8260B	5B26009	1.0	ND	ı	2/26/2005	<i>2</i> /26/2005	
Isopropylbenzene	EPA 8260D	5B26009		ND	1	2/26/2005	2/26/2005	
p-Isopropyltoluene	EPA 8260B	5B26009		ND	ı	2/26/2005	2/26/2005	
Methylene chloride	EPA 8260B	5B26009		ND	1	2/26/2005	2/26/2005	
Methyl-test-butyl Ether (MTBE)	EPA 8260B	5B26009	1.0	ND	I	2/26/2005	2/26/2005	

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1814 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51x St., Suite 8-120, Phoenix, AZ 85044 [480] 785-0043 FAX [480] 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/24/05-02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: IOB1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	. Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-22 (GW-4-2/25/05 - Wat	er) - cont.			Sampled	: 02/25/05			
Reporting Units: ug/l								
Naphthalene	EPA 8260B	5B26009	1.0	ND	· 1	2/26/2005	2/26/2005	
n-Propylbenzene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Styrene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Tetrachloroethene	EPA 8260B	5B26009	1.0	14	1	2/26/2005	2/26/2005	
Toluene	EPA 8260B	5B26009	0.50	ND	1	2/26/2005	2/26/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
1,1,1-Trichloroethane	EPA 8260B	5B26009	1.0	ND	I	2/26/2005	2/26/2005	
1,1,2-Trichloroethane	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Trichloroethene	EPA 8260B	5B26009	1.0	12	1	2/26/2005	2/26/2005	
Trichlorofluoromethane	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
1,2,3-Trichloropropane	EPA 8260B	5B26009	1.0	ND	ı	2/26/2005	2/26/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	_
1,3,5-Trimethylbenzene	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Vinyl chloride	EPA 8260B	5B26009	0.50	ND	1	2/26/2005	2/26/2005	
o-Xylene	EPA 8260B	5B26009	0.50	ND	1	2/26/2005	2/26/2005	
m,p-Xylenes	EPA 8260B	5B26009	1.0	ND	1	2/26/2005	2/26/2005	
Surrogate: Dibromofluoromethane (80-120%)				112%				
Surrogate: Toluene-d8 (80-120%)				100%				
Surrogate: 4-Bromofluorobenzene (80-120%)				98 %				

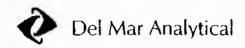
17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colon, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-6596 FAX (888) 505-6969 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2570 E. Suntet Rd. #3, Las Vegas, RV 89120 (702) 798-3620 FAX (702) 798-3621

WH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501


Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1976-23 (EB-04-2/25/05-	F - Water)			Sampled:	02/25/05			•
Reporting Units: ug/l	r water)			Gampieu.	. 02/25/05			
_ Benzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Bromobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromochloromethane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
Bromodichloromethane	EPA 8260B	5B25039	1.0	ND	i	2/25/2005	2/25/2005	
Bromoform	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Bromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
n-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
sec-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
tert-Butylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Carbon tetrachloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Chlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chleroform	EPA 8260B	5B25039	1.0	1.4	1	2/25/2005	2/25/2005	
Chloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2-Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Chlorotoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
oromochloromethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dibromo-3-chloropropane	EPA 8260B	5B25039	5.0	ND	1.	2/25/2005	2/25/2005	
1,2-Dibromoethane (EDB)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dibromomethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,4-Dichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Dichlorodifluoromethane	EPA 8260B	5B25039	2.0	ND	1	2/25/2005	2/25/2005	
1,1-Dichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichloroethane	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
1,1-Dichloroethene	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/25/2005	
cis-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
trans-1,2-Dichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
2,2-Dichloropropane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1-Dichloropropene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
cis-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
trans-1,3-Dichloropropene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Ethylbenzene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
Hexachlorobutadiene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	-2/25/2005	
Isopropylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
p-Isopropyltoluene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Methylene chloride	EPA 8260B	5B25039	5.0	ND	1	2/25/2005	2/25/2005	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	

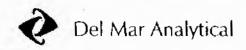
17461 Derian Ave., Suite 190, Irvine, CA 92614 (949) 761-1022 FAX (949) 760-3297 1014 E. Cooley Ct., Suite A. Collon. CA 97324 (909) 370-1667 FAX (947) 370-1046 9484 Chasspeake Dr., Suite 805, San Diegn, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Sain-8-120, Phoenic, AZ 85044 (480) 785-0043 FAX (480) 785-0081 2520 F. Sumet Rd. #3, Las Vegas, NV 89170 (707) 798-3670 FAX (707) 798-3621

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501


Sampled: 02/24/05-02/25/05

Brca, CA 92821 Attention: Lisa Hall Report Number: IOB1976

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-23 (EB-04-2/25/05-F - W	/ater) - cont			Sampled	92/25/05			
Reporting Units: ng/l								
Naphthalene	EPA 8260B	5B25039	1.0	ND	t	2/25/2005	2/25/2005	
n-Propylbenzene	EPA 8260D	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Styrene	EPA 8260B	5B25039	1.0	ND	ŧ	2/25/2005	2/25/2005	
1,1,1,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2,2-Tetrachloroethane	EPA 8260B	5B25039	1.0	ND	ŧ	2/25/2005	2/25/2005	
Tetrachloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Toluene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,2,4-Trichlorobenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,1-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,1,2-Trichloroethane	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Trichloroethene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Trichlorofluoromethane	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/25/2005	
1,2,3-Trichloropropane	EPA 8260B	5B25039	0.1	ND	1	2/25/2005	2/25/2005	
1,2,4-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
1,3,5-Trimethylbenzene	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Viny! chloride	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
o-Xylene	EPA 8260B	5B25039	0.50	ND	1	2/25/2005	2/25/2005	
m,p-Xylenes	EPA 8260B	5B25039	1.0	ND	1	2/25/2005	2/25/2005	
Surrogate: Dibromofhioromethane (80-120%)				112%				
Surrogate: Toluene-d8 (80-120%)	,			100 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				100%				

17461 Derian Ave., Suite 100, Invine, CA 97814 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A., Collon, CA 92324 (959) 370-4667 FAX (949) 370-1046 9484 Chesapealar Dv., Suite 805, Sarr Diege, CA 92123 (850) 505-8996 (540) 565-9669 9830 South 51st St., Suite B-120, Promite, AZ 85044 (460) 785-0043 FAX (460) 785-0651 2520 E. Suntok Rd., 43, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

TWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/8270C MOD)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1976-08 (GW-7-2/24/05 -	Water)			Sampled	02/24/05			+
Reporting Units: ng/l	EPA 8270C MOD	5B25110	2.0	5.0	1.92	2/25/2005	2/28/2005	
Surrogate: 1,4-Dioxane-d8 (35-120%)	EFA 8270C MOD	3023110	2.0	53 %	1.92	272372003	2/2/0/2003	
Sample ID: IOB1976-10 (DUP-01-2/24/0	5 - Water)			Sampled	02/24/05			
Reporting Units: ng/l 1,4-Dioxane	EPA 8270C MOD	SB25110	2.0	5.1	1.89	2/25/2005	2/28/2005	
Surrogate: 1,4-Dioxane-d8 (35-120%)				54 %				
Sample ID: IOB1976-13 (GW10-2/24/05 Reporting Units: ug/l	- Water)			Sampled	: 02/25/05			•
1,4-Dioxane	EPA 8270C MOD	5B25110	5.0	ND	4.72	2/25/2005	2/28/2005	
Surrogate. 1,4-Dioxane-d8 (35-120%)				52%				Z 3
Sample ID: IOB1976-15 (GW-15-2/25/05 Reporting Units: ug/l	i - Water)			Sampled	: 02/25/05			
1,4-Dioxane	EPA 8270C MOD	5B25110	10	16	9.43	2/25/2005	2/28/2005	
Surrogate: 1,4-Dioxane-d8 (35-120%)				57%				Z 3
mple ID: IOB1976-17 (DUP-03-2/25/0	5 - Water)			Sampled	: 02/25/05			
Reporting Units: ng/l	EPA 8270C MOD	5B25110	5.0	14	4.72	2/25/2005	2/28/2005	
Surrogate: 1,4-Dioxane-d8 (35-120%)		2224.10		54%		2-2		Zĵ
Sample ID: IOB1976-18 (EB-03-2/25/05- Reporting Units: ug/l	F - Water)			Sampled	: 02/25/05			RL-4
1,4-Dioxanc	EPA 8270C MOD	5B25110	1.1	ND	1.11	2/25/2005	2/28/2005	
Surragate: 1,4-Dioxane-d8 (35-120%)				57 %				
Sample ID: 1OB1976-23 (EB-64-2/25/05- Reporting Units: ug/l	F - Water)			Sampled	: 02/25/05			
1,4-Dioxane	EPA 8270C MOD	5B25110	1.0	ND	1.05	2/25/2005	2/28/2005	
Surrogote: 1,4-Dioxane-d8 (35-120%)				61 %				

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colom, CA 92324 (999) 370-4667 FAX (949) 376-1046 9484 Chesapeake Dr., Suite 865, San Diego, CA 92123 (854) 505-8596 FAX (858) 503-9689 9830 South 51st St., Saint B-120, Phoenix, AZ 85044 (490) 785-0043 FAX (480) 785-0051 2520 E. Sumer Rd. #3. Us Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Altention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

METALS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1976-01 (GW-14B-2/24/05-I	- Water)			Sampled	: 62/24/05		_	_
Reporting Units: mg/l				ownspie e				
Antimony	EPA 6010B	5B25093	0.010	ND	ı	2/25/2005	2/25/2005	
Arsenic	EPA 6010B	5B25093	0.0050	ND	t	2/25/2005	2/25/2005	
Barium	EPA 6010B	5B25093	0.010	0.48	ı	2/25/2005	2/25/2005	
Beryllium	EPA 6010B	5B25093	0.0040	ND	t	2/25/2005	2/25/2005	
Cadmium	EPA 6010B	5B25093	0.0050	ND	l	2/25/2005	2/25/2005	
Chromium	EPA 6010B	5B25093	0.0050	0.050	t	2/25/2005	2/25/2005	
Cobalt	EPA 6010B	5B25093	0.010	ND	l	2/25/2005	2/25/2005	
Соррег	EPA 6010B	5B25093	0.010	ND	t	2/25/2005	2/25/2005	
Lead	EPA 6010B	5B25093	0.0050	ND	l	2/25/2005	2/25/2005	
Метсигу	EPA 7470A	5B25106	0.00020	ND	t	2/25/2005	2/25/2005	
Molybdenum	EPA 6010B	5B25093	0.020	ND	t	2/25/2005	2/25/2005	
Nickel	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Selenium	EPA 6010B	SB25093	0.0050	ND	t	2/25/2005	2/25/2005	
Silver	EPA 6010B	5B25093	0.010	ND	Ł	2/25/2005	2/25/2005	
Vanadium	EPA 6010B	5B25093	0.010	ND	ı	2/25/2005	2/25/2005	
Zinc	EPA 6010B	5B25093	0.020	0.12	ŧ	2/25/2005	2/25/2005	
C I ID TODIOS AL CONTIAD ODAMA	7 41 /-4			01_3	. 03/24/05			
Sample ID: IOB1976-01 (GW-14B-2/24/05-)	(- Water)			Sampled	: 02/24/05			
Reporting Units: ag/l	En . (000	CD3C114	1.0	NTO		200000	2000000	
Thallium	EPA 6020	5825114	1.0	ND	t	2/25/2005	2/26/2005	
Sample ID: IOB1976-03 (GW-14B-PC-2/24/	05-F - Water)			Sampled	02/24/05			
Reporting Units: mg/l				*				
Antimony	EPA 6010B	5B25093	0.010	ND	ŧ	2/25/2005	2/25/2005	
Arsenic	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
Barium	EPA 6010B	5B25093	0.010	0.49	i	2/25/2005	2/25/2005	
Berytlium	EPA 6010B	5B25093	0.0040	ND	ŀ	2/25/2005	2/25/2005	
Cadmium	EPA 6010B	5B25 0 93	0.0050	ND	ı	2/25/2005	2/25/2005	
Chromium	EPA 6010B	5B25093	0.0050	0.052	i	2/25/2005	2/25/200S	
Cobalt	EPA 6010B	5B25093	0.010	ND	t	2/25/2005	2/25/2005	
Соррет	EPA 6010B	5B25093	0.010	ND	ı	2/25/2005	2/25/2005	
Lead	EPA 6010B	5B25093	0.0050	ND	l	2/25/2005	2/25/2005	
Метециу	EPA 7470A	5B25106	0.00020	ND	t	2/25/2005	2/25/2005	
Molybdenum	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005	
Nickel	EPA 6010B	5B25093	010.0	ND	1	2/25/2005	2/25/2005	
Selenium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/26/2005	
Silver	EPA 6010B	5B25093	010.0	ND	1	2/25/2005	2/25/2005	
Vanadium	EPA 6010B	5B25093	0.010	ND	ì	2/25/2005	2/25/2005	
Zinc	EPA 6010B	5 B2509 3	0.020	9.093	ŧ	2/25/2005	2/25/2005	
Sample ID: IOB1976-03 (GW-14B-PC-2/24/	05-F - Water)			Sampled	02/24/05			

Reporting Units: mg/l

Del Mar Analytical, Irvinc

Chris Roberts

Project Manager

The results perioin only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from Del Mar Analytical.

10B1976 <Page 29 of 62>

17461Denan Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 € Cooley Dr., Suite A. Colton, CA 93374 (909) 370-4667 FAX (949) 370-1066 9464 Chesapeake Dr., Suite 863, San Degy, CA 92723 (858) 305-8596 FAX (868) 305-9689 9830 South STu St., Suite 8-120, Phiseelis, AZ 85944 (460) 785-9043 FAX (460) 785-9051 2520 E. Suitset Rd. #3, Lay Vegas, NV 49120 (703) 798-3620 FAX 002) 798-3621

WH Americas - Brea

050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

MET.	ÁΊ	S
	_	

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: 10B1976-03 (GW-14B	-PC-7/24/05-F - Water)			Sampled	: 02/24/05			
Reporting Units: ug/l								
Thallium	EPA 6020	5B25114	1.0	ND	1	2/25/2005	2/26/2005	
Sample ID: IOB1976-05 (GW-14B	-PD-2/24/05-F - Water)			Sampled	: 02/24/05			
Reporting Units: mg/l								
Antimony	EPA 6010B	5B25093	0.010	ИD	1	2/25/2005	2/25/2005	
Arsenic	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
Barium	EPA 6010B	5B25093	0.010	0.60	t	2/25/2005	2/25/2005	
Beryllium	EPA 6010B	5B25093	0.0040	ND	1	2/25/2005	2/25/2005	
Cadmium	EPA 6010B	5B25093	0.0050	ND	t	2/25/2005	2/25/2005	
Chromium	EPA 6010B	5B25093	0.0050	0.049	1	2/25/2005	2/25/2005	
Cobalt	EPA 6010B	5B25093	0.010	ND	t	2/25/2005	2/25/2005	
Copper	EPA 6010B	5B25093	010.0	ND	1	2/25/2005	2/25/2005	
Lead	EPA 6010B	5B25093	0,0050	NĐ	t	2/25/2005	2/25/2005	
Mercury	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005	
Molybdemun	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005	
Nickel	EPA 6010B	5B25093	0.010	ND	t	2/25/2005	2/25/2005	
nium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
eniver	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Vanadium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Zinc	EPA 6010B	5B25093	0.020	0.13	1	2/25/2005	2/25/2005	
Sample ID: 10B1976-05 (GW-14B	I-PD-2/74/05-F - Water)			Sampled	: 02/24/05			
Reporting Units: ug/l								
Thalitum	EPA 6020	5B25114	1.0	ND	1	2/25/2005	2/26/2005	
Sample ID: 10B1976-07 (GW-7-2)	/24/05-F - Water)			Sampled	: 02/24/05			
Reporting Units: mg/l	ED. (010b)					0.000.000	200000	
Antimony	EPA 6010B	5B25093	0.010	ND	t	2/25/2005	2/25/2005	
Arsenic	EPA 6010B	5B25093	0.0050	9.0082	1	2/25/2005		
Darium	EPA 6010B	5B25093	0.010	0.26	1	2/25/2005		
Beryllium	EPA 6010B	5B25093	0.0040	ND	t	2/25/2005		
Cadmium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005		
Chromium	EPA 6010B	5B25093	0.0050	0.14	1	2/25/2005		
Cobalt	EPA 6010B	5B25093	0.010	ND	1	2/25/2005		
Copper	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Lead	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
Mercury	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005	
Molybdenum	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005	
Nickel	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Selenium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
Silver	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Vanadium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	

17467 Derian Ave., Sulte 100, Irvine, CA 92614 (1949) 261-1022 FAX (1949) 260-1297 3014 E. Gooley Cr., Swite A. Coltun, CA 92124 (1909) 370-4667 FAX (1949) 370-1046 9484 Cherapuskie Cr., Swite 805, San Diego, CA 921121 (858) 505-6956 FAX (1949) 350-9696 9830 South 51x Sz., Swite 8120, Phorenx, AZ 85044 (4408) 785-0041 FAX (480) 785-0851 2520 E. Sureck Cd. 43, Just Vegar, NV 89120 (702) 798-9620 FAX (703) 798-9627

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hail Project ID: Honeywell, North Hollywood

1890933,0501


Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

METALS

		IVAN	SIMUO					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	. Data Qualifiers
Sample ID: IOB1976-07 (GW-7-2/)	24/05-F - Water) - cont.			Sampled	92/24/05			
Reporting Upits: mg/l								
Zinc	EPA 6010B	5B25093	0.020	0.023	I	2/25/2005	2/25/2005	
Sample ID: IOB1976-87 (GW-7-2/2	24/05-F - Water)			Sampled:	02/24/05			
Reporting Units: ug/l								
Thallium	EPA 6020	5B25114	0.1	ND	ı	2/25/2005	2/26/2005	
Sample ID: IOB1976-09 (DUP-01-2	2/24/05-F - Water)			Sampled	02/24/05			
Reporting Units: mg/l								
Авивову	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Arsenic	EPA 6010B	5B25093	0.0050	ND	I .	2/25/2005	2/25/2005	
Bartum	EPA 6010B	5B25093	010.0	0.39	1	2/25/2005	2/25/2005	
Beryllium	EPA 6010B	5B25093	0.0040	ND	i	2/25/2005	2/25/2005	
Cadmium	EPA 6010B	5B25093	0,0050	ND	1	2/25/2005	2/25/2005	
Chromium	EPA 6010B	5B25093	0.0050	0.14	1	2/25/2005	2/25/2005	
Cobalt	EPA 6010B	5B25093	0.010	ND	- 1	2/25/2005	2/25/2005	
Соррет	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Lead	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
Mercury	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005	
Molybdenum	EPA 6010B	5B25093	0.020	ND	Ì	2/25/2005	2/25/2005	
Nickel	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Selenium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
Silver	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Vanadium	EPA 6010B	5B25093	0.010	ND	ı	2/25/2005	2/25/2005	
Zinc	EPA 6010B	5B25093	0.020	0.14	ı	2/25/2005	2/25/2005	
Sample ID: IOB1976-09 (DUP-01-	2/24/05-F - Water)			Sampled:	02/24/05			
Reporting Units: ug/l								
Thallium	EPA 6020	5B25114	0.1	ND	1	2/25/2005	2/26/2005	

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (81858) 505-9669 9830 South 51st SL, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suiset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

WH Americas - Brea

050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project 1D: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

METALS

			Reporting	Sample	Dilution	Date	Date	Data				
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers				
Sample ID: IOB1976-12 (GW-10-2/24/0	5-F - Water)			Sampled	02/25/05							
Reporting Units: mg/l												
Antimony	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Arsenic	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Barium	EPA 6010B	5B25093	0.010	0.26	1	2/25/2005	2/25/2005					
Beryllium	EPA 6010B	5B25093	0.0040	ND	1	2/25/2005	2/25/2005					
Cadmium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Chromlum	EPA 6010B	5B25093	0.0050	0.20	1	2/25/2005	2/25/2005					
Cobalt	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Соррет	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Lead	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Mercury	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005					
Molybdenum	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005					
Nickel	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Selenium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/26/2005					
Silver	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Vanadium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
c	EPA 6010B	5B25093	0.020	0.024	1	2/25/2005	2/25/2005					
ID TODIOS 12 (OW 10 204)	ET Weben			C1.4	. 02/25/05							
imple ID: IOB1976-12 (GW-10-2/24/0	5-F - Water)			Sampieu	: 02/25/05							
Reporting Units: ng/l	ED4 (020	CD26114	1.0	ND		205/2005	2/26/2005					
Thallium	EPA 6020	5B25114	1.0	ND	1	2/23/2003	2/20/2003					
Sample ID: IOB1976-14 (GW-15-2/25/0	5-F - Water)			Sampled	: 02/25/05							
Reporting Units: mg/l												
Antimony	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Arsenic	EPA 6010B	5B25093	0.0050	0.0066	1	2/25/2005	2/25/2005					
Barium	EPA 6010B	5B25093	0.010	0.26	. 1	2/25/2005	2/25/2005					
Beryllium	EPA 6010B	5B25093	0.0040	ND	1	2/25/2005	2/25/2005					
Cadmium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Chromium	EPA 6010B	5B25093	0.0050	7.0	1	2/25/2005	2/25/2005					
Cobalt	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Copper	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Lead	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Mercury	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005					
Molybdenum	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005					
Nickel	EPA 6010B	5B25093	0.010	ND	ì	2/25/2005	2/25/2005					
Selenium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Silver	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Vanadium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Zinc	EPA 6010B	5B25093	0.020	0.038	1	2/25/2005	2/25/2005					
					-							

Sample ID: IOB1976-14 (GW-15-2/25/05-F - Water)

Reporting Units: ug/

Mar Analytical, Irvine is Roberts
Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

Sampled: 02/25/05

10B1976 <Page 32 of 62>

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Coltan, CA 92324 (909) 370-4647 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (888) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 1520 E. Suitet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 738-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project 1D: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

METALS

IVIE I ALIG												
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers				
•					22.75.05		•					
Sample ID: IOB1976-14 (GW-15-2/25/05	-r - Water)			Sampled:	02/25/05			•				
Reporting Units: ug/l	EDA (020	CD3C114	10	NT.		2050005	2060006					
Thallium	EPA 6020	5B25114	1.0	ND	1	2/25/2005	2/26/2005					
Sample ID: IOB1976-16 (DUP-03-2/25/0	5-F - Water)			Sampled:	02/25/05							
Reporting Units: mg/l												
Antimony	EPA 6010B	5B25093	0.010	ND	ŀ	2/25/2005	2/25/2005					
Arsenic	EPA 6010B	5B25093	0.0050	ND	ł	2/25/2005	2/25/2005					
Barium	EPA 6010B	5B25093	0.010	0.18	1	2/25/2005						
Beryllium	EPA 6010B	5B25093	0.0040	ND	1	2/25/2005	2/25/2005	٠.				
Cadmium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Chromium	EPA 6010B	5B25093	0.0050	6.7	1	2/25/2005	2/25/2005					
Cobalt	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Соррег	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Lead	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Mercury	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005					
Molybdenum	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005					
Nickel	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Selenium	EPA 6010B	5B25093	0.0050	ND	1.	2/25/2005	2/25/2005					
Silver	EPA 6010B	5B25093	0.010	ND)	2/25/2005	2/25/2005					
Vanadium	EPA 6010B	5B25093	0.010	ND ·	1	2/25/2005	2/25/2005					
Zinc	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005					
Sample ID: IOB1976-16 (DUP-03-2/25/0	5-F - Water)			Sampled:	02/25/05							
Reporting Units: ug/l	FD . (000	cpace				205000	200000					
Thallium	EPA 6020	5B25114	1.0	ND	1	2/25/2005	2/26/2005					
Sample ID: IOB1976-18 (EB-03-2/25/05-	F - Water)			Sampled:	02/25/05							
Reporting Units: mg/l												
Antimony	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Arsenic	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Barium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Beryllium	EPA 6010B	5B25093	0.0040	ND	1	2/25/2005	2/25/2005					
Cadmium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Chromium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Cobalt	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Соррег	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Lead	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Mercury	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005					
Molybdenum	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005					
Nickel	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Selenium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Silver	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Vanadium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					

Del Mar Analytical, Irvine

Chris Roberts Project Manager

The results persain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1976 <Page 33 of 62>

17461Denan Ave... Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Collon, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diega, CA 92123 (858) 505-8596 FAX (868) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (488) 785-0043 FAX (460) 785-0851 2520 E. Suntet Rd. #3, Lav Vepax, NV 89120 (702) 799-3620 FAX (702) 798-3621

WH Americas - Brea

050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project 1D: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

		ME	TALS					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1976-18 (EB-03-2/25/05-1	F - Water) - cont.			Sampled	02/25/05			
Reporting Units: mg/l								
. Zinc	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005	
Sample ID: IOB1976-18 (EB-03-2/25/05-	F - Water)			Sampled	02/25/05			
Reporting Units: ug/l								
Thallium	EPA 6020	5B25114	1.0	ИD	1	2/25/2005	2/26/2005	
Sample ID: IOB1976-19 (GW-5-2/25/05-1	F - Water)			Sampled	: 02/25/05			
Reporting Units: mg/l								
Antimony	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Arsenic	EPA 6010B	5B25093	0.0050	0.0069	1	2/25/2005	2/25/2005	
Barium	EPA 6010B	5B25093	0.010	0.35	1	2/25/2005	2/25/2005	
Beryllium	EPA 6010B	5B25093	0.0040	ND	1	2/25/2005	2/25/2005	
Cadmium	EPA 6010B	5B25093	0.0050	ND	ì	2/25/2005	2/25/2005	
Chromium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
Cobalt	EPA 6010B	5B25093	010.0	ND	1	2/25/2005	2/25/2005	
Copper	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
and a second	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
rcury	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005	
Molybdenum	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005	
Nickel	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Selenium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005	
Silver	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Vanadium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005	
Zinc	EPA 6010B	5B25093	0.020	0.17	1	2/25/2005	2/25/2005	
Sample ID: IOB1976-19 (GW-5-2/25/05-	F - Water)			Sampled	: 02/25/05			
Reporting Units: ug/l								
Thallium	EPA 6020	5B25114	1.0	ND	1	2/25/2005	2/26/2005	

17461Derian Ave., Suize 100, Invine, CA 92614 (949) 261-1022 FAX (949) 269-3297 1014 E. Cookey Dr., Suite A. Cokon, CA 92324 (909) 370-4667 FAX (949) 378-1046 9464 Chesapeake Dr., Suize 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suize 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suizet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

METALS

METALO												
			Reporting	Sample	Dilution	Date	Date .	Data				
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers				
Sample ID: IOB1976-21 (GW-4-2/25/05-F	- Water)			Sampled:	02/25/05							
Reporting Units: mg/l							•					
Antimony	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Arsenic	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Barium	EPA 6010B	5B25093	0.010	0.51	1	2/25/2005	2/25/2005					
Beryllium	EPA 6010B	5B25093	0.0040	ND	1	2/25/2005	2/25/2005					
Cadmium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Chromium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Cobalt	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Copper	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Lead	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Mercury	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005					
Molybdenum	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005					
Nickel	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Selenium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Silver	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Vanadium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Zinc	EPA 6010B	5B25093	0.020	0.10	1	2/25/2005	2/25/2005					
Sample ID: IOB1976-21 (GW-4-2/25/05-F	- Water)			Sampled:	02/25/05							
Reporting Units: ug/l												
Thallium	EPA 6020	5B25114	1.0	ND	1	2/25/2005	2/26/2005					
Sample ID: IOB1976-23 (EB-04-2/25/05-F	- Water)			Sampled:	02/25/05							
Reporting Units: mg/l												
Antimony	EPA 6010B	5B25093	0.010	. ND	1	2/25/2005	2/25/2005					
Arsenic	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Barium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Beryllium	EPA 6010B	5B25093	0.0040	ND	I	2/25/2005	2/25/2005					
Cadmium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Chromium	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Cobalt	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Copper	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Lead	EPA 6010B	5B25093	0.0050	ND	1	2/25/2005	2/25/2005					
Метсшту	EPA 7470A	5B25106	0.00020	ND	1	2/25/2005	2/25/2005					
Molybdenum	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005					
Nickel	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Selenium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/28/2005					
Silver	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Vanadium	EPA 6010B	5B25093	0.010	ND	1	2/25/2005	2/25/2005					
Zinc	EPA 6010B	5B25093	0.020	ND	1	2/25/2005	2/25/2005					

Sample ID: IOB1976-23 (EB-04-2/25/05-F - Water)

Reporting Units: ug/l

Del Mar Analytical, Irvine

Chris Roberts Project Manager

The results pertain only to the samples tested in the loboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

Sampled: 02/25/05

IOB1976 <Page 35 of 62>

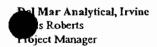
17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 805-8599 FAX (888) 905-9699 9830 South 51st Sr., Suite 81-120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Lav Vega, NV 89120 (702) 798-3620 FAX (702) 798-3621

fWH Americas - Brea

050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501


Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

METALS

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IOB1976-23 (EB-04-2/25/05-F - V		Sampled:	02/25/05					
Reporting Units: wg/l								
Thallium	EPA 6020	5B25114	1.0	ND	1	2/25/2005	2/26/2005	

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX 049) 260-3297 1014 E. Cooley Dr., Suite A. Cokon, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapoelde Dr., Suite 805, San Diego, CA 92123 (858) 505-6596 FAX (868) 505-9689 9830 South S1st St., Suite 8-120, Phoenix, AZ 85044 (490) 785-0043 FAX (480) 785-0851 2520 E. Suntet Rd. #3, Las Vegas, NY 89120 (702) 796-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

INORGANICS											
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IOB1976-02 (GW-14B-2/24/05 - V Reporting Units: mg/l	Water)			Sampled	: 02/24/05						
Chromium VI	EPA 7199	5B25084	0.0020	0.045	2	2/25/2005	2/25/2005				
Sample ID: IOB1976-04 (GW-14B-PC-2/24/0 Reporting Units: mg/l	5 - Water)			Sampled	: 02/24/05						
Chromium VI	EPA 7199	5B25084	0.0020	0.045	2	2/25/2005	2/25/2005				
Sample ID: IOB1976-06 (GW-14B-PD-2/24/0 Reporting Units: mg/l			Sampled	: 02/24/05							
Chromium VI	EPA 7199	5B25084	0.0020	0.045	2	2/25/2005	2/25/2005				
Sample ID: IOB1976-08 (GW-7-2/24/05 - Wa Reporting Units: mg/l	iter)			Sampled	: 02/24/05						
Chromium VI	EPA 7199	5B25084	0.0020	0.091	2	2/25/2005	2/25/2005				
Sample ID: IOB1976-08 (GW-7-2/24/05 - Wa Reporting Units: wg/l					: 02/24/05						
Perchlorate	EPA 314.0	5B25064	2.0	ND	1	2/25/2005	2/25/2005				
Sample ID: IOB1976-10 (DUP-01-2/24/05 - W Reporting Units: mg/l	Vater)			Sampled	: 02/24/05						
Chromium VI	EPA 7199	5B25084	0.0020	0.13	2	2/25/2005	2/25/2005				
Sample ID: IOB1976-10 (DUP-01-2/24/05 - W Reporting Units: ug/l	Vater)			Sampled	: 02/24/05						
Perchlorate	EPA 314.0	5B25064	2.0	ND	1	2/25/2005	2/25/2005				
Sample ID: 10B1976-13 (GW10-2/24/05 - Wa Reporting Units: mg/l				•	02/25/05						
Chromium VI	EPA 7199	5B25084	0.0050	0.17	5	2/25/2005	2/25/2005				
Sample ID: IOB1976-13 (GW10-2/24/05 - Wa Reporting Units: ug/l	nter)			•	92/25/05						
Perchlorate	EPA 314.0	5B25064	2.0	ND	l	2/25/2005	2/25/2005				
Sample ID: IOB1976-15 (GW-15-2/25/05 - W Reporting Units: mg/l	ater)			Sampled	02/25/05						
Chromium VI	EPA 7199	5B25084	0.20	6.4	200	2/25/2005	2/25/2005				
Sample ID: 10B1976-15 (GW-15-2/25/05 - W			Sampled:	02/25/05							
Reporting Units: ug/i Perchlorate .	EPA 314.0	5B25064	2.0	8.8	ì	2/25/2005	2/26/2005				

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (658) 505-8569 FAX (858) 505-9689 9830 South 514 St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (460) 785-0851 2520 E. Sunset 8d. #3, Las Vegas, NV 89120 (707) 798-3620 FAX (702) 798-3621

IWH Americas - Brea

050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

		INOR	GANICS					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1976-17 (DUP-03-2/25/0	5 - Water)			Sampled	: 02/25/05			
Reporting Units: mg/l								
_Chromium VI	EPA 7199	5B25084	0.20	6.5	200	2/25/2005	2/25/2005	
Sample ID: IOB1976-17 (DUP-03-2/25/0 Reporting Units: ug/l	5 - Water)			Sampled	: 02/25/05			
Perchlorate	EPA 314.0	5B25064	2.0	8.9	1	2/25/2005	2/26/2005	
•	Sample ID: IOB1976-18 (EB-03-2/25/05-F - Water) Reporting Units: mg/l				: 02/25/05			
Chromium VI	EPA 7199	5B25084	0.0010	ND	1	2/25/2005	2/25/2005	
Sample ID: IOB1976-18 (EB-03-2/25/05-F - Water) Reporting Units: ug/l				Sampled	: 02/25/05			
Perchlorate	EPA 314.0	5B25064	2.0	ND	1	2/25/2005	2/26/2005	
Sample ID: IOB1976-20 (GW-5-2/25/05 Reporting Units: mg/l	- Water)			Sampled	: 02/25/05			
Chromium VI	EPA 7199	5B25084	0.0010	ND	1	2/25/2005	2/25/2005	
mple ID: IOB1976-22 (GW-4-2/25/05 Reporting Units: mg/l	- Water)			Sampled	: 02/25/05		•	
Chromium VI	EPA 7199	5B25084	0.0010	0.0012	1	2/25/2005	2/25/2005	
Sample ID: IOB1976-23 (EB-04-2/25/05 Reporting Units: mg/l	-F - Water)			Sampled	: 02/25/05			
Chromium VI	EPA 7199	5B25084	0.0010	ND	1	2/25/2005	2/25/2005	
Sample ID: IOB1976-23 (EB-04-2/25/05 Reporting Units: ng/l	-F - Water)			Sampled	: 02/25/05			
Perchlorate	EPA 314.0	5B25064	2.0	ND	1	2/25/2005	2/26/2005	

ris Roberts
Project Manager

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

Brea, CA 92821

Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 1OB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed								
Sample ID: GW-14B-2/24/05 (IOB1976-02)	- Water												
EPA 7199	1	02/24/2005 18:10	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 14:01								
Sample ID: GW-14B-PC-2/24/05 (IOB1976-	04) - Water												
EPA 7199	1	02/24/2005 19:05	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 14:11								
Sample ID: GW-14B-PD-2/24/05 (IOB1976-	Sample ID: GW-14B-PD-2/24/05 (IOB1976-06) - Water												
EPA 7199	1	02/24/2005 20:50	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 14:21								
Sample ID: GW-7-2/24/05 (IOB1976-08) - W	ater												
EPA 7199	1	02/24/2005 22:30	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 14:31								
Sample ID: DUP-01-2/24/05 (IOB1976-10) -	Water												
EPA 7199	1	02/24/2005 17:00	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 14:41								
Sample ID: GW10-2/24/05 (IOB1976-13) - V	Vater												
EPA 7199	1	02/25/2005 00:10	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 14:51								
Sample ID: GW-15-2/25/05 (IOB1976-15) - '	Water												
EPA 7199	1	02/25/2005 01:30	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 15:21								
Sample ID: DUP-03-2/25/05 (IOB1976-17) -	Water												
EPA 7199	1	02/25/2005 10:15	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 15:32								
Sample ID: EB-03-2/25/05-F (IOB1976-18) -	- Water												
EPA 7199	1	02/25/2005 01:50	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 16:02								
Sample ID: GW-5-2/25/05 (IOB1976-20) - V	Vater	•											
EPA 7199	1	02/25/2005 03:10	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 16:12								
Sample ID: GW-4-2/25/05 (IOB1976-22) - V	Vater				*								
EPA 7199	, 1	02/25/2005 05:10	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 16:22								
Sample ID: EB-04-2/25/05-F (IOB1976-23) -	· Water												
EPA 7199	1	02/25/2005 05:40	02/25/2005 11:25	02/25/2005 14:00	02/25/2005 16:32								

17461Derian Ave., Suite 100, Irvinir, CA 97614 (949) 261-1022 FAX (949) 760-3297 1014 f. Cookey Di, Switz A, Cokon, CA 92174 (909) 370-4067 FAX (949) 370-1046 9487 Chesapeake Dr, Switz BOS, Sain Diegu, CA 92123 (859) 505-8596 FAX (850) 505-9689 98 it South 514 Sr, Siite B-120, Phoenic, AZ 85044 (440) 785-0043 FAX (460) 745-0051 2500 E. Sainset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

_		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25039 Extracted: 02/25/05										
Blank Analyzed: 02/25/2905 (5B25039	-BLK1)									
Benzene	ND	0.50	ug/I							
Bromobenzeue	ND	1,0	եջ/ I							
Bromochleromethane	ND	1.0	ug/I							
Bromodichloromethane	ND	1.0	ug/I							
Bromoform	ND	1.0	ug/I							
Bromomethane	ND	1.0	иg/I							
n-Butylbenzene	ND	1.0	ug/I							
sec-ButyBenzene	ND	1.0	սց/1							
tert-Butylbenzene	ND	1.0	ug/I							
Carbon tetrachloride	ND	0.50	ug/l							
urobenzene	ND	1.0	ug/I				- 0			
doroethane	ND	1.0	ug/I							
Chloroform	ND	1.0	ug/I							
Chloromethane	ND	1.0	սչ/1							
2-Chlorotoluene	ND	1.0	ug/I							
4-Chlorotoluene	ND	1.0	ug/I							
Dibromochloromethane	ND	1.0	ug/l							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/I							
1,2-Dibromoethane (EDB)	ND	1.0	ug/1							
Dibmmomethane	ND	1.0	ug/I							
1,2-Dichlorobenzene	ND	1.0	ug/l							
1,3-Dichlorobenzene	ND	1.0	ug∕l							
1,4-Dichlorobenzzae	ND	1.0	ug/l							
Dichlorodifluoromethane	ND	2.0	ng/I							
1,1-Dichlomethane	ND	1.0	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
1,1-Dichloroethene	ND	1.0	ug/I							
cis-1,2-Dichloroethene	ND	1.0	ug/I							
trans-1,2-Dichloroethene	ND	1.0	ug/I							
1,2-Dichloropropane	ND	1.0	ug/I							
1,3-Dichloropropune	ND	1.0	ug/I							
2,2-Dichloropropane	ND	1.0	ug/1					٠.		
1,1-Dichforopropens	ND	1.0	ug/I							
cis-1,3-Dichloropropene	ND	0.50	υg/l							
truis-1,3-Dichloropropene	ND	0 50	ug/I							
			_							

Mar Analytical, Irvine ris Roberts Project Manager

The results person only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mor Analytical.

10B1976 <Page 40 of 62>

17461Derian Ave., Suite 103, Irwinz, CA 92614 (919) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Svite A. Calam, CA 92344 (999) 370-4667 FAX (949) 370-1046 9484 Chesapeade Gr., Swite 605, San Diego, CA 92123 1838 300 85954 FAX (949) 370-1046 9830 South 519 St., Swite 8-170, Procesia, AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 E. Swite 8-170, Procesia, AZ 85044 (480) 785-0043 FAX (480) 785-0651

MWH Americas - Brea

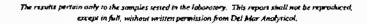
3050 Saturn Ave., Suite 205

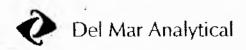
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05


Received: 02/25/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limîts	RPD	Limit	Qualifiers	
Batch: 5B25039 Extracted: 02/25/0	<u>s</u>										
Blank Analyzed: 02/25/2005 (5B250	39-BLK1)										
Ethylberzene	ND	0.50	ug/i								
Hexachlorobutadiene	ND	1.0	ug/l								
Isopropylbenzene	ND	1.0	ug/l								
p-Isopropyltolucae	ND	1.0	1\ga								
Methylene chloride	ND	5.0	ug/ 1								
Methyl-ten-butyl Ether (MTBE)	ND	1.0	ս ջ/I								
Naplathalene	ND	1.0	ug/l								
n-Propylbeuzene	ND	1.0	ug/i			-					
Styrene	ND	0.1	ng/l								
1,1,1,2-Tetrachloroethane	ND	1.0	ug/l								1
1,1,2,2-Tetrachloroethane	ND	1.0	υg∕l								1
Tetrachioroethene	ND	1.0	Ա ջ∕1								1
Tolurne	ND	0.50	սջ/1								
f.2,3-Trichlorobenzene	ND	1.0	աց/}								
* 1,2,4-Trichlorobenzene	ND	1.0	ug/i								
f,f,l-Trichloroethage	ND	6.1	ug/1								
1,1,2-Trichloroethane	ND	0.1	աջ∕Ո								
Trichloroetheue	_ ND	1.0	ug/I								
Trichlorofluoromethase	ND	1.0	ug/ 1								
1,2,3-Trichleropropane	ND	1.0	ag/I								
1,2,4-Trimethylbenzene	ND	1.0	ug/l								
f.3,5-Trimethylbenzene	ND	0.1	ug/l								
Vinyl chloride	ND	0.50	ug/l								
o-Xylene	ND	0.50	αg∕1								
m,p-Xylenes	ND	1.0	ве∕Л								
Surrogate: Dibromofluoromethane	27.8		ug/l	25.0		III	80-120				
Surrogate: Toluene-d8	24.8		ug∕l	25.0		99	80-120				
Surrogate: 4-Bromoffvorobenzene	24.8		ug/I	25.0		99	80-120				

Dei Mar Analytical, Irvine Chris Roberts Project Manager

10B1976 <Page 41 of 62>

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colon, CA 92324 (909) 370-4667 FAX (949) 370-1046 (948) 400-9380 (948) 400-93

fWH Americas - Brea 5050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Half Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte Result Limit Units Level Result V,REC Limits RPD Limit Qualifiers			Reporting			Spike Source			%REC RPD Data			
Decision	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Benzene 28.8 0.50 ug/l 25.0 115 79-120	Batch: 5B25039 Extracted: 02/2	5/05										
Benzene 28.8 0.50 ug/l 25.0 115 79-120	1.CS Applyzed: 82/25/2005 (5R25	(039-RS1)										
Bromobenzene 24.6 1.0 ugfl 25.0 98 86-120 Bromockhomenhane 29.8 1.0 ugfl 25.0 119 65-135 Dromockhomenhane 22.1 1.0 ugfl 25.0 112 70-140 Bromoform 22.1 1.0 ugfl 25.0 28 55-135 Bromomethane 29.0 1.0 ugfl 25.0 116 60-140 a-Buryhenzene 22.3 1.0 ugfl 25.0 109 75-130 sec-Buryhenzene 25.4 1.0 ugfl 25.0 109 75-125 sec-Buryhenzene 24.5 1.0 ugfl 25.0 108 76-140 sec-Buryhenzene 24.5 1.0 ugfl 25.0 108 76-125 sec-Buryhenzene 25.2 1.0 ugfl 25.0 108 76-125 cerbestzene 25.2 1.0 ugfl 25.0 105 80-125 ker-Buryhenzene<	- · · · · · · · · · · · · · · · · · · ·		0.50	ue/I	25.0		115	70-120				
Bromechtomethane 29.8 1.0 ug/l 25.0 119 65-135				_			98	80-120				
Dromodichloromethaue 28.1 1.0 ug/l 25.0 112 70-140				•	25.0		119	65-135				
Bromoform 22.1 1.0 ug/l 25.0 88 55-135 Bromomethance 29.0 1.0 ug/l 25.0 115 60-140 Bromomethance 27.3 1.0 ug/l 25.0 116 60-140 Bromomethance 27.3 1.0 ug/l 25.0 109 75-130 sec-Burylbenzeue 25.4 1.0 ug/l 25.0 102 75-125 tet-Burylbenzeue 24.5 1.0 ug/l 25.0 98 75-125 Carbon tetrachloride 27.0 0.50 ug/l 25.0 108 70-140 torobenzeue 26.2 1.0 ug/l 25.0 105 80-125 torobenzeue 26.2 1.0 ug/l 25.0 115 60-145 Chloroform 31.4 1.0 ug/l 25.0 115 60-145 Chloroform 31.4 1.0 ug/l 25.0 116 60-145 Chlorotolueue 27.0 1.0 ug/l 25.0 108 40-145 2-Chlorotolueue 24.7 1.0 ug/l 25.0 108 40-145 2-Chlorotolueue 25.3 1.0 ug/l 25.0 101 75-125 Dibomomethane 26.9 1.0 ug/l 25.0 101 75-125 1,2-Dibromo-3-chloropropase 25.7 5.0 ug/l 25.0 103 50-135 1,2-Dibromochane 29.2 1.0 ug/l 25.0 112 75-125 1,2-Dichlorobenzeue 25.4 1.0 ug/l 25.0 112 75-130 1,4-Dichlorobenzeue 25.4 1.0 ug/l 25.0 102 80-120 1,4-Dichlorobenzeue 24.8 1.0 ug/l 25.0 109 80-120 1,1-Dichlorobenzeue 29.8 1.0 ug/l 25.0 120 70-135 1,2-Dichlorobenzeue 29.8 1.0 ug/l 25.0 120 70-135 1,2-Dichlorobenzeue 29.8 1.0 ug/l 25.0 112 75-135 1,2-Dichlorobenzeue 29.8 1.0 ug/l 25.0 117 70-135 1,2-Dichlorobenzeue 28.5 1.0 ug/l 25.0 117 70-135 1,3-Dichlorobenzeue 28.5 1.0 ug/l 25.0 117 70-130 1,3-Dichloroben		28.1	1.0		25.0		112	70-140				
Bromomethance		22.1	1.0	บg/1	25.0		88	55-135				
Sec-ButyNenzero		29.0	1.0	-	25.0		116	60-140				
tert-Bulyfbeuzeue 24.5 1.0 ug/l 25.0 98 75-125 Carbon tetrachloride 27.0 0.50 ug/l 25.0 108 70-140 Probenzeue 26.2 1.0 ug/l 25.0 105 80-125 Horoethane 28.8 1.0 ug/l 25.0 115 60-145 Chloroform 31.4 1.0 ug/l 25.0 115 60-145 Chloroform 31.4 1.0 ug/l 25.0 115 60-145 Chloroform 27.0 1.0 ug/l 25.0 108 40-145 C-Chlorofoliume 27.0 1.0 ug/l 25.0 108 40-145 C-Chlorofoliume 27.0 1.0 ug/l 25.0 108 40-145 C-Chlorofoliume 26.7 1.0 ug/l 25.0 101 75-125 Dibromochloromethane 26.9 1.0 ug/l 25.0 101 75-125 Dibromochloromethane 26.9 1.0 ug/l 25.0 101 75-125 Dibromochloromethane 29.2 1.0 ug/l 25.0 103 50-135 1,2-Dibromochane (EDB) 77.9 1.0 ug/l 25.0 117 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-125 Dibromomethane 29.4 1.0 ug/l 25.0 102 80-120 I,3-Dichlorobenzroe 24.8 1.0 ug/l 25.0 100 80-120 Dichlorodifluoromethane 30.1 1.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.0 0.50 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 1.0 ug/l 25.0 117 70-135 1,2-Dichloroethane 29.8 1.0 ug/l 25.0 118 75-135 1,2-Dichloroethene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 30.5 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloropopane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropopane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropopane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropopane 28.7 1.0 ug/l 25.0 115 75-130	n-Butylbeazene	27.3	1.0	ug/l	25.0		109	75-130				
tert-Butylbenzeue 24.5 1.0 ug/l 25.0 98 75-125 Carbon tetrachloride 27.0 0.50 ug/l 25.0 108 70-140 Verobenzeue 26.2 1.0 ug/l 25.0 105 80-125 Urobenzeue 26.8 1.0 ug/l 25.0 115 60-145 Chloroform 31.4 1.0 ug/l 25.0 115 60-145 Chloroform 31.4 1.0 ug/l 25.0 116 75-130 Chloromethaue 27.0 1.0 ug/l 25.0 108 40-145 Z-Chlorofolure 24.7 1.0 ug/l 25.0 101 75-125 Dibromochloromethaue 25.3 1.0 ug/l 25.0 101 75-125 Dibromochloromethaue 26.9 1.0 ug/l 25.0 101 75-125 Dibromochloromethaue 25.7 5.0 ug/l 25.0 103 65-145 1,2-Dibromo-3-chloroprupace 25.7 5.0 ug/l 25.0 112 75-125 Dibromomethane (EDB) 27.9 1.0 ug/l 25.0 117 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-125 1,2-Dichlorobenzeue 25.4 1.0 ug/l 25.0 117 75-130 1,4-Dichlorobenzeue 25.1 1.0 ug/l 25.0 102 80-120 1,4-Dichlorobenzeue 25.1 1.0 ug/l 25.0 99 80-120 Dichlorodithoromethane 30.1 1.0 ug/l 25.0 99 80-120 Dichlorodithoromethane 30.1 1.0 ug/l 25.0 106 610-160 1,1-Dichlorochane 30.0 0.50 ug/l 25.0 120 70-135 1,2-Dichlorochane 30.0 0.50 ug/l 25.0 119 70-125 trans-1,2-Dichlorochene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichlorochene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloropopane 28.5 1.0 ug/l 25.0 114 70-130 1,2-Dichloropopane 28.5 1.0 ug/l 25.0 117 70-130 1,2-Dichloropopane 28.5 1.0 ug/l 25.0 117 70-130 1,1-Dichloropopane 28.7 1.0 ug/l 25.0 117 70-130 1,1-Dichloropopane 28.7 1.0 ug/l 25.0 117 70-130 1,1-Dichloropopane 28.7 1.0 ug/l 25.0 117 70-130 1,1-Dichloropopane 28.7 1.0 ug/l 25.0 117 70-130 1,1-Dichloropopane 28.7 1.0 ug/l 25.0 117 70-130 1,1-Dichloropopane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropopane 28.7 1.0 ug/l 25.0 115 75-130	sec-Burylbenzene	25.4	1.0	ug/l	25.0		102	75-125				
Carbon terrachloride 27.0 0.50 ug/l 25.0 108 70-140 (crobenzene 26.2 1.0 ug/l 25.0 105 80-125 (crobenzene 28.8 1.0 ug/l 25.0 115 60-145 (crobenzene 28.8 1.0 ug/l 25.0 115 60-145 (chloroform 31.4 1.0 ug/l 25.0 126 75-130 (chloromethane 27.0 1.0 ug/l 25.0 126 75-130 (chloromethane 27.0 1.0 ug/l 25.0 108 40-145 (chlorofolure 24.7 1.0 ug/l 25.0 99 75-125 (chlorotolure 25.3 1.0 ug/l 25.0 101 75-125 (chlorotolure 25.3 1.0 ug/l 25.0 108 65-145 (chlorotolure 25.7 5.0 ug/l 25.0 108 65-145 (chloromethane 26.9 1.0 ug/l 25.0 103 50-135 (chloromethane 12.0 ichloromethane 12.2 ichloromethane (EDB) 27.9 1.0 ug/l 25.0 112 75-125 (chlorotolure 25.4 1.0 ug/l 25.0 117 75-130 (chlorobenzene 25.4 1.0 ug/l 25.0 102 80-120 (chlorobenzene 24.8 1.0 ug/l 25.0 102 80-120 (chlorobenzene 24.8 1.0 ug/l 25.0 100 80-120 (chlorothane 30.1 1.0 ug/l 25.0 100 80-120 (chlorothane 30.1 1.0 ug/l 25.0 100 80-120 (chlorothane 30.1 1.0 ug/l 25.0 100 80-120 (chlorothane 30.1 1.0 ug/l 25.0 100 80-120 (chlorothane 30.1 1.0 ug/l 25.0 100 80-120 (chlorothane 30.1 1.0 ug/l 25.0 100 80-120 (chlorothane 30.1 1.0 ug/l 25.0 100 80-120 (chlorothane 30.1 1.0 ug/l 25.0 100 80-120 (chlorothane 29.4 1.0 ug/l 25.0 110 70-135 (chlorothane 30.5 1.0 ug/l 25.0 110 70-135 (chlorothane 30.5 1.0 ug/l 25.0 110 70-135 (chlorothane 30.5 1.0 ug/l 25.0 110 70-135 (chlorothane 30.5 1.0 ug/l 25.0 110 70-135 (chlorothane 30.5 1.0 ug/l 25.0 111 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130 (chlorothane 30.5 1.0 ug/l 25.0 112 70-130		24.5	1.0	ug/I	25.0		98	75-125				
Chloroform	Carbon tetrachloride	27.0	0.50	ug/I	25.0		108	70-140				
Chloroform 31.4 1.0 ug/l 25.0 126 75-130 Chloromethane 27.0 1.0 ug/l 25.0 108 40-145 2-Culorotoluene 24.7 1.0 ug/l 25.0 99 75-125 4-Chlorotoluene 25.3 1.0 ug/l 25.0 101 75-125 Dibromochloromethane 26.9 1.0 ug/l 25.0 101 75-125 1,2-Dibromo-3-chloropropone 25.7 5.0 ug/l 25.0 103 50-135 1,2-Dibromochlane (EDB) 27.9 1.0 ug/l 25.0 112 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 112 75-125 Dibromomethane 25.4 1.0 ug/l 25.0 117 75-130 1,2-Dichlorobenzene 25.1 1.0 ug/l 25.0 102 86-120 1,3-Dichlorobenzene 25.1 1.0 ug/l 25.0 102 86-120 1,4-Dichlorobenzene 24.8 1.0 ug/l 25.0 100 86-120 1,4-Dichlorobenzene 26.4 2.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.0 0.50 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 28.5 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 28.5 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropone 28.5 1.0 ug/l 25.0 112 70-130 1,2-Dichloropropone 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropone 28.7 1.0 ug/l 25.0 115 75-130 cis-t,3-Dichloropropone 29.8 0.50 ug/l 25.0 115 75-130 cis-t,3-Dichloropropone 29.8 0.50 ug/l 25.0 115 75-130	orobenzene	26.2	1.0	ug/l	25.0		105	80-125				
Chloromethane 27.0 1.0 ug/l 25.0 108 40-145 2-Chlorotoluene 24.7 1.0 ug/l 25.0 99 75-125 4-Chlorotoluene 25.3 1.0 ug/l 25.0 101 75-125 Dibromochloromethane 26.9 1.0 ug/l 25.0 103 65-145 1,2-Dibromo-3-chloropropane 25.7 5.0 ug/l 25.0 103 50-135 1,2-Dibromochlane (EDB) 27.9 1.0 ug/l 25.0 112 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-125 Dibromomethane 25.4 1.0 ug/l 25.0 117 75-130 1,2-Dichlorobenzare 25.1 1.0 ug/l 25.0 102 80-120 1,3-Dichlorobenzare 25.1 1.0 ug/l 25.0 100 80-120 1,4-Dichlorobenzare 24.8 1.0 ug/l 25.0 100 80-120 1,1-Dichlorotentane 26.4 2.0 ug/l 25.0 106 10-160 1,1-Dichlorotenane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichlorotethane 30.0 0.50 ug/l 25.0 120 70-135 1,1-Dichlorotethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 28.5 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.5 1.0 ug/l 25.0 112 70-130 1,2-Dichloropropane 28.5 1.0 ug/l 25.0 112 70-130 1,2-Dichloropropane 28.7 1.0 ug/l 25.0 112 70-130 1,1-Dichloropropane 28.7 1.0 ug/l 25.0 112 70-130 1,1-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-t,3-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130	proethane	28.8	1.0	ug/I	25.0		115	60-145	-			
2-Cilorotolueue 24.7 1.0 ug/l 25.0 99 75-125 4-Chlorotolueue 25.3 1.0 ug/l 25.0 101 75-125 Dibromochloromethane 26.9 1.0 ug/l 25.0 108 65-145 1,2-Dibromo-3-chloropropane 25.7 5.0 ug/l 25.0 103 50-135 1,2-Dibromo-archane 29.2 1.0 ug/l 25.0 112 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-130 1,2-Dichlorobenzzte 25.4 1.0 ug/l 25.0 102 86-120 1,3-Dichlorobenzzte 25.1 1.0 ug/l 25.0 100 86-120 1,4-Dichlorobenzte 24.8 1.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 29.8 1.0 ug/l 25.0 118 75-13	Chloroform	31.4	0.1	ng/I	25.0		126	75-130				
4-Chlorotolurue 25.3 1.0 ug/l 25.0 101 75-125 Dibromochloromethane 26.9 1.0 ug/l 25.0 108 65-145 1,2-Dibromo-3-chloropropane 25.7 5.0 ug/l 25.0 112 75-125 Dibromochlane (EDB) 27.9 1.0 ug/l 25.0 112 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-130 1,2-Dichlorobenzene 25.4 1.0 ug/l 25.0 102 80-120 1,3-Dichlorobenzene 25.1 1.0 ug/l 25.0 102 80-120 1,3-Dichlorobenzene 24.8 1.0 ug/l 25.0 100 80-120 1,4-Dichlorobenzene 24.8 1.0 ug/l 25.0 99 80-120 Dichlorodifluoromethane 30.1 1.0 ug/l 25.0 106 10-160 1,1-Dichlorobethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 70-135 1,2-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 30.5 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 30.5 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.5 1.0 ug/l 25.0 112 70-130 1,2-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 1,2-Dichloropropane 28.0 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropane 29.8 0.50 ug/l 25.0 115 75-130	Chloromethane	27.0	1.0	_	25.0		108	40-145				
Dibromochloromethane 26.9 1.0 ug/l 25.0 103 50-135 1,2-Dibromo-3-chloropropane 25.7 5.0 ug/l 25.0 112 75-125 Dibromochane (EDB) 27.9 1.0 ug/l 25.0 112 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-130 1,2-Dichlorobenzene 25.4 1.0 ug/l 25.0 102 80-120 1,3-Dichlorobenzene 24.8 1.0 ug/l 25.0 106 10-10-10 1,1-Dichloromethane 26.4 2.0 ug/l 25.0 106 10-160 1,1-Dichlorochane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichlorochane 30.0 0.50 ug/l 25.0 118 75-135 cis-1,2-Dichlorochane 29.8 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichlorochane 30.5 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichlorochane 30.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.6 1.0 ug/l 25.0 115 75-130 2,2-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130	Z-Chlorotoluene	24.7	1.0	ug/l	25.0		99	75-125				
1,2-Dibromo-3-chloropropane 25.7 5.0 ug/l 25.0 103 50-135 1,2-Dibromocchane (EDB) 27.9 1.0 ug/l 25.0 112 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-130 1,2-Dichlorobenzene 25.4 1.0 ug/l 25.0 102 80-120 1,3-Dichlorobenzene 25.1 1.0 ug/l 25.0 100 80-120 1,4-Dichlorobenzene 24.8 1.0 ug/l 25.0 99 80-120 Dichlorodifluoromethane 26.4 2.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 60-150 1,1-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 28.5 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloropropane 28.5 1.0 ug/l 25.0 112 70-130 1,2-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 28.7 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropene 29.8 0.50 ug/l 25.0 115 75-130	4-Chlorotolurae	25.3	1.0	11g/I	25.0		101	75-125				
1,2-Dibromoethane (EDB) 27,9 1.0 ug/l 25.0 112 75-125 Dibromomethane 29.2 1.0 ug/l 25.0 117 75-130 1,2-Dichlorobenzene 25.4 1.0 ug/l 25.0 102 80-120 1,3-Dichlorobenzene 25.1 1.0 ug/l 25.0 100 80-120 1,4-Dichlorobenzene 24.8 1.0 ug/l 25.0 99 80-120 Dichlorodifluoromethane 26.4 2.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 60-150 1,1-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethane 29.8 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethane 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethane 28.5 1.0 ug/l	Dibromochloromethane	26.9	1.0	սց/1	25.0		108	65-145				
Distrongerhane 29.2 1.0 ug/l 25.0 117 75-130 1,2-Dichlorobenzene 25.4 1.0 ug/l 25.0 102 80-120 1,3-Dichlorobenzene 25.1 1.0 ug/l 25.0 100 80-120 1,4-Dichlorobenzene 24.8 1.0 ug/l 25.0 99 80-120 Dichlorodifluoromethane 26.4 2.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 60-150 1,1-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethane 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethane 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloropropane 28.5 1.0 ug/l 25.0 114	1,2-Dibromo-3-chtoropropase	25.7	5.0	ug∕l	25.0		103	50-135				
1,2-Dichlorobenzene 25,4 1.0 ug/l 25.0 102 80-120 1,3-Dichlorobenzene 25,1 1.0 ug/l 25.0 100 80-120 1,4-Dichlorobenzene 24,8 1.0 ug/l 25.0 99 80-120 Dichlorodifluoromethane 25,4 2.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 60-150 1,1-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethane 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethane 30.5 1.0 ug/l 25.0 119 70-130 1,2-Dichloropropane 28.5 1.0 ug/l 25.0 112 70-130 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 28.7 1.0 ug/l <t< td=""><td>1,2-Dibromocthane (EDB)</td><td>27.9</td><td>1.0</td><td>ug/l</td><td>25.0</td><td></td><td>112</td><td>75-125</td><td></td><td></td><td></td></t<>	1,2-Dibromocthane (EDB)	27.9	1.0	ug/l	25.0		112	75-125				
1,3-Dichlorobenzroe 25.1 1.0 ug/l 25.0 100 80-120 1,4-Dichlorobenzene 24.8 1.0 ug/l 25.0 99 80-120 Dichlorodifluoromethane 26.4 2.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 60-150 1,1-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 30.5 1.0 ug/l 25.0 122 70-130 1,2-Dichloroethene 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 30.3 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 28.7 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropane 29.8 0.50 ug/l 25.0 115 75-130 cis-1,3-Dichloropropane 29.8 0.50 ug/l 25.0 119 75-130	Dibrommerhane	29.2	1.0	ug/l	25.0		117	75-130				
1,4-Dichlorobenzene 24.8 1.0 ug/l 25.0 99 80-120 Dichlorodifluoromethane 26.4 2.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 60-150 1,1-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethane 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethane 30.5 1.0 ug/l 25.0 122 70-130 1,2-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropane 29.8 0.50 ug/l	1,2-Dichlorobenzene	25.4	1.0	υg/I	25.0		102	80-120				
Dichlorodifluoromethane 26.4 2.0 ug/l 25.0 106 10-160 1,1-Dichloroethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 60-150 1,1-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethane 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethane 30.5 1.0 ug/l 25.0 122 70-130 1,2-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 112 70-130 1,1-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropane 29.8 0.50 ug/l 25.0 115 75-130	1,3-Dichlerobenzene	25.1	1.0	ug/I	25.0		100	80-120				
1,1-Dichloroethane 30.1 1.0 ug/l 25.0 120 70-135 1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 60-150 1,1-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 30.5 1.0 ug/l 25.0 122 70-130 1,2-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 112 70-130 cis-1,3-Dichloropropene 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130	1,4-Dichlorobeuzene	24.8	1.0	ug/l	25.0		99	80-120				
1,2-Dichloroethane 30.0 0.50 ug/l 25.0 120 60-150 1,1-Dichloroethane 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethane 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloropropane 30.5 1.0 ug/l 25.0 122 70-130 1,2-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130	Dichlorodifluoromethane	26.4	2.0	ug/l	25.0		106	10-160				
1,1-Diehloroethene 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 30.5 1.0 ug/l 25.0 122 70-130 1,2-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-t,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130	1,1-Dichloroethane	30.1	1.0	นg/1	25.0		120	70-135				
1,1-Dichloroethene 29.4 1.0 ug/l 25.0 118 75-135 cis-1,2-Dichloroethene 29.8 1.0 ug/l 25.0 119 70-125 trans-1,2-Dichloroethene 30.5 1.0 ug/l 25.0 122 70-130 1,2-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropane 29.8 0.50 ug/l 25.0 119 75-130	1,2-Dichleroethane	30.0	0.50	ug/l	25.0		120	60-150				
trans-1,2-Dichloroethene 30.5 1.0 ug/l 25.0 122 70-130 1,2-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropane 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130	1,1-Dichloroethene	29.4	0.1	ng/l	25.0		118	75-135				
1,2-Dichloropropane 28.5 1.0 ug/l 25.0 114 70-120 1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropene 28.7 1.0 ug/l 25.0 115 75-130 cis-t,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130	eis-1,2-Dichloroethene	29.8	1.0	-	25.0		119	70-125				
1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.8 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropene 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130	trans-1.2-Dichloroethene	30.5	1.0	ug/I	25.0		122	70-130				
1,3-Dichloropropane 28.0 1.0 ug/l 25.0 112 70-130 2,2-Dichloropropane 30.3 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropene 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130		28.5	1.0	-	25.0		114	70-120				
2,2-Dichloropropane 30.3 1.0 ug/l 25.0 123 65-150 1,1-Dichloropropene 28.7 1.0 ug/l 25.0 115 75-130 cis-1,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130		28.0	1.0	_	25.0		112	70-130				
t,1-Dichloropropene 28.7 1.0 ug/l 25.0 115 75-130 cis-t,3-Dichloropropene 29.8 0.50 ug/l 25.0 119 75-130	• • • •			-			123	65-150				
cis-t,3-Dichleropropene 29.8 0.50 ug/1 25.0 119 75-130	• • • •			_	25.0		115	75-130				
							119					
				_			120					

ris Roberts
Project Manager

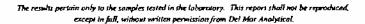
The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IOB1976 < Page 42 of 62>

17461 Deriam Ave., Suite 100, Ivrime, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Coolwy Dr., Suite A. Coltum, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Ohrsupeake Dr., Suite Bas, San Olego, CA 92123 (050) 505-8596 FAX (050) 505-9689 9830 South Shift Sc., Suite B-120, Phoenic, AZ 85044 (480) 785-0043 FAX (480) 785-0651 . 2520 E. Suiter Md. 43, Eas Vejox, NV 89120 (2022 298-3620 FAX (2001) 298-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501


Brea, CA 92821 Report Number: IOB1976 Attention: Lisa Hall Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

•	,	Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: 5B25039 Extracted: 02/25/0	<u>05</u>										
LCS Analyzed: 02/25/2005 (5B2503	39-RS1)										
Ethylbenzene	27.4	0.50	ug/ I	25.0		110	80-120				
Hexachlorobutadiene	22.6	1.0	ug/l	25.0		90	65-140				
Isopropylbenzene	25.3	0,1	ug/l	25.0		101	75-125				
p-Isopropyizoluene	25.4	0.1	ug/I	25.0		102	75-125				
Methylene chloride	31.7	5.0	ug/I	25.0		127	60-135				
Methyl-tert-butyl Ether (MTBE)	31.2	0.1	ug/I	25.0		125	55-145				
Naphthalene	26.6	1.0	ug/I	25.0		106	50-145				
п-Ртору/белдене	25.7	1.0	ug/l	25.0		103	75-130				
Styrene	27.1	0.1	ug/l	25.0		108	80-135				
1,1,1,2-Terrachloroethane	25.9	1.0	ug/I	25.0		104	70-145				
1,1,2,2-Tetrachloroethane	26.6	1.0	ug/l	25.0		106	60-135				1
Tetrachloroethese	24.1	0.1	ug/I	25.0		96	75-125				
Tohiene	28.3	0.50	tig/T	25.0		113	75-120				
1,2,3-Trichlorobenzene	25.8	1.0	ng/l	25.0		103	65-135				
1,2,4-Trichlorobenzene	26,1	1.0	ug/I	25.0		104	70-140				
1,1,1-Trichloroethme	30.1	1.0	ug/I	25.0		120	75-140				
1,1,2-Trichloroethane	29.5	1.0	ug/)	25.0		811	70-125				
Trichloroethene	26.9	1.9	цg/I	25.0		108	80-120				
Trichlorofhoromethane	29.8	0.1	цg/1	25.0		119	65-145				
1,2,3-Trichloropropine	26.4	1,0	ug/I	25.0		106	60-130				
1,2,4-Trimethylbenzene	25,8	1.0	цg/I	25,0		103	75-125				
1.3,5-Trimethylbenzene	25.8	1.0	цg/I	25.0		103	75-125				
Vinyl chloride	26.8	0.50	ug/ī	25.0		107	50-130				
o-Xylene	25.9	0.50	ug/I	25.0		104	75-125				
m.p-Xylenes	53.3	1.0	ug/I	50.0		107	75-120				
Surragate: Dibromoftuaromethane	28.4		ug/I	25.0		314	80-120				
Surrogate: Toluene-d8	25.8		ug/I	25.0		103	80-120				
Surrogate: 4-Bromofluorobenzene	26.0		ug/I	25.0		104	80-170				
			*								

17461 Derian Ave., Suite 100, Imine, CA 92614 (949) 261-1022 FAX (949) 260-1297 1014 E. Cooley Dr., Suite A., Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, Cn 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0051 2520 E. Sunset Rd. #3, Las Vegas, NV 891 20 (702) 298-3620 FAX (702) 796-3621

WH Americas - Brea

050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project 1D: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25039 Extracted: 02/25/	<u>05</u>									
Matrix Spike Analyzed: 02/25/200	` ,				Source: I					
Benzeue	28.5	0.50	ug/ I	25,0	ND	114	70-120			
Bromobenzene	26.4	ŧ.O	πē∕}	25.0	ND	106	65-130			(8)
Bromochloromethane	29.7	1.0	ug/I	25.0	ND	119	65-140			
Bromodichleromethane	28.4	1.0	ug/l	25.0	ИD	114	70-140			
Bramoform	22.9	0.1	ug/l	25.0	ИD	92	55-140			
Bromomethane	28.0	1.0	ug/I	25.0	ND	112	50-145			
n-Butylbenzene	29.4	1.0	ug/I	25.0	ИĎ	118	70-140			
sec-Burylbenzene	26.7	1.0	ug/l	25.0	ND	107	70-130			
tert-Butylbenzene	26.0	0.1	ug/l	25.0	ND	104	70-130			
Carbon tetrachloride	26.1	0.50	ug/l	25.0	ИD	104	70-145			
forobenzene	27.4	1.0	սջ/1	25.0	ND	110	80-125		100	
oroethane	28.9	1.0	ug/l	25.0	ND	116	50-145			
Chloroform	32.0	1.0	ug/l	25.0	0.51	126	70-135			
Chloromethane	27.3	1.0	ug/l	25.0	ND	109	35-145			
2-Chlorotoluene	26.4	1.0	ug/I	25.0	ND	106	70-140			
4-Chlorotoluene	27.0	1.0	ug/l	25.0	ND	108	70-140			
Dibromochloromethane	27.5	1.0	ug/I	25.0	ND	110	65-145			
1,2 Dibromo 3-chloropropane	27.2	5.0	ug/l	25.0	ND	109	45-155			
1,2-Dibromochane (EDB)	28.3	1.0	ug/I	25.0	ND	113	70-130			
Dibromomethane	29.2	1.0	ug/I	25.0	ND	117	65-140			
1,2-Dichlorobenzene	27.6	1.0	ug∕t	25,0	ND	110	75-130			
1,3-Dichlorobenzene	27,0	1.0	ag/l	25.0	ND	108	75-130			
1,4-Dichlerobenzese	26.7	1.0	ug/I	25.0	ND	107	80-120			
Dichlorodiftuoromethane	40.0	2.0	บล/ใ	25.0	13	108	10-160			
1.1-Dichloroethage	32.5	1.0	ug/l	25.0	2.6	120	65-135			
1,2-Dichloroethane	31.7	0.50	ug/l	25.0	1.2	122	60-150			
1,1-Dichloroethene	28.9	1.0	ug/l	25.0	0.37	114	65-140			
cis-1,2-Dichloroethene	52.6	1.0	ug/l	25.0	23	118	65-130			
trans-1.2-Dichloroethene	29.8	1.0	ug/l	25.0	ND	119	65-135			
1,2-Dichloropropage	29.4	1.0	-g-1 ng/1	25.0	0.40	116	65-130			
1,3-Dichloropropane	28.7	1.0	ug/l	25.0	ND	113	65-140			
2,2-Dichlerepropane	29.6	1.0	աց/ւ ug/l	25.0	ND	118	60-150	- 5		
1,1-Dichloropropene	27.9	1.0	ng/I	25.0	ND	112	65-140	-		
	29.7	0.50	ug/i	25.0	ND	119	70-140			
crs-1,3-Dichloropropeae					ND	121				
traris-1,3-Dichloropropene	30.2	0,50	ug∕I	25.0	ΝD	121	70-140			

l Mar Analytical, Irvine ris Roberts roject Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from Del Mar Analytical.

IOB1976 < Page 44 of 62>

174610erian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297
1014 E. Cooley Dr., Suite A. Colon, CA 92034 (909) 370-4667 FAX (949) 370-1046
7444 Chruspeake Dr., Suite 805, San Diego, CA 92123 (958) 595 6596 FAX (858) 503-9689
9830 South 51x St., Suite 8-170, Phoenia, AZ 85044 (460) 785-0043 FAX (440) 785-0651
2570 E. Suiter Rd. #3., Las Vegas, NV 89110 (702) 758-3620 FAX (192) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

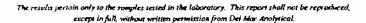
1890933,0501

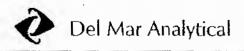
Brea, CA 92821

Sampled: 02/24/05-02/25/05

Attention: Lisa Hall

Report Number: IOB1976


Received: 02/25/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: 5B25039 Extracted: 02/25/0	<u>)5</u>										
Matrix Spike Analyzed: 02/25/2005	(5B25039-MS1)				Source: l	OB1976-1	3				
Ethy/beazene	28.3	0_50	ug/1	25.0	ИD	113	70-130				
Hexachlorobutadiene	24.8	1.0	ug/I	25.0	ND	99	65-140				
Isopropylbenzene	26.5	1.0	ug/I	25.0	ИD	106	70-130				
p-Isopropy)toluene	26.8	1.0	ug/I	25.0	ND	107	70-130				
Methylene chloride	32.6	5.0	ս ց/ Լ	25.0	1.4	125	60-135				
Methyl-unt-butyl Ether (MTBE)	31.4	1.0	ug/I	25.0	ИD	126	50-155				
Naphthalene	29.6	1.0	ս ջ/ Լ	25.0	ND	118	50-150				
n-Propylbenzene	27.3	1.0	ug/1	25.0	ND	109	70-135				
Styrene	28,1	1.0	ug/I	25.0	ND	112	55-145				
1,1,1,2-Tetrachloroethane	27.1	1.0	ս ջ/ Լ	25.0	ND	108	70-145				
1,1,2,2-Tetrachlomethane	29.3	1.0	ug/I	25.0	ND	117	60-145				1
Tetrachloreethene	36.4	1.0	ug/I	25.0	13	94	70-130				C
Tolucue	28.3	0.50	og/T	25.0	ND	113	70-120				
1,2,3-Trichlorobenzene	29.2	1.0	ug/l	25.0	ND	117	60-140	-			
1,2,4-Trichlorobenzene	29.3	1.0	ug/I	25.0	ND	117	60-140				
1,1,1-Trichloroethane	29.6	1.0	ug/l	25.0	ND	118	75-140				
1,1,2-Trichlorocthene	29.7	1.0	ug/1	25.0	ND	119	60-135				
Trichlomethene	44.2	1.0	ug/I	25.0	18	105	70-125				
Trichlorofluoromethane	29.7	1.0	ug/I	25.0	ИD	119	55-145				
1,2,3-Trichloropropane	27.6	1.0	ug/I	25.0	ND	110	55-140				
1,2,4-Trimethylbenzene	27.4	1.0	ug/I	25.0	ND	110	60-125				
1,3,5-Trimethylbenzene	27.5	1.0	ug/I	25,0	ND	110	70-130				
Vinyl chloride	27,4	0,50	ug/l	25.0	ИD	110	40-135				
o-Xylene	27.1	0.50	ս ջ/ Լ	25.0	ND	108	65-125				
m,p-Xylenes	55.0	1.0	ug/I	50.0	ND	110	65-130				
Surrogate: Dibromofluoromethane	28.3		vg/I	25.0		113	80-120				
Surrogate: Tolwene-d8	25.4		ug/I	25.0		102	80-120				
Surrogate: 4-Bromofluoroberaene	25.9		ug/l	25.0		104	80-120				

Del Mar Analytical, Irvine Chris Roberts Project Manager

IOB1976 < Page 45 of 62>

17461 Deriva Ave., Suite 100, Irone, CA 92614 (949) 269-1022 FAX (949) 260-3297 1014 £. Codey Ch., Suite A. Coken, CA 92324 (909) 370-4567 FAX (949) 370-1046 9484 Chesapeake Ch., Suite B120, Phoenia, CA 92123 (858) 505-5096 FAX (858) 505-9099 9830 South 514 St. Suite B120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0051 2570 €. Suite B120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0051

WH Americas - Brea 050 Saturn Ave., Suite 205

Brea, CA 92821
Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

METHOD BLANK OF DATA

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25039 Extracted: 02/25/0	<u>05</u>									
Matria Spike Dup Analyzed: 02/25	/2005 (5B25039-M	ISD1)			Source: 1	OB1976-1	3			
Benzene	28.6	0.50	ա ց/ ն	25.0	ND	114	70-120	0	20	
Bromobenzene	27.0	1.0	ug/i	25.0	ND	108	65-130	2	20	
Bromochloromethane	30.3	1.0	ng/I	25.0	ND	121	65-140	2	25 -	
Bromodichloromethane	28.3	1.0	ug/l	25.0	ND	113	70-140	0	20	
Bromoform	23.5	1.0	ug/I	25.0	ND	94	55-140	3	25	
Bromomethane	27.9	1.0	ug/I	25.0	ND	112	50-145	o	25	
n-Butylbenzene	29.2	1.0	ug/I	25.0	ND	117	70-140	1	20	
sec-Butylbenzene	27.0	1.0	ug/I	25.0	ND	108	70-130	1	20	
tert-Butylbenzene	26.4	1.0	ug/I	25.0	ND	106	70-130	2	20	
Carbon tetrschloride	26.6	0.50	υg/I	25.0	ND	106	70-145	2	25	
probenzene	27.6	1.0	ug/i	25.0	ND .	110	80-125	1	20	
broethanc	28.4	1.0	ug/I	25.0	ND	114	50-145	2	25	
Chloroform	31.8	1.0	ug/I	25.0	0.51	125	70-135	1	20	
Chloromethane	27.4	1.0	ug/l	25.0	ND	110	35-145	0	25	
2-Chlorotohiene	26,6	1.0	ug/I	25.0	ND	106	70-140		20	
4-Chlorotoluene	27. 2	1.0	ug/l	25.0	ND	109	70-140	1	20	
Dibromochloromethane	28.3	1,0	ug/I	25.0	ND	113	65-145	3	25	
1,2-Dibromo-3-chloropropane	28.1	5.0	ug/I	25.0	ND	112	45-155	3	30	
1,2-Dibromocthane (EDB)	29.4	1.0	ug/i	25.0	ND	118	70-130	4	25	
Dibromomethane	29.2	1.0	ug/I	25.0	ND	117	65-140	0	25	
1,2-Dichlorobenzene	28.0	1.0	ug/i	25.0	ND	112	75-130	1	20	
1,3-Dichlorobenzene	27.4	1.0	υς/1	25.0	ND	110	75-130		20	
1,4-Dichlorobenzene	27.1	1.0	ug/l	25.0	ND	108	80-170	1	20	
Dichlorodifluoromethane	38.8	2.0	ug/i	25.0	13	103	10-160	3	30	
1,1-Dichloroethane	32.9	1.0	ug/I	25.0	2,6	121	65-135	}	20	
1,2-Dichloroethane	31.8	0.50	ug/I	25,0	1.2	122	60-150	0	20	
1,1-Dichloroethene	28.7	1.0	ug/I	25.0	0.37	113	65-140	1	20	
cis-1,2-Dichloroethese	52.7	1.0	ug/I	25.0	23	119	65-130	0	20	
trans-1,2-Dichloroethene	29.9	1.0	υg/I	25.0	ND	120	65-135	0	20	
1,2-Dichloropropane	29.6	1.0	ug/i	25.0	0.40	117	65-130	1	20	
1,3-Dichloropropane	29.8	1.0	ug/l	25.0	ND	119	65-1 40	4	25	
2,2-Dichleropropane	29.5	1.0	ng/l	25.0	ND	118	60-150	a -	25	
1, 1-Dichloropropege	28.2	1.0	ug/i	25.0	ND	113	65-140	1	20	
cis-1,3-Dichloropropene	29.9	0.50	1g/l	25.0	ND	120	70-140	1	20	
trans-1,3-Dichloropropene	30.6	0.50	eg/i	25.0	ND	122	70-140	1	25	

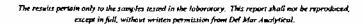
17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookry Dil, Suite A, Colkon, CA 92134 (969) 370-4667 FAX (949) 370-1046 9484 Cheappake Dr., Suite 655, San Dirigo, CA 92131 (b36) 595 6556 FAX (856) 503-9689 9830 South Stir St., Suite 8-170, Priomitic AZ 85044 (460) 785-5043 FAX (460) 785-0051 2570 E. Suite Rd. #3, Lax Vegat, NV 89120 (703) 798-3600 FAX (702) 798-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Hancywell, North Hollywood

1890933.0501

Report Number: IOB1976


Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25039 Extracted: 02/25/	05									
Matrix Spike Dup Analyzed: 02/25	5/2005 (SB25039-M	(SD1)			Source: I	OB1976-1	3			
Ethylbezzene	28.7	0.50	ug∕1	25.0	ND	115	70-130	1	20	
Hexachlorobutadiene	24 8	1.0	ug/I	25.0	ND	99	65-140	0	20	
sopropylbeazene	26.9	1.0	ug/l	25.0	מא	108	70-130	1	20	
p-Isopropyltolucue	27.0	1.0	ug/I	25.0	ND	108	70-130	1	20	
Methylene chloride	32.3	5.0	ug/1	25.0	1.4	124	60-135	1	20	
Methyl-ten-butyl Ether (MTBE)	32.2	1.0	ug/I	25.0	ND	129	50-155	3	25	
Vaphthalene	30.7	1.0	ug/l	25.0	ND	123	50-150	4	30	
-Propylbenzene	27.7	1.0	ug/I	25.0	ИD	111	70-135	1	20	
Stytene	28.1	1.0	ug/I	25.0	ND	112	55-145	0	30	
,1,1,2-Tetrachioroethane	27.6	1.0	ug/I	25.0	ND	110	70-145	2	20	
,1,2,2-Tetrachloroethane	30.6	1.0	ug/1	25.0	ND	122	60-145	4	30	
etrachloroethene	37.2	1.0	ug/I	25,0	13	97	70-130	2	20	
olucac	28.4	0.50	ug∕I	25.0	ND	†14	70-120	0	20	
,2,3-Trichkorobenzene	29.6	1.0	ug/I	25.0	ND	118	60-140	1	20	
,2,4-Trichlorobenzene	29.6	1.0	ug/l	25,0	ND	118	60-140	1	20	
,1,1-Trichlorochanc	29.6	1.0	ug/I	25.0	ND	118	75-140	0	20	
,1,2-Trichloroethane	30.0	1.0	ug/1	25.0	ND	120	60-135	1	25	
Tricklomethene	44.5	1.0	ug/l	25.0	18	106	70-125	1	20	
Frichlorofluoromethane	29.1	1.0	ug/l	25.0	ND	116	55-145	2	25	
2,3-Trichloropropane	29.1	1.0	ng∕1	25.0	ND	116	\$5-140	5	30	
,2,4-Trimethyfbeazene	27.7	1.0	ug∕l	25.0	ND	111	60-125	1	25	
,3,5-Trimethylbenzese	27.9	1.0	ug∕l	25.0	ND	112	70-130	1	20	
Vinyl chloride	26.8	0.50	ug/l	25.0	ND	107	40 -13 5	2	30	
-Xylene	27.5	0.50	ng/l	25.0	ND	110	65-125	1	20	
n,p-Xylenes	55.7	1.0	ug/l	50.0	ND	111	65-130	1	25	
Surrogate: Dibromofluoromethane	27.7		mg/l	25.0		111	80-120			
Surrogate: Tohuene-d8	25.0		wg∕t	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	25.6		ug/I	25.0		102	80-120			

17467 Derian Ave., Swite 100, Ierine, CA 97614 (949) 261-1022 FAX (949) 260-3297 f014 E. Cookiny Chi, Swite A. Colton, CA 92324 (949) 370-4667 FAX (949) 370-1066 9484 Chesapeake Dr., Suize 605, San Diegu, CA 97123 (858) 505-8596 FAX (949) 370-1069 9830 Saudi 5714 St., Suize B-170, Phoenic, AZ 85044 1480) 748-0043 FAX (400) 765-0651 2520 E. Suizet Rif #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-1621

WH Americas - Brea 2050 Saturn Ave., Suite 20

3050 Saturn Ave., Suite 205 Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

- Apalyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Linnie	OBILS	Level	Kejur	76 KEC	Cimis	KI D	Limit	Опитистя
Batch: 5B26009 Extracted: 02/26/	<u>05.</u>									
Blank Analyzed: 02/26/2005 (5B26	009-BLK1)									
Benzene	ND	0-0	ug/I							
Bromobenzene	ND	1.0	ug/I							
Bromochloromethane	ND	1.0	ug/I							
Bromodichloromethane	ND	1.0	ug/I							
Bromoform	ND	1.0	սց/Լ							
Bromomethane	ND	1.0	ug/I							
n-Butylbenzene	ND	1.0	ug/1							
sec-Burylbenzenc	ND	1.0	ug/I						•	
tert-Burylbenzene	ND	1.0	ug/I							
Carbon tetrachloride	ND	0.50	ზე/1							
probenzene	ND	1,0	ug/I							
broethane	ND	1.0	ug/l							
Chloroform	ND	1.0	ug/I							
Chloromethanc	ND	1.0	ug/I							
2-Chlorotoluene	ND	1.0	ug/l							
4-Chlorotoluene	ND	1.0	ug/l							
Dibromochloromethanc	ND	1.0	ug/I							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/I							
1,2-Dibromoethane (EDB)	ND	1.0	ug/l							
Dibromomethane	ND	1.0	ug∕i							
1,2-Dichlorobenzenc	ND	1.0	og/I							
1,3-Dichlorobenzene	ND	1.0	ugΛ							
1,4-Dichlorobenzenz	ND	1.0	ng/I							
Dichlerediffueromethane	ND	2.0	ug/l							
1,1-Dichloroethane	ND	1.0	ng/I							
1,2-Dichlomethane	ND	0.50	ug/I							
1,1-Dichloroetheac	ND	1.0	ng/l							
cls-1,2-Dichleroethere	ND	1.0	ug/l							
trans-1,2-Dichloroethene	ND	1.0	¢g/1							
1,2-Dichloropropane	ND	1.0	пеЛ							
1,3-Dichloropropane	ND	1.0	ug/1							
2,2-Dichloropropane	ND	1.0	ug/l							
1,1-Dichloropropene	ND	1.0	ug/I							
cis-1,3-Dichloropropene	ND	0.50	ug/1							
trans-1,3-Dichloropropene	ND	0.50	ug/l							

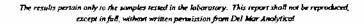
17461 Denan Ave., Suite 100, Invine, CA 92614 (893) 261-1022 FAX (949) 260-3297 1014 E. Ciroley Dr., Swite A. Colson, CA 92324 (909) 370-1667 FAX (949) 370-1046 9484 Chaspesine Dr., Swite 805, San Diego, CA 92123 (858) 505-8596 FAX (850) XVI-9669 9610 South 514 St., Swite 8-120, Pricente, AZ 85044 (480) 785-0043 FAX (460) 785-0051 220 E. Switer Rd. #3, Las Vegos, NV 99120 (702) 798-1520 FAX (702) 798-362

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Brea, CA 92821
Attention: Lisa Hall

Report Number: IOB1976


Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

-		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Lìmit	Qualifiers	
Batch: 5B26009 Extracted: 02/26/0	<u>15</u>										
Blank Analyzed: 02/26/2005 (5B260	009-BLK1)										
Ethylbenzene	ND	0.50	ug/I								
Hexachloroburadiene	ND	10	υg∕I								
Isopropylbenzene	ND	1.0	ug/I								
p-Isopropyltoluene	ND	1.0	ug/I								
Methylene chloride	ND	5.0	ug/I								
Methyl-text-butyl Ether (MTBE)	ND	1.0	ug/I								
Naphthalese	ND	1.0	ug/I								
n-Propyfoenzene	ND	1.0	ug/I								
Styrene	ND	0.3	ug/l								
1, t, t, 2-Tetrachloroethane	ND	1.0	ng/l								V,
1,1,2,2-Tetrachkroethane	ND	1.0	ug/I								1
Tetrachloroethese	ND	1.0	ug/l								S
Toluene	ND	0_50	ng/l								
1,2,3-Trichlorobenzene	ND	0.1	ngfi								
1,2,4-Trichlorobenzene	ND	0.1	ng/l								
1,1,1-Trichkoroethane	ND	1.0	ug/l								
1,1,2-Trichloroethane	ND	1.0	ug/I								
Trichlorocthene	ND	1.0	ug/l								
Trichlorollucromethane	ND	1.0	ug/l								
1,2,3-Trickloropropage	ND	1.0	ug/I								
t 2,4-Trimethylbenzene	ND	0.1	ug∕l								
t,3,5-Trimethy/benzene	ND	1.0	ug/I								
Viayl chloride	ND	0.50	ng/I								
o-Xylene	ND	0.50	ug∕l								
m,p-Xylenes	ND	1.0	ug/I								
Surrogate: Dibromofluoromethane	26.2		ug/l	25.0		105	80-120				
Surrogate: Toherre-de	24.4		ug/l	25.0		98	80-120				
Surrogate: 4-Bromofluorobentene	24.4		ug/I	25.0		98	80-120				

17461Dezian Ares, Suite 100, Ilvine, CA 97614 (949) 761-1072. FAX (949) 260-3297 1014 E. Cooley Dt., Suite A., Culton, CA 47574 (909) 370-4667 FAX (949) 370-1046 9484 Checapeako Dt., Suite 605, San Diego, CA 17173 (656) 505-4595 FAX (848) 505-969-9830 Souds 51st St., Suite 8-120, Winenio, AZ 85044 (440) 785-0043 FAX (460) 785-0851 2570 E. Suites Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (707) 798-3621

WH Americas - Brea

3050 Saturn Ave., Suite 205

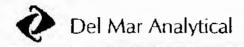
Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05


VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

	D II	Reporting	TT	Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualiflers
Batch: 5B26009 Extracted: 02/16/05										
LCS Analyzed: 02/26/2005 (5B26009-	BS1)									
Benzene	28.2	0.50	ug/1	25.0		113	70-120			
Bromobenzene	27.0	1.0	ug/1	25.0		108	80-120			
Bromochkoomethane	27.4	1.0	ug/I	25.0		. 110	65-135			
Bromodichloromethane	27.2	1.0	ug/1	25.0		109	70-140			
Bromoform	22.4	1.0	ug/l	25.0		90	55-135			
Bromomethage	28.1	1.0	ug∕l	25.0		112	60-140			
n-Burylbenzene	30.6	1.0	սջ/1	25.0		122	75-130			
sec-Butylbenzene	27.9	1.0	ug/1	25.0		112	75-125			
tert-Butytbenzene	27.3	1.0	ug/l	25.0		109	75-125			
Carbon tetrachloride	26.7	0.50	ug/1	25.0		107	70-140			
orobenzene	27.5	0.1	ոջ/ Լ	25.0		110	80-125			
aloroethane	27.7	1.0	ug/l	25.0		111	60-145			
Chloreform	30.0	1.0	ug/J	25.0		120	75-130			
Chloromethane	26.2	1.0	ug/I	25.0		105	40-145			
2-Chlorotohiene	27.4	1.0	ug∕l	25.0		110	75-125			
4-Chlorotoluene	27.9	1.0	ug/l	25.0		112	75-125			
Dibromochloromethane	27.4	1.0	ug/l	25.0		110	65-145			
1,2-Dibromo-3-chloropropane	26.0	5.0	ug∕l	25.0		104	50-1 35			
1,2-Dibromoethane (EDB)	28.3	1.0	ug/l	25.0		113	75-125			
Dibromomethane	27.4	1.0	ug/l	25.0		110	75-130			
1,2-Dichlorobenzene	27.8	1.0	ug/I	25.0		111	80-120			
1,3-Dichlorobenzeac	27.6	1.0	ug/I	25.0		110	80-120			
1,4-Dichlorobenzene	27.0	1.0	ug/1	25.0		108	80-120			
Dichterodiftuoromethane	25.4	2.0	ug/1	25.0		102	031-01			
1,1-Dichlorocthane	28.9	1.0	ug/I	25.0		116	70-135			
1,2-Dichloroethane	29.0	0.50	ug/I	25.0		116	60-150			
1,1-Dichloroethene	27.7	0.1	ug/I	25.0		113	75 -135			
cis-1,2-Dichlemethene	28.4	1.0	ug/I	25.0		114	70-125			
trans-1,2-Dichloroethene	29.0	1.0	ug/l	25.0		116	70-130			
1,2-Dichloropropase	28.1	1,0	ug/l	25.0		112	70-120			
1,3-Dichleropropane	28.3	1.0	ug/l	25.0		113	70-130			
2,2-Dichloropropane	30.1	1.0	ug/l	25.0		120	65-150	٠.		
1,1-Dichloropropene	28.5	1.0	บg/โ	25.0		114	75-130			
cis-1,3-Dichleropropene	29.1	0.50	սը/1	25.0		116	75-130			
trans-1,3-Dichforopropene	29.1	0.50	ug/l	25.0		116	75-13 5			

I Mar Analytical, Irvine iris Roberts Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

10B1976 <Page 50 of 62>

17461 Denim Ave., Suite 100, Innne, CA 92614 (949) 261-1022. EAX (949) 260-3297. 1014 C. Cooley Dr., Swite A. Colon, CA 92324. (903) 370-4667. FAX (949) 370-1046. 9484 Chesapeake Dr., Swite 805, San Diego, CA 9122. (858) 509-8596. FAX (858) 505-9649. 9430 Souds Stal Jr., Swite 8-120, Phoenix, AZ 85044. (940) 765-0043. FAX (968) 486-0045. 2520 E. Switer Rd. #3, Lax Verga, NV 89120. (702) 798-3620. FAX (902) 798-3621.

MWH Americas - Brea 3050 Sanun Ave., Suite 20:

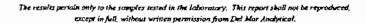
3050 Samm Ave., Suite 205 Brea, CA 92821

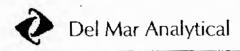
Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976


Sampled: 02/24/05-02/25/05


Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B26009 Extracted: 02/26/	05									
LCS Analyzed: 02/26/2005 (58260)	09-BS1)									
Ethylbenzene	29.5	0.50	ug /l	25.0		118	80-120			
Hexachlorobutadiene	26.1	1.0	ug/l	25.0		104	65-140			
Isopropylbenzene	28.1	1.0	ug/I	25.0		112	75-12 5			
p-Isopropy)toluene	28.0	1.0	ug/l	25.0		112	75-125			
Methylene chloride	29.3	5.0	ug/l	25.0		117	60-135			
Mothyl-ten-butyl Ether (MTDE)	28.5	1.0	ug/l	25.0		114	55-145			•
Naphthalese	29.4	1.0	ъе∕а	25.0		118	50-145			
n-Propylbenzene	28.6	1.0	Ngσ	25.0		114	75-130			
Styrene	29.0	1.0	υgA	25.0		116	80-135			
i, i, 1,2-Tetrachloroethane	27.3	1.0	υς/Ι	25.0		109	70-145			
1,1,2,2-Tetrachloroethane	28.1	1.0	ug/i	25.0	-	112	60-135			
Tetrachloroethene	25.6	1.0	ug/l	25.0		102	75-125			
Toluene	27.8	0.50	ug/l	25.0		111	75-120			
1,2,3-Tricklorobenzene	29.6	1.0	ng/l	25.0		118	6 5 -135			
1,2,4-Trichlorobenzene	29.5	1.0	ug/l	25.0		118	70-140			
1,1,1-Trichloroethane	28.5	1.0	ug/l	25.0		114	75-140			
1,1,2-Trichloroethane	28.2	1.0	ս g/I	25.0		113	70-125			
Trichloroethene	26.2	1.0	ug/l	25.0		105	80-120			
Trichlorofluoromethene	29.0	1.0	ug/l	25.0		116	65-145			
1,2,3-Trichloropropane	27.9	1.0	ug/l	25.0		112	60-130			
1,2,4-Trimethylbenzene	28.4	1.0	ug/l	25.0		114	75-125			
1,3,5-Trimethytherzene	28.6	1.0	ug/l	25.0		114	75-125			
Vinyl chloride	26.2	0.50	υg/1	25.0		105	50-130			
o-Xylene	27.7	0.50	սջ/1	25.0		m	75-125			
m,p-Xytenes	57.0	0.1	ug/l	50.0		114	75-120			
Surrogate: Dibromofluoromethane	26.2		ug/t	25.0		105	80-120			
Surrogate: Toluene-d8	24.9		ид/1	25.0		100	80-120			
Surrogate: 4-Bromofluorobentene	25.5		ug/i	25.0		102	80-120			

17461 Dervan Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cookey Dr., Suite A. Cokon, CA 92324 (999) 370-4667 FAX (949) 370-1046 9884 Chesapenke Dr., Suite 805, San Olego, CA 92323 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-170, Howert, AZ 85044 (480) 785-0043 FAX (400) 785-0551 2520 E. Sunset Zd. #3, Las Vegas, Inv 89120 (201) 798-3620 FAX (701) 798-3621

rWH Americas - Brea 3050 Saturn Ave., Suite 205 Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B26009 Extracted: 02/26/0	<u>15</u>									
Matrix Spike Analyzed: 02/26/2005	(5B26009-MS1)				Saurce: I	OB2045-0	2			
Benzene	26.6	0.50	սց/1	25.0	0.71	104	70-120			
Bromobenzepe	24.7	1.0	սջ/ Ո	25.0	ND	99	65-130			
Bremechloromethane	26,2	1.0	սջ/1	25.0	ND	105	65-140			
Bromodichloromethane	25.4	1.0	ug/l	25.0	ИD	102	70-J40			
Bromoform	20.9	1,0	ug∕l	25.0	ИD	84	55-140			
Bromomethane	24.9	1.0	ոց/1	25.0	ND	100	50-145			
n-Butylbenzene	27.3	1.0	ug/I	25.0	ИD	109	70-140			
sec-Butylbenzene	24.9	1.0	սց/1	25.0	ND	100	70-130			
tert-Butylbenzene	24.4	1.0	ug/I	25,0	ND	98	70-130			
Carbon tetrachloride	24.2	0.50	22g/l	25.0	ND	97	70-145			
orobenzene	25.1	1.0	ug/l	25.0	ИD	100	80-125			
enloroethane	25.4	1.0	ug/1	25.0	ND	102	50-145			
Chloroform	79.4	1.0	ug/l	25.0	50	118	70-135			
Chloromethane	23.8	1.0	ug∕I	25.0	ND	95	35-145			
2-Chlorotoluene	24.3	1.0	ug/l	25.0	ND	97	70-140			
4-Chloroteltene	25.0	1.0	ug/1	25.0	ИD	100	70-140			
Dibromochloromethane	25.2	1.0	ug/l	25.0	ND	101	65-145			
1,2-Dibromo-3-chloropropane	26.2	5.0	ug/l	25.0	ND	105	45-155			
1,2-Dibromoethane (EDB)	26.5	1.0	ug/I	25.0	ND	106	70-130			
Dibromomerbane	26.3	1.0	սց/1	25.0	ИD	105	65-140			
1,2-Dichlorobenzene	25. 8	1.0	ug/l	25.0	ND	103	75-130			
1,3-Dichkrobenzene	25.2	1.0	աg/l	25.0	ND	101	75-130			
1,4-Dichlorobenzene	24.8	1.0	ug/l	25.0	ND	99	80-120			
Dichlorodifluoremethane	31.0	2.0	ug/l	25.0	7.8	93	10-160			
1,1-Dichloroethane	26.8	1.0	սջ/I	25.0	ND	107	65-135			
1,2-Dichloroethane	27,4	0.50	ug/l	25.0	0.36	108	60-150			
1,1-Dichloroethone	25.6	1.0	ug/l	25.0	ND	102	65-140			
cis-1,2-Dichloroethene	26.5	1.0	ug/I	25.0	ND	106	65-130			
trans-1,2-Dickloroethene	26.4	1.0	ug/l	25.0	ND	106	65-135			
1,2-Dichloropropane	26.0	1.0	սջ/I	25.0	ND	104	65-130			
1,3-Dichloropropane	26.4	1.0	սջ/1	25.0	ND	106	65-140			
2,2-Dichloropropage	26.5	1.0	ug/l	25.0	ND	106	60-150	8		
1,1-Dichlогорторске	25.6	1.0	սջ/1	25.0	ND	102	65-140			
cis-1,3-Dichloropropene	26.7	0.50	ug/I	25.0	ND	107	70-140			
trans-1,3-Dichloropropene	27,2	0.50	ug/l	25.0	ND	109	70-140			

17461 Derian Ave., Suite 100, Irwine, CA 92614 (949) 267-1072 FAX (949) 260-3297 (014 E. Cowley Dr., Swite A. Colom, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Obesapeake Dr., Swite 807, Son Diego, CA 93123 (838) 505-6596 FAX (840) 785-0851 9830 South 514 St., Swite 8-120, Phoneiu, AZ 85044 (440) 785-0043 FAX (460) 785-0851 2570 E. Sunset Bd., 43, Est Wygst, NV 89120 (702) 798-3670 FAX (702) 798-3621

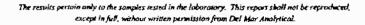
MWH Americas - Brea 3050 Sahirin Ave., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Project ID: Hoseywell, North Hollywood

1890933,0501

Report Number: 10B1976


Sampled: 02/74/05-02/25/05

Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers	
Bastch: 5B26009 Extracted: 02/26/9	<u>15</u>									•	
Matrix Spike Analyzed; 02/26/2005	(5B26009-MS1)				Source: I	OB2045-0	2				
Ethylbenzene	27.0	0,50	пФД	25.0	0.60	801	70-130				
Hexachlorobutadiene	23.8	1.0	ug/I	25.0	ND	95	65-140				
Isopropylbenzene	25.2	0.1	ие/1	25,0	0.41	99	70-130			* 00	
p-1sopropyltokæne	25.2	1.0	սջ/I	25.0	ND	101	70-130			•	
Methylene chloride	38.7	5.0	πg/J	25.0	8.4	121	60-135				
Methyl-tert-butyl Ether (MTBE)	27.5	1.0	ug/I	25.0	ND	110	50-155				
Naphihalene	28.8	1.0	ug/I	25.0	ND	115	50-150				
n-Propyibenzene	25.4	1.0	սց/1	25.0	ND	102	70-135				
Styrene	26.0	1.0	eg∕l	25.0	ND	104	55-145				
i,1,i,2-Tetrachloroethane	25.0	1.0	це/І	25.0	ND	100	70-145				
1,1,2,2-Tetrachloroethane	27.2	6.0	пБД	25.0	ND	109	60-145				Í
Tetrachloroethese	22.6	1.0	ug/I	25.0	ND	90	70-130				١
Toluene	25.9	0.50	ug/I	25.0	ND	104	70-120				
1,2,3-Trichlorobeazene	28.0	1.0	ug/I	25.0	ND	112	60-140				
1,2,4-Trichlorobenzene	28.0	1.0	ug/I	25.0	ND	112	60-140				
1,1,1-Trichloroethme	26.6	1.0	ug/I	25.0	ND	106	75-140				
1, 1,2-Trichloroethane	27.1	1.0	ug/I	25.0	ND	108	60-135				
Trichloroethene	25.2	0.1	ug/I	25.0	1.6	94	70-125				
Trichlorofluoromethene	64.8	1.0	ug/I	25.0	37	111	55-145				
1,2,3-Trichloropropage	26.1	1.0	ug/I	25.0	ND	104	55-140				
1,2,4-Trimethylbeazene	25.6	1.0	ug/J	25.0	ND	102	60-125				
1,3,5-Trimethytheazene	25.4	1.0	ug/l	25,0	ND	102	70-130				
Vinyl chloride	23.7	0.50	ug/I	25.0	ND	95	40-135				
o-Xylese	25.5	0.50	րջ/I	25.0	0.45	100	65-125				
m,p-Xylenes	51.4	1.0	υ ρ/ 1	50,0	ND	103	65-130				
Surragate: Dibromofluoromethane	26.5		ug/l	25.0		106	80-120				
Surrogate: Toluene-d8	24.3		υg∕î	25.0		97	80-120				
Surrogate: 4-Bromofluorobenzene	25.3		ug/l	25.0		101	80-120				
			-8-								

17461Derian Ave., Suite 100, Invise, CA 92614 (949) 261-1022 FAX (149) 260-3297 1014 E. Cooley Dr., Suite A. Cokon, CA 52324 (949) 370-4667 FAX (949) 370-1046 9484 Chesapeale Dr., Suite 805, San Dega, CA 52132 (820) 505-8396 FAX (820) 505-9669 9830 Swith 514 St., Suite 6-120, Plocesio, AZ 85044 (140) 765-0045 FAX (400) 765-0051 2520 E. Suite 6-120, Plocesio, AZ 85044 (140) 765-0045 FAX (400) 765-0051

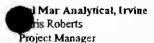
TWH Americas - Brea

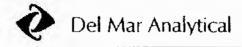
050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project 1D: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976


Sampled: 02/24/05-02/25/05


Received: 02/25/05

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

-		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B26009 Extracted: 02/26	<u>705</u>									
Matrix Spike Dup Analyzed: 02/2/	6/200S (5B26009-M	ISD1)			Source: I	OB2045-0	2			
Benzene	25.5	0.50	ug/I	25.0	0.71	99	70-120	4	20	
Bremohenzeue	23.5	1.0	ug/I	25.0	. ND	94	65-130	5	20	
Bromochloromethane	25.1	1.0	ug/I	25.0	ND	100	65-140	4	25	
Bromodichloromethane	24.3	1.0	ug/I	25.0	ND	97	70-140 -	4	20	
Bremoform	20.8	1.0	ug/I	25.0	ND	83	55-140	1	25	
Bromomethane	23.6	1.0	ug/I	25.0	ND	94	50-145	5	25	
n-Butylbenzene	26.3	1.0	ug/l	25.0	ND	105	70-140	4	20	
sec-Butylbenzonc	24.0	1.0	ug/I	25.0	ND	96	70-130	4	20	
tert-Burylbeazene	23.4	1.0	ug/I	25.0	ND	94	70-130	4	20	
Carbon tetrachloride	23.5	0.50	นg/ใ	25.0	ND	94	70-145	3	25	
orobenzene	24.5	1.0	ug/I	25.0	ND	98	80-125	2	20	
coroethane	24.0	1.0	ug/I	25.0	ND	96	50-145	6	25	
Chloroform	72.4	1.0	ug/I	25.0	50	90	70-135	9	20	
Chloromethane	. 22,1	1.0	ng/l	25.0	ND	88	35-145	7	25	
2-Chlorotolucne	23.2	1.0	ս ք/I	25.0	ND	93	70-140	5	20	
4-Chlorosotuene	23.7	1.0	ug/I	25,0	ND	95	70-140	5	20	
Dibromochloromethane	24.6	1.0	ug/l	25.0	ND	98	65-145	2	25	
1,2-Dibrosno-3-chloropropane	25.4	5.0	ug/I	25.0	ND	102	45-155	3	30	
1,2-Dibromoethane (EDB)	25.2	1.0	ug/I	25.0	ND	101	70-130	5	25	
Dibromomethane	25.1	1.0	นg/ใ	25.0	ND	100	65-140	5	25	
1,2-Dichlorobenzene	25.0	1.0	ug/I	25.0	ND	100	75-130	3	20	
1,3-Dichlorobenzene	24.3	1.0	ug/I	25.0	ND	97	75-130	4	20	
1,4-Dichlorobenzene	24.0	1.0	ug/I	25.0	ND	96	80-120	3	20	
Dichlorodifluoromethane	28.6	2.0	ug/I	25.0	7.8	83	10-160	8	30	
1,1-Dichloroethane	25.5	1.0	սջ/Լ	25.0	ND	102	65-135	5	20	
1,2-Dichlorocttane	26.2	0.50	ug/I	25.0	0.30	104	60-150	4	20	
1,1-Dichloroethene	23.9	1.0	ug/l	25.0	ND	96	65-140	7	20	
cis-1,2-Dichloroethene	24.8	1.0	ug/l	25.0	ND	99	65-130	7	20	
trans-1,2-Dichloroethene	25.4	1.0	ng/l	25.0	ND	102	65-135	4	20	
1,2-Dichloropropane	25.2	1.0	ug/I	25.0	ND	101	65-130	3	20	
1,3-Dichloropropane	25.3	1.0	ug/I	25.0	ND	101	65-140	4	25	
2,2-Dichloropropane	24.4	1.0	чg/1	25.0	ND	98	60-150	8		
1,1-Dichloropropens	24.5	1.0	ug/I	25.0	ND	98	65-140	4	20	
cis-1.3-Dichloropropene	26.0	0.50	ug/I	25.0	ND	104	70-140	3.	20	
trans-1,3-Dichloropropens	26.1	0.50	ug/I	25.0	ND	104	70-140	4	25	

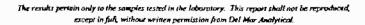
17461 Derian Ave., Saite 100, Irvine, CA 92514 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Du., Suite A., Colum, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Cheupeake Dv., Saite 605, San Diego, CA 92123 (835) 505-8596 FAX (858) 505-9669 9830 South 51s Su., Saite 6-120, Procent, AZ 85044 (480) 785-0043 FAX (480) 785-0651 2570 C. Sainet Rd. #3, Las Nigos. NV 89120 (702) 796-3620 FAX (702) 798-3621

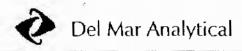
MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05


Received: 02/25/05


Brea, CA 92821 Attention: Lisa Hall

VOLATILE ORGANICS with MTBE by GC/MS (EPA 5030B/8260B)

Analisto	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualiflers
Analyte		Luna	Units	Level	Resutt	7.REA	THOMES	KLD	Little	Quantiers
Batch: 5B26009 Extracted: 02/26/0	<u>)5</u>									
Matrix Spike Dup Analyzed: \$2/26	/2005 (5B 2 6009-N	ASDI)			Source: I	OB2045-0	2			
Erhylbenzese	26.0	Q.5D	Гузи	25.0	0.60	102	70-130	4	20	
Hexachlorobatadiene	22.7	1.0	սջ/1	25.0	ND	91	65-140	5	20	
Isopropylbenzene	24.2	1.0	ս ջ/ Լ	25.0	0.41	95	70-130	4	20	
p-{sopropyltohiene	24.2	1.0	ug/1	25.0	ND	97	70-130	4	20	
Methylene chloride	34.7	5.0	υ g/ [25.0	8.4	105	60-135	11	20	
Methyl-tert-butyl Ether (MTDE)	26.4	1.0	υ g/ [25.0	ND	106	50-155	4	25	
Naphthalese	28.1	1.0	υ ε/ Ι	25.0	ND	112	50-150	2	30	
п-РторуЉендене	24.2	1.0	սջ/Լ	25.0	ND	97	70-135	5	20	
Styrene	25.1	1.0	ug/I	25.0	ND	100	55-145	4	30	
1,1,1,2-Tetrachloroethune	24.5	1.0	ng/l	25.0	ND	98	70-145	2	20	
1,1,2,2-Tetrachloroethune	26.0	1.0	u g/1	25.0	ND	104	60-145	5	30	
Tetrachloroeshese	22.2	1.0	ug/I	25.0	ND	89	70-130	2	20	
Toluene	24.8	0.50	ug/I	25.0	ND	99	70-120	4	20	
1,2,3-Trichlorobenzene	27.3	1.0	ug/I	25.0	ND	109	60-140	3	20	
1,2,4-Trichlorobenzene	27.4	1.0	սջ/1	25.0	ND	110	60-140	2	20	
1,1,1-Trichloroethane	25.7	1.0	ug/I	25.0	ND	101	75-140	5	20	
1,1,2-Trichloroethane	25,5	1.0	ug/I	25.0	ND	102	60-135	6	25	
Trichloroethene	24.7	1.0	ug/I	25.0	1.6	92	70-125	2	20	
Trichlorofluoromethane	59.0	1.0	ug/I	25.0	37	88	55-145	9	25	
1,2,3-Trichloropropane	24.8	1.0	u g/1	25.0	ND	99	5 5 -1 4 0	5	30	
I.2,4-Trimethylbenzene	24.4	1.0	ug/I	25.0	ИD	98	60-125	5	25	
1,3,5-Trimethylbenzene	24.3	1.0	ug/I	25.0	ND	97	70-130	4	20	
Vinyl chloride	22.3	0.50	ug/I	25.0	ND	89	40-135	6	30	
o-Xylene	24.6	0.50	ug/I	25.0	0.45	97	65-125	4	20	
m_p-Xylenes	49.8	1.0	ug/I	50.0	QИ	100	65-130	3	25	
Surrogate: Dibromofluoromethane	25.6		и g/1	25.0		102	80-120			
Surrogate: Toluene d8	24,1		и g/1	25.0		96	80-120			
Surrogate: 4-Bromofivorobenzene	24.9		ug/I	25.0		100	80-120			

17461 Derian Ave., Suite 100, Imine, Cn 92614 (949) 261-1022 FAX (999) 260-3297 1014 E. Cooley Dr., Suite A. Colon, Cn 92924 (929) 370-4662 FAX (949) 370-1046 9484 Chempeske Dr., Suite 805, San Diego, Cn 92121 (878) 370-4667 FAX (850) 507-9669 9830 South 514 St., Suite 8-120, Phoenia, AZ 85044 (480) 765-0043 FAX (400) 765-0651 1270 E. Suite 8-120, Phoenia, AZ 85044 (480) 765-0043 FAX (400) 765-0651 1270 E. Suite 8-120, Phoenia, AZ 85044 (480) 765-3043 FAX (400) 765-0651

rWH Americas - Brea 3050 Saturn Ave., Suite 205 Brea, CA 92821

Attention: Lisa Hall

Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/8270C MOD)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B25110 Extracted: 02/25/05	7-42-11						,-			*
Blank Analyzed: 02/28/2005 (5B25110	-BLK1)									
1,4-Dioxane	ND	1.0	ug/I							
Surrogate: 1,4-Diorane-d8	1.06		ug/l	2.00		53	35-120			
LCS Analyzed: 02/28/2005 (5B25110-1	BS1)									M-NR
1,4-Dioxane	0.911	1.0	ug/l	2.00		46	35-120			
Surrogate: 1,4-Dioxane-48	0.824		ug/l	2.00		41	35-120			

17461Denan Ave., Swie 100, Irvine, CA 92614 (949) 261-1027 FAX (949) 760-3297 1014 E. Cookey Cir., Selve A. Oskon, CA 92374 (909) 370-4667 FAX (949) 370-1046 7484 Chesipeshe Dr., Suite 605, San Diego, CA 92123 (858) 505-8594 FAX (858) 505-9689 9830 South ST# St., State 8-170, Phomin, AZ 85044 (440) 785-0043 FAX (480) 785-0051 2520 E. Sweet Rd. #3, Las Vegas, NV 89120 (202) 798-3620 FAX (202) 791-3621

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Hencywell, North Hollywood

1890933.0501

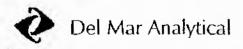
Sampled: 02/24/05-02/25/05

Brea, CA 92821 Attention: Lisa Hall Report Number: 10B1976

Received: 02/25/05

METALS

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25093 Extracted: 02/25/05										
Blank Analyzed: 02/25/2005-02/27/200:	5 (5B25093-BI	LK1)								
Antimony	ND	0.010	mg/l							
Arsenic	ND	0.0050	eng/l							
Barium	МD	0.010	mg/l			* *				
Beryllium	ND	0,0040	mg/l			,				
Cadmium	МD	0.0050	mg/l							
Chromium	МD	0.0050	mg/l							
Cobalt	ND	0.010	mg/l							
Copper	ND	0.010	mg/l							
Lead	ND	0.0050	mg/l							
Molybdenum	ИD	0.020	mg/l							
Nickel	ND	0.010	mg/l							- 1
Sclepium	ND	0,0050	mg/l							
Silver	ИD	0,010	mg/l							
Thallium	ИD	0.0050	mg/l						-	
Vanadium	ND	0.010	mg/l							
Ziac	ND	0.020	mg∕l							
LCS Analyzed: 02/25/2005-02/27/2005	(5B25093-BS1	I)								
Antimony	1.06	0.010	mg/l	1.00		106	80-120			
Arsenic	1,00	0,0050	mg/l	1.00		100	80-120			
Barium	0.977	0.010	mg/l	1,00		98	80-120			
Beryllium	0.985	0.0040	mg/l	1.00		98	80-120			
Cedmium	0.975	0.0050	mg/l	1.00		98	80-120			
Chronism	0.991	0.0050	cug/l	1.00		99	80-120			
Cobalt	0.989	0.010	mg/l	1.00		99	80-120			
Copper :	0.977	0.010	mg/l	1.00		98	80-120			
Lead	0.978	0.0050	rag/I	1.00		98	80-120		*	
Molybdenum	0.995	0.020	mg/l	1.00		100	80-120			
Nickel	0.974	0.010	mg/I	1.00		97	80-120			
Selenium	0.972	0.0050	mg/l	1.00		97	80-120			
Silver	0.493	0.010	mg/l	0.500		99	80-120			
Thellium	1.00	0.0050	mg/l	1.00		100	80-120			
Vanadam	0.985	0.010	mg/l	1.00		98	80-120		**	
Zinc	0.959	0.020	mg/l	1,00		96	80-120			


Del Mar Analytical, frvine

Chris Roberts

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from Del Mar Analytical.

10B1976 <Page 57 of 62>

1746/1Denan Ave., Switz 100, troine, CA 92614 (849) 261-1022 FAX (949) 260-3-297 1014 E. Cookey Dr., Switz A. Colton, CA 92324 (869) 376-4667 FAX (949) 370-1046 9484 Chesaperake Dr., Switz 605, San Diego, CA 92123 (858) 505-6596 FAX (868) 505-9669 9830 Swith Str. Switz 61-20, Pricenix, AZ 65044 (480) 785-0043 FAX (480) 785-0051 2520 E. Switze Rd. #3, Las Vegas, RM 99120 (702) 798-3620 FAX (702) 798-3621

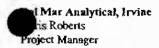
WH Americas - Brea

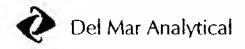
050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: 10B1976


Sampled: 02/24/05-02/25/05


Received: 02/25/05

* METHODBUANK/OC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25093 Extracted: 02/25/05										
Matrix Spike Analyzed: 02/25/2005-0.	2/27/2005 (SB25	5093-MS1)			Source: I	OB1976-1	2			
Antimony	1.09	0.010	mg/l	1.00	ND	109	75-125			
Arsenic	1.04	0.0050	mg/l	1.00	ИВ	104	75-125			
Barium	1.21	0.010	mg/l	1.00	0.26	95	75-125			
Beryllium	1.01	0.0040	mg/l	1.00	ND	101	75-125			
Cadmium	0.958	0.0050	mg/l	1,00	ND	96	75-125			
Chromium	1.20	0.0050	mg/l	1.00	0.20	100	75-125			
Cebalt	0.938	0.010	mg/l	1.00	ND	94	75-125			
Серрет	0.968	0.010	mg/l	1.00	ND	97	75-125			
Lead	0.972	0.0050	mg/l	1.00	ND	97	75-125			
Molybdenum	1,03	0.020	mg/l	1.00	0.0058	102	75-125			
kel	0.923	0.010	mg/l	1.00	0.0029	92	75-125			
ensum	0.993	0.0050	mg/l	1.00	ND	99	75-125			
Silver	0.502	0.010	mg/l	0.500	ND	100	75-125			
Thalijum	1.03	0.0050	mg/l	1.00	8800.0	102	75 -125			
Vuqadiuma	1.01	0.010	mg/l	1.00	0.0037	101	75-125			
Zinc	0.977	0.020	mg/l	1.00	0.024	95	75-125			
Matrix Spike Dup Analyzed: 02/25/20	005-02/27/2005	(SB25093-MSI	D1)		Source: I	OB1976-1	2			-
Antimony	1.09	0.010	mg/l	1.00	ND	109	75 -125	0	20	
Arsenic	1.05	0.0050	mg/l	1.00	ND	105	75-125	1	20	
Ватил	1.21	0.010	mg/l	1.00	0.26	95	75-125	0	20	
Beryllium	1.01	0.0040	mg/l	1.00	ND	101	75-125	0	20	
Cadmium	0.956	0.0050	mg/l	1.00	ND	96	75-125	0	20	
Chromium	1.20	0.0050	mg/l	1.00	0.20	100	75-125	0	20	
Cobalt	0.934	0.010	mg/l	1.00	ND	93	75-125	0	20	
Соррет	0.970	0.010	mg/l	t.00	ND	97	75-125	0	20	
Lead	0.972	0.0050	mg/l	1.00	ND	97	75-125	0	20	
Molybdemim	1.03	0.020	mg/l	1.00	0.0058	102	75-125	0	20	
Nickel	0 920	0.010	mg/l	1.00	0.0029	92	75-125	0	20	
Scienium	0.995	0.0050	mg/l	1.00	ND	100	75-125	0	20	
Silver	0.502	0.010	mg/l	0.500	ND	100	75-125	0	20	
Thalljium	1.02	0.0050	mg/l	1.00	0.0088	101	75-125	1	20	
Vanadium	1,01	0.010	mg/l	1.00	0.0037	101	75-125	0	20	
Zinc	0.977	0.020	mg/l	1.00	0.024	95	75-125	0	20	

17461Derian Ave., Swite 100, Ivrine, CA 92614 (949) 26Y-1022 FAX (949) 260-3297 1014 E. Coolny Dr., Suite A. Colam, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Champashe Dr., Swite 805, Sen Diego, CA 92123 (858) 505-6596 FAX (959) 505-9669 9830 Foods 514 St., Swite 8-126, Phoreni, AZ 65094 (400) 785-0043 FAX (460) 785-0651 2520 E. Swites Rd. #3, Las Vegas, NY 89120 (702) 798-3620 FAX (702) 798-3621

%REC

MWH Americas - Brea 3050 Saturn Ave., Suite 205 Project ID: Honeywell, North Hollywood

1890933.0501

Sampled: 02/24/05-02/25/05

RPD

Data

Qualifiers

Brea, CA 92821 Attention: Lisa Hall Report Number: 10B1976

Reporting

Received: 02/25/05

METALS

Spike

Source

		reform and		Object	DVMILL		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11.1
Analyte	Result	Limit	Units	Levei	Result	%REC	Limits	RPD	Limit
Batch: 5B25106 Extracted: 02/25/05									
Blank Analyzed: 02/25/2005 (5B25106-	BLK1)								
Mercury	ďΩ	0.00020	mg/l						
LCS Analyzed: 02/25/2005 (5B25106-B	S1)					• +			
Mercury	0.00841	0.00020	നള/1	0.00800		105	90-115		
Matrix Spike Analyzed: 02/25/2005 (5E	25106-MS1)				Source: 1	OB1976-1	2		
Мехситу	0.00861	0.00020	mg/l	0.00800	ND	108	75-120		
Matrix Spike Dup Analyzed: 02/25/200	5 (5B25106-N	4SD1)			Source: I	OB1976-1	2		
Mercury	0.00860	0.00020	mg/l	0.00800	ND	108	75-120	0	20
Batch: 5B25114 Extracted: 02/25/05									
Blank Analyzed: 92/26/2005 (5B25114-	BLK1)	•					*		
Thelines	Й	1.0	ug/l						
LCS Analyzed: 02/26/2005 (5B25114-B	S1)								
Theflium	77.6	1.0	ug/I	80.0		97	80-120		
Matrix Spike Analyzed: 02/26/2005 (5B	25114-MS1)				Source: I	OB1976-1	2		
Thallium	67.8	1.0	υ ջ/ 1	80.0	0.11	85	75-125		
Matrix Spike Dup Analyzed: 02/26/200	5 (5B25114-M	(SD1)			Source: I	OB1976-1	2		
Thallium	73.3	1.0	ug/I	80.0	0.11	91	75-125	8	20

17461 Der San Aver, Suite 100, Irvine, CA 32614 (849) 261-1922 FAX (949) 260-17297 (1014 E. Crozilly Ch., Suite A., Cakton, CA 32124 (809) 370-4667 FAX (949) 370-1046 (948) 470-1046 (948

WH Americas - Brea

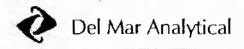
050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID: Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05


Received: 02/25/05

INORGANICS

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Llmit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 5B25064 Extracted: 02/25/05										
Blank Analyzed: 02/25/2005 (5B25064-	BLK1)									
Perchlorate	ND	2.0	ug/I							
LCS Analyzed: 02/25/2005 (5B25064-B	S1)							8.8		
Perchlorate	48.4	2.0	ng/l	50.0		97	85-115			
Matrix Spike Analyzed: 02/25/2005 (5B	25064-MS1)				Source: I	OB1976-1	3			
Perchlorate	51.3	2.0	ug/l	50 0	1.5	100	80-120			
Matrix Spike Dup Analyzed: 02/26/200	5 (5B25064-M	(SD1)			Source: I	OB1976-1	3			
Perchlorate	51.4	2.0	ng/I	50.0	1.5	100	80-120	0	20	
Batch: 5B25084 Extracted: 02/25/05								171		
nk Analyzed: 02/25/2005 (SB25084-	DI VI									
	7									
Chromium VI	ND	0100.0	mg/t							
LCS Analyzed: 02/25/2005 (5B25084-B	S1)									
Chromium VI	0.0473	0.0010	mg/l	0.0500		95	90-110			
Matrix Spike Analyzed: 02/25/2005 (5E	25084-MS1)				Source: I	OB1976-1	3			
Chromium VI	0.395	0.0050	mg/I	0.250	0.17	90	80-115			
Matrix Spike Dup Analyzed: 02/25/200	5 (5B25084-M	(SD1)			Source: I	OB1976-1	3			
Chromium VI	0.397	0.0050	mg/l	0.250	0.17	91	80-115	ŧ	15	

17461Deman Ave., Suite 100, fivine, CA 92614 (849) 261-1022 FAX (949) 260-3292 1014 E. Cassiey Dr., Suite A. Colton, CA 43,324 (909) 370-4662 FAX (949) 370-1046 Chesapvidae Che, Suite 605, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9669 9830 Soroth 110 St., Suite 6-120, Processe, AZ 85044 (440) 785 0043 FAX (460) 765-0653 2520 E. Surrott Rd. #3., Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH Americas - Brea

Project ID: Honeywell, North Hollywood

3050 Saturn Ave., Suite 205

1890933.0501

Brea, CA 92821

Attention: Lisa Hall

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

DATA QUALIFIERS AND DEFINITIONS

M-NR No results were reported for the MS/MSD. The sample used for the MS/MSD required dilution due to the sample

matrix. Because of this, the spike compounds were diluted below the detection limit.

RL-4 Reporting limit raised due to insufficient sample volume.

The sample required a dilution due to the nature of the sample matrix. Because of this dilution, the surrogate spike

concentration in the sample was reduced to a level where the recovery calculation does not provide useful

information

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461Derian Ave., Suite 100, Ivrine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (888) 505-989 9830 South 51st St., Suite 8-120, Phoenia, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E, Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

IWH Americas - Brea

3050 Saturn Ave., Suite 205

Brea, CA 92821 Attention: Lisa Hall Project ID; Honeywell, North Hollywood

1890933.0501

Report Number: IOB1976

Sampled: 02/24/05-02/25/05

Received: 02/25/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 314.0	Water	N/A	х
EPA 6010B	Water	Х	x
EPA 6020	Water	X	х
EPA 7199	Water	X	x
EPA 7470A	Water	Х	x
EPA 8260B	Water	X	x
EPA 8270C MOD	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

DEL MAR ANA	LYTIC									ain O	f Cus					ques	f Custody / Analysis Request 10 / 3										
hone: (949)261-1022	EAL (949)	435-0858		Privo	egged A	Qualitation L	al ·					Site N	840 P1	NOR	THHO	LLY	VI	11-11-			CZZANI N		- Water	New		B. Sell	
VC Munuger: Mike Pu	rkinson			1 DD	To:							Locat	lon of S	ile:	Holly			Holly	w000 ;	site -t	1600 3	nerma	n way	, Noru	1	12 11 12	DMA
Ment Contact: (name.		\$\$)		_	_	J.Plummer							Prese	ratio	e						_		_	_		100 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1000 t 70000
dike Flaucher/Lisa H	Ш			PO		1890933.05		,				-	0	0	0	0	0	0	0	0	0	0	0	0	0	1000	
MWH 3050 Saturn Street,	Suite 205	Bree C	TA 92821	Stand		wound Time:	29	M		10			9													COLOR DE SANS	A CONTRACTOR
dichael E. Plaugher				1		uchorizzed for •				•			(a) He	Cut'y												宣称的 原	CHANGE S
Contact Phone/Cell:				2 wee	ks ·		RI	J	<u>- لـا</u>			图.	F	Ma	-		a sou		8								
lardenpy Report To:				1 wee	· ·		100	/	, [1			7	3	2		1.4-D		Organics								
woice To:				Next									MM	ide 22	hrone	Mile	MOD	Therate	Volume O							Vite :	
					nple	Sample	Sample	. [5	ample	Sample	. ,,	響	DC.	SW7470 Tide 22 CAM	1199	5020 T	1370C	4.0 Per	60 Val							7	
_		[den#fice	etlen		ale	Time	Туре			Purpas		题	T.	AS	SW	SW	SW	E314.0	E1260							1	
	Start Depth	End Depth									排列		. Nav	7	5	No.	20	W.	R								
Location ID	(ft)	(ft)	Field Sample ID			4.4			. (1	Units		X	E	-	- 7	-8			-	-				Ensimple	Stilling that 1 1 24
GW14B			GW-148-2/24/05.	2/2	4/05		GW	- 1	wit.	Feg	_	-	X	1	-	X	_						-	ļ <u>.</u>			
2 GW-14B			6W-14B-2/24/05	<u> </u>	!	1810			1		4				X				X.		_			<u></u>			
3 GW-14B			GWHBPCZIM/OS-F			1205			Ì		1		X	X		X											
4 GW-14B			6W-14D-102/41/5			1905					14				X				X								
5 GW-14B			6N-14B-PD-212411 F		ļ	2000			T		1		X	X		ス											
6 (W-14B			CW 14B PD Jules			2050					4	П			X				X								· · · · · · · · · · · · · · · · · · ·
, 6W-7			6W-7-2/14/05-F			213-					1		7	Y		×											
8 GW-7			6W-7-2/24/05		\	2.230			1		6			Γ~	X		X	X	X	• *******				1		1	
· DUP-OI			DUP-01 - 2/24/05-F			NX					1		X	¥		X					<u> </u>		[
10 DOP-01			DUP-01-7/2/05	T-	T	NA			1		6			<u> </u>	X		Χ	X	X								0
II TB			TB-022405	ī	V	1200			Τ		2	T							Χ								X
12 GW-10			6W-10-2/24/65-F	2/2	5/05	0010	V	1	V	V	1	11	X	×		x				_							· · · · · · · · · · · · · · · · · · ·
special Instructions I	PA 60108	- Title 22	CAM Metals List - Sb, As, Bi	, B.		Co, Cu, Pb	, Mo, NI,	Se,	Ag, Va,	Zei	EPA 7	470A - 1	1Ue 22	CAM	Metal	s List .	Hg	_				(30)	- D				
Relinquished by		·····	Сотрал	Я	MY	VH	Received					T		Co	mpan	DMA		·····	Condi	don				Custo	dy Ser	als Intact	פען
Joseph	Ph		Date/Time	2/	25/0	5 10	1512	سام	16			-	Date/1		<u> </u>	2/29		k)	Coole	t Tem	p.	U.					1
Elipsilishe by			Соправ				Received	Ву	//					Çe	хпр ас)		- 17.		Condi	ĐộN				Custo	dy Se	els Intact	
1/m//m		· ·	2-250 11:15	1			1	17	40	4 11	25		Date/7	IF34					Coole	Tem	φ.						
reservatives 0 = No	ne: [3 = 4	CL): 12 =	HNO3); (3 = H2SO4); [4 = N	SOM:	[5 = 2	n. Arecatel	16 a M=	OH	1			ther (er-	cilv):									-	_				

DEL MAR AN 2825 Alian Avenue Irvins, CA 92606			Hon		ve	11	Che	aln Of						quest					1	Zef	3		(not)	37070	2.00		
Phone: (949)261-103	Fex: (949)	435-0158			ed & Canfid	rtial	4				Site N	ème:	NOR	HODE	LLY	North	Holly	wood	Sile ·1	1600 3	herma	n Way	, North	2		DMA	
A/C Manager: Mike				TIDD T							Locati	Sle co		Holly			-								** E T 12	E .	
Offent Contact: (nan		£\$5)		20 t	J.Plumr 1#90933							C	O	0	0	0	0	0	0	10	0	0	0 1	10	25457	1005	NOTE OF BE
Mike Flaugher/Liss MWH	-PW				Turpuround Tin		24	1.	10		羅-	-		-	-		-	-	-	1	-	-		-	111		1
3050 Saturn Stree	Suite 20	S, Bres. (CA 92821	Standa	rd -	-	47	M	,		i in	9								ĺ			1				
Michael.E.Flaugh			n	Rush Cha	uges Authorized (of -						(all alw)	E S	<		š		[}					2.5	TO SE	
Contact Phone/Ce		6-3397		2 weeks		RI	10	Ц			B	, X	ž	_		8		Į.							诗句。并	$\hat{\mathbf{q}}$	3. 1.25
Hardenpy Report To				1 week		10	13	1,				120	22 CAM	E I	E	3	ų	Organics								+	
Invoice To:				Next Di								AMM	Fete 23	Daniel Direction	Padfin	8	rejous	de ik		1							
				Samp	ple Sampl		nple	Sample	Sample			k 22 C	7470	6634	0209AS	782700	E314.0 Pe	260 Ve									
		Identifica	atlen	Date	e Time	Ty	pe pe	Matrix	Perpose	Cons		15	N.	5	in.	3	<u>a</u>	22	_	-	-	_			23620597		
Location ID	Start Depth (R)	Depth (ft)	Field Sample ID			1 1/2	Ç				Units	No.	mg/L	med.	76	700	me/L	N									
1 GW-10			64-10-2/24/03	2/20	65 0010	6	W	wider	Rea	6				X		X	X	X									
2 GW-10			64.10-2/4/05 MES	f 1	0010				Ŋ	1		X	X		X					<							
,60-10			64-10/2/24/05 ns		0010					6				X		X	X	X									
1 GW-15			GN-15-2/25/05-F	2/25						1		X	X		X												
5 GW-15			GUIS-2/45/05		0130					6				Χ		X	X	X									
400 °			DUP-03-2/21/05-F		NA					1		X	X		X												
, DUP			DUP-03-2/25/05		MA				1	1	П			X		X	X	×		Г							
, EB			EB-03-2/20/05-P		0150					7	П	X	X	X	X	X	X	X									
, GW-5			GN-5-2/es/05-F		0710					1		Х	X		Χ												
10 6W-5			GW-5.2/25/05		0>10					4				X				X									
11 GW-4			GW-4-2/25/05-F		6-1-50 1-1-50	جمو				1	П	X	Х		X				-								
12 GW - 9			GW-4-2/25/05	V	6438	B.P. \	1	V	V	4	П			X				X									
	EPA 60108	· Title 22	CAM Metals List - Sb, As, Ba	, Be, Cd	, Cr, Co, Cu,	rb, Mo,	Ni, Se	, Ag, Ya,	Zn;	EPA 74	70A - T	tie 22 (CAM I	vietais	List •	Hg											
Relinquished by			Company	ч	MWH	Recei	vad by	,	70		1		Cor	праву	DMA		—· ₁	Condi	Lion .		600		Custor	dy Sea	ls intect	10	D
Pron	0		Date/Time	1	5/05	19/5/		11	_		 	Dule/Ti	me		45	64,	ibo	Conla	Tem	p.	6	~ .					<u> </u>
cynquished by	Compar				-/ -/-		ved by	1/			-		Çon	npany	<u>• • • • • • • • • • • • • • • • • • • </u>	- 1 .		Condi	tion				Custor	dy Scal	s inusci		
125-05 1/1:2				-		7/	21	110	l		2/	30	31/	20				Coole	Tem	ρ.							
Preservatives: 0 = N	one; [1 = H	CL); [2 =	HNO3); [3 = H2SO4); [4 = Ni	OH); [5	= Zn, Acetat	}; {6 = 1	MeOf); [7 = N	(1904);	8 = 00	er (cpe	έlγ):															

2823	MAR AN	LYTIC	CAL		Н	one	ywe	11	Cha	in Of	Cust	ody/	Ana	lysis	Rec	juest					3	of	3		37070-0	1027
	(949)261-1022	Fax: (949)	435-0858		Privileged &	Canfident					Site No	me:	NORT	гино	LLY	Name of the last	O SILVE			200 8		- Was	. North		DMA	
	lanager: Mike P				EDD To:						Locati	on of S		Hollyw			nony	WD00 3	11c -1	1000 3	nerma	п жау	, North		DMX	
Clien	Contact: (oum	co., ad are	222)		Sampler:					73.0	翻	Prese														Secretary of
Mike	Flaucher/Lisa h I	ali			PO1	1590933.05						0	0	0	0	0	0	0	0	0	0	0	0	0		
MW	1	A : 00			Analysis Turns	ireund Time:			10			2								i						THE RESERVE
3050	Saturn Street, acl.B.Plaughe	Sore 20:	o, Brea, L	A 92821	Standard - Ruth Quirges A		24 r	~				(who Hg)	\$												SECTION AND ASSESSMENT OF THE PARTY OF THE P	AND THE PROPERTY OF
Con	act Phone/Cel	· (714)93	6.3397		2 weeks -								Ę			1		_				1				
Hard	apy Report To:	1714733	0-4321		1 "'''		RU	5 H				1 2	22 CAM Mexuny	ž		Ď,		a ica					ı			
					i work -		1	٠,				100	22C	frien	ţ.	MOD I.	井	8		ļ					原相学问题	
lovoi	e To:				Next Day -							CAM Metals List	ž	6	2	Q.	cretor	Volze							e de la la la la la la la la la la la la la	
		Sample	Identifica	Lion	Sample Date	Sample	Sample Type	Sample Matrix	Sample Purposa	i of Cam.		Title 22	SW7470 Title	\$W7199 Chrostian	SW6020 Thattiern	SWIZEC	E314.0 Perefora	E\$260 V								
		Start	End		图图制	學習問題			Talk?										T						使用分配 管	
	Location ID	Depth (ft)	Depth (ft)	Pleid Sample ID	學經濟	101					Units	2	180	3	EA.	3	1/3n	2/2	411							
	EB	1.7	,		- lacke	2-11-	- O	1.1/	-0	7	Units	X	X	X	X	V	X	X							Later Semiple (spinese)	
-1-	1-D			EB-04-2/25/05	2/25/05	0573	EB	Moter	-59	T	-	^	^	Δ		Δ	/\	Δ			-			-		
1	~			<u> </u>							-		_													
3		- Action	-																							

		1																					-			
.5		 	 	<u> </u>	-	-		-			-	-						-			-					
٥	····						-	-				-										ļ				
,									-			_														
8											F4						i									
9											1	7	\supset													
	,		 				-	 		·	1		,		_	/					 					
10		 		1	 			 				-	-								-	-			·	
		ļ	ļ		 	ļ. 	 	 			-	\vdash		-	-				,		-					
12		<u> </u>		<u> </u>	<u> </u>			<u> </u>			<u> </u>	<u> </u>	L			L		<u> </u>	<u>L</u>		100		<u> </u>			
		EPA 60101	- Title 22	CAM Metals List - Sb, As, B					Zni	EPA 74	70A - Ť	lue 22				Hg		,								
Relin	quished by	1	á.	Соттры	î	VH	Received	by /	7					трапу	DMA			Cond					Custo	dy Sei	ds intuct	
Se	to my	Jan.	~	DNO 3/2			122	1.0				Date/T						<u> </u>	л Теп				<u></u>	····		
Company					Ŋ		Received	y /	_					wbank				Cond	idon J (C	ξ	L.		Custo	dy Sca	Thing	
	~/0	1		Date/Firms // 2	4		12	11/04	9		i p	3/8	ione 110	24				Coole	ı Tem	66						
Pres	rvatives; 0 = N	ne; [# #	(CL); [2 =	HN03): [3 = H1504]; [4 = N	*OH]; (5 = Z	n. Acetate);	[6 = MeC	H]; [7.	hHSO4];	8 = Oth	er (spe	cily):									L					

3/28/06 104(e) 0821

APPENDIX G
DATA VALIDATION REPORT

MEMORANDUM

Data Validation Report

To: Lisa Hall-Brea

From: Travis Peterson - WCK DEI

Report Ref: Del Mar Analytical

SDGs: IOB1727, IOB1817, IOB1818,

IOB 1976, IOB 1996

Date: March 29, 2005

Site: Honeywell North Hollywood

Groundwater Monitoring

Job Number: 1890933

File Reference:

This data validation report has been prepared for the above referenced site and summarizes the review of analytical data submitted by Del Mar Analytical Laboratory located in Irvine, California. Samples were collected February 22nd through 25th, 2005 as part of the First Quarter Groundwater Monitoring event conducted at the former Honeywell site located in North Hollywood, California. A summary of samples collected for this event is included in Table G-1. Twenty-two primary field samples, two field duplicates, and eight field quality control (QC) samples were submitted. DUP-01-2/24/2005 and GW-7-2/24/2005 were submitted as a field duplicate pair; DUP-03-2/25/2005 and GW-15-2/25/2005 were also submitted as a field duplicate pair. Samples were analyzed by one or more of the following methods:

- Volatile Organic Compounds (VOCs) by United States Environmental Protection Agency (USEPA) method SW8260B
- 1,4-Dioxane by USEPA Method SW8270C
- Perchlorate by USEPA Method 314.0
- Title 22 metals (Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Mo, Ni, Se, Ag, Tl, V, Zn) by USEPA Methods SW6010B and SW7470A
- Hexavalent chromium by USEPA Method SW7199

Results were reviewed in accordance with the appropriate methods listed above. In addition, the USEPA Contract Laboratory Program National Functional Guidelines for Organic (USEPA 1999) and Inorganic (USEPA 2004) Data Review were used to provide overall guidance for the validation process. The data review included an evaluation of the following QC parameters based on standard performance criteria presented in these documents.

- Analytical Holding Times/Sample Preservation
- · Method Blanks and Field Blanks
- Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Performance

- Surrogate Percent Recovery
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Sample Performance
- Field Duplicate Comparison
- · Detection Limits

Summary of Findings:

Data were qualified as necessary based on the data validation process described above. Qualified results are listed in Table G-2. All samples arrived at the laboratory in good condition and on ice. All samples were analyzed according to the accompanying chains of custody (COCs). All analytical holding times were met with one exception. Two groundwater samples were analyzed past holding time for hexavalent chromium. Hexavalent chromium in groundwater has a 24-hour holding time. The samples were analyzed within a few hours of expiration. In one case, hexavalent chromium was detected, the result in this sample was qualified as estimated (J). Hexavalent chromium was not detected in the other sample, so the result was qualified as not detected at the estimated reporting limit (UJ).

QC data were reviewed for laboratory and instrument precision and accuracy from LCS/LCSD recoveries and relative percent differences (RPDs), MS/MSD sample recoveries and RPDs, and surrogate recoveries (organic analyses). All precision and accuracy QC elements were found to be within acceptable limits with the following exceptions:

- The MS/MSD RPD associated with the VOC analysis of project sample GW-6-2/22-05 was greater than the control limit for bromoform, 1,2-dibromo-3-chloropropane, 1,1,2,2-tetrachloroethane, and 1,2,3-trichloropropane. None of these compounds were detected in the parent sample, so no qualifiers were necessary.
- The MS/MSD RPD associated with the VOC analysis of project sample GW-12A287 was greater
 than the control limit for styrene and 1,2,4-trimethylbenzene. These compounds were not detected
 in the parent sample, so no qualifiers were necessary.

Field sampling precision was also evaluated by using the calculated RPD between results reported for the field duplicate pairs, which were project samples DUP-01-2/24/2005 and GW-7-2/24/2005; and DUP-03-2/25/2005 and GW-15-2/25/2005. In general, RPD results were found to be within the acceptable limits for precision for all methods. A few metals and hexavalent chromium did have RPDs that were greater than the control limit. These results were qualified as estimated in the primary field sample.

No target analytes were detected greater than the reporting limit (RL) in any method blank or trip blank samples. The equipment blank samples collected each day had target analytes detected above the RL:

• EB-01-2/22/05, associated with the VOCs analysis of four field samples had toluene detected above the RL (1.0 μg/L). Toluene was not detected in any of the associated field samples, so no qualifiers were necessary.

- EB-02-2/23/05, associated with the VOCs analysis of seven field samples had toluene detected above the RL (0.70 μg/L). Toluene was not detected in any of the associated field samples, so no qualifiers were necessary.
- EB-02-2/23/05, associated with the metals analysis of seven field samples had arsenic detected above the RL (0.0057 mg/L). Two of the samples had low concentrations of arsenic and were qualified as not-detected at the estimated RL.
- EB-04-2/25/05-F, associated with two field samples had chloroform detected above the RL (1.4 µg/L). Chloroform was not detected in any of the associated field samples, so no qualifiers were necessary.

Sample dilutions for all analysis were performed appropriately with respect to the analyte present in the highest concentration.

All data submitted for this project are of known and acceptable quality as qualified, based on laboratoryestablished control limits and the data quality objectives. These data are considered acceptable for their intended purposes.

GROUNDWATER SAMPLE COLLECTION SUMMARY HONEYWELL NORTH HOLLYWOOD SITE QUARTERLY MONITORING NORTH HOLLYWOOD, CALIFORNIA (Page 1 of 3)

Investigation	Field Activity	Location	Field Identification	Sample Type	Collection Date	Collection Time	Lab ID	Title 22CAM Metals List (w/o Hg	SW7470 Title 22 CAM Mercury	SW7199 Chromium VI	SW6020 Thallium	SW8270C MOD 1,4-Dioxane	E314.0 Perchlorate	E8260 Volatile Organics
1st Quarter, 2005	GW Monitoring	GW-06	GW-6-2/22/05	Primary	02/22/05	11:10	IOB1727-01	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-02	GW-2-2/22/05	Primary	02/22/05	12:50	IOB1727-02	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-09	GW-9-2/22/05	Primary	02/22/05	14:10	IOB1727-03			R				R
1st Quarter, 2005	GW Monitoring		EB-01-2/22/05	Field QC	02/22/05	10:00	IOB1727-04	R	R	R	R	R	R	R
1st Quarter, 2005	GW Monitoring	GW-08	GW-8-2/22/05	Primary	02/22/05	16:00	IOB1727-05			R				R
1st Quarter, 2005	GW Monitoring		TB-022205	Field QC	02/22/05	9:30	IOB1727-06							R
1st Quarter, 2005	GW Monitoring	GW-06	GW-6-2/22/05-F	Primary	02/22/05	11:10	IOB1727-07	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-02	GW-2-2/22/05-F	Primary	02/22/05	12:50	IOB1727-08	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-09	GW-9-2/22/05-F	Primary	02/22/05	14:10	IOB1727-09	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-08	GW-8-2/22/05-F	Primary	02/22/05	16:00	IOB1727-10	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-01	GW-1-2/23/05-F	Primary	02/23/05	8:45	IOB1817-01	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-01	GW-1-2/23/05	Primary	02/23/05	8:45	IOB1817-02			R		R	R	R
1st Quarter, 2005	GW Monitoring	GW-03	GW-3-2/23/05-F	Primary	02/23/05	10:15	IOB1817-03	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-03	GW-3-2/23/05	Primary	02/23/05	10:15	IOB1817-04			R		R	R	R
1st Quarter, 2005	GW Monitoring	GW-14A	GW-14A-PA-2/23/05-F	Primary	02/23/05	11:00	IOB 1817-05	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-14A	GW-14A-PA-2/23/05	Primary	02/23/05	11:00	IOB1817-06			R				R
1st Quarter, 2005	GW Monitoring		GW-14A-2/23/05-F	Primary	02/23/05	11:55	1OB 1817-07	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-14A	GW-14A-2/23/05	Primary	02/23/05	11:55	1OB1817-08			R				R ·
1st Quarter, 2005	GW Monitoring	GW-14A	GW-14A-PC-2/23/05-F	Primary	02/23/05	12:55	IOB 1817-09	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-14A	GW-14A-PC-2/23/05	Primary	02/23/05	12:55	IOB1817-10			R				R
1st Quarter, 2005	GW Monitoring	GW-14B	GW-14B-PA-2/23/05-F	Primary	02/23/05	15:10	IOB1817-11	R	R		R			_
1st Quarter, 2005	GW Monitoring	GW-14B	GW-14B-PA-2/23/05	Primary	02/23/05	15:10	IOB 1817-12			R				R
1st Quarter, 2005	GW Monitoring		TB-0223005	Field QC	02/23/05	9:05	IOB1817-13		_	_	_			R
1st Quarter, 2005	GW Monitoring	GW-14A	GW-14A-PD-2/23/05	Primary	02/23/05	14:00	IOB1817-14	R	R	R	R		R	R

GROUNDWATER SAMPLE COLLECTION SUMMARY HONEYWELL NORTH HOLLYWOOD SITE QUARTERLY MONITORING NORTH HOLLYWOOD, CALIFORNIA

(Page 2 of 3)

Investigation	Field Activity	Location	Field Identification	Sample Type	Collection Date	Collection Time	Lab ID	Title 22CAM Metals List (w/o Hg	SW7470 Title 22 CAM Mercury	SW7199 Chromium VI	SW6020 Thallium	SW8270C MOD 1,4-Dioxane	E314.0 Perchlorate	E8260 Volatile Organics
1st Quarter, 2005	GW Monitoring		EB-02-2/23/05	Field QC	02/23/05	15:40	IOB1818-01	R	R	R	R	R	R	R
1st Quarter, 2005	GW Monitoring	GW-14B	GW-14B-2/24/05-F	Primary	02/24/05	18:10	IOB1976-01	R	R		R			
1st Quarter, 2005	·GW Monitoring	GW-14B	GW-14B-2/24/05	Primary	02/24/05	18:10	IOB1976-02			R				R
1st Quarter, 2005	GW Monitoring	GW-14B	GW-14B-PC-2/24/05-F	Primary	02/24/05	19:05	IOB1976-03	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-14B	GW-14B-PC-2/24/05	Primary	02/24/05	19:05	IOB1976-04			R				R
1st Quarter, 2005	GW Monitoring	GW-14B	GW-14B-PD-2/24/05-F	Primary	02/24/05	20:50	IOB1976-05	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-14B	GW-14B-PD-2/24/05	Primary	02/24/05	20:50	IOB1976-06			R				R
1st Quarter, 2005	GW Monitoring	GW-07	GW-7-2/24/05-F	Primary	02/24/05	22:30	IOB1976-07	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-07	GW-7-2/24/05	Primary	02/24/05	22:30	IOB1976-08			R				R
1st Quarter, 2005	GW Monitoring		DUP-01-2/24/05-F	DUP of GW-7-2/24/05-F	02/24/05		IOB1976-09	R	R		R			
1st Quarter, 2005	GW Monitoring		DUP-01-2/24/05	DUP of GW-7-2/24/05	02/24/05		IOB1976-10			R		R	R	R
1st Quarter, 2005	GW Monitoring		TB-022405	Field QC	02/24/05	18:00	IOB 1976-11							R
1st Quarter, 2005	GW Monitoring	GW-10	GW-10-2/24/05-F	Primary	02/25/05	00:10	IOB1976-12	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-10	GW-10-2/24/05	Primary	02/25/05	00;10	IOB1976-13			R		R	R	R
1st Quarter, 2005	GW Monitoring	GW-15	GW-15-2/25/05-F	Primary	02/25/05	01:30	IOB1976-14	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-15	GW-15-2/25/05	Primary	02/25/05	01:30	IOB1976-15			R		R	R	R
1st Quarter, 2005	GW Monitoring		DUP-03-2/25/05-F	DUP of GW-15-2/25/05-F	02/25/05		IOB1976-16	R	R		R			
1st Quarter, 2005	GW Monitoring		DUP-03-2/25/05	DUP of GW-15-2/25/05	02/25/05		IOB1976-17			R		R	R	R
1st Quarter, 2005	GW Monitoring		EB-03-2/25/05-F	Field QC	02/25/05	01:50	IOB1976-18	R	R	R	R	R	R	R
1st Quarter, 2005	GW Monitoring	GW-05	GW-5-2/25/05-F	Primary	02/25/05	03:10	IOB1976-19	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-05	GW-5-2/25/05	Primary	02/25/05	03:10	IOB1976-20			R				R
1st Quarter, 2005	GW Monitoring	GW-04	GW-4-2/25/05-F	Primary	02/25/05	05:10	IOB 1976-21	R	R		R			
1st Quarter, 2005	GW Monitoring	GW-04	GW-4-2/25/05	Primary	02/25/05	05:10	IOB1976-22			R				R
1st Quarter, 2005	GW Monitoring	•-	EB-04-2/25/05-F	Field QC	02/25/05	0540	IOB1976-23	R	R	R	R	R	R	R

TABLE G-1

GROUNDWATER SAMPLE COLLECTION SUMMARY HONEYWELL NORTH HOLLYWOOD SITE QUARTERLY MONITORING NORTH HOLLYWOOD, CALIFORNIA (Page 3 of 3)

Investigation	Field Activity	Location	Field Identification	Sample Type	Collection Date	Collection Time	Lab ID	Title 22CAM Metals List (w/o F	W7470 Title 22 CAI	SW7199 Chromium VI	SW6020 Thallium	SW8270C MOD 1,4-Dioxane E314.0 Perchlorate	F\$260 Volatile Organics	
latiquadoj 2005. 131 Onatiga 2005 131 Onatos, 2005 132 Onatos, 2005	Gryvinontoning Gw Montochy Gw Montochy Gw Mantochy	.GW-12A .GW-12A .GW-12A	GW-124-237 GW-124-222 GW-124-330 TEOS-WOLLSOS	Politings Primary Primary Mulii (IC)	(12/15/05) (12/15/05 (12/15/05 (12/15/05		1013/696-01 1013/1936-02 1013/1936-02	B B B	R R	R R	R R	8 R 8 R R	R R R R	

DUP - duplicate sample

GW - groundwater QC - quality control

R - Sample received and analyzed by the laboratory

VOC - volatile organic compounds

"Title 26 Metals: Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Mo, Ni, Se, Ag, Tl, V, Zn

TABLE OF QUALIFIED DATA HONEYWELL NORTH HOLLYWOOD SITE QUARTERLY MONITORING NORTH HOLLYWOOD, CALIFORNIA

(Page 1 of 1)

Sample Identification	Laboratory Identification	Matrix	Method	Parameter	Result	Units	Flag	Bias	Comment
EB-01-2/22/-05	IOB1727-04	Water	SW7199	Hexavalent Chromium	< 0.0010	mg/L	UJ	NDT	Holding time exceeded
GW-1-2/23/05-F	IOB1817-01	Water	SW6010B	Arsenic	< 0.012	mg/L	UJ	NDT	Equipment blank contamination
GW-3-2/23/05-F	IOB1817-03	Water	SW6010B	Arsenic	< 0.0082	mg/L	UJ	NDT	Equipment blank contamination
GW-14A-PD-2/23/05	IOB1817-14	Water	SW7199	Hexavalent Chromium	3.4	mg/L	J	NDT	Holding time exceeded
GW-7-2/24/05-F	IOB1976-07	Water	SW6010B	Barium	0.26	mg/L	J	Low	Field duplicate RPD > CL
3W-7-2/24/05-F	IOB 1976-07	Water	SW6010B	Zinc	0.023	mg/L	J	Low	Field duplicate RPD > CL
GW-7-2/24/05	IOB1976-08	Water	SW6010B	Hexavalent Chromium	0.091	mg/L	J	Low	Field duplicate RPD > CL
GW-15-2/25/05-F	IOB1976-14	Water	SW6010B	Barium	0.26	mg/L	J	High	Field duplicate RPD > CL

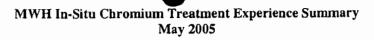
CL - control limit

J - Result is estimated.

mg/L - milligrams per liter

µg/L - micrograms per liter

NDT - not determined


RPD - relative percent difference

UJ - The result is not detected; however, the reporting limit value is qualified as estimated.

APPENDIX F

MWH IN-SITU CHROMIUM TREATMENT EXPERIENCE SUMMARY May 2005

Project	Project Location	Key Elements	Regulatory Oversight	Description
Hexavalent Chromium Remediation	Coast Wood Ukiah, CA	Soil and Groundwater Remedial Action Regulatory Negotiation	DTSC North Coast RWQCB U.S. EPA, Region IX	Groundwater extraction and aboveground electrochemical treatment for remediation of hexavalent chromium, followed by infiltration trenching and direct injection for clean-up of chromium, copper, and hexavalent chromium-impacted soils. Hexavalent chromium concentrations decreased an order of magnitude over the first 2 years after reductant introduction.
Superfund Site Hexavalent Chromium Remediation	Valley Wood Turlock, CA	Pilot Test Regulatory Negotiation Remedial Design and Operation	U.S. EPA, Region IX DTSC Central Valley RWQCB	Pilot tested geochemical fixation to control hexavalent chromium at this Federal Superfund site. The <i>in-situ</i> fixation treatment design included groundwater extraction, aboveground treatment, and injection. Closure monitoring is currently being discussed with U.S. EPA. Use of this <i>in-situ</i> method saved our client approximately \$10 million as compared to 50 years of pump and treat system operation.
In-Situ Geochemical Fixation	Ecodyne Superfund Site Windsor, CA	Regulatory Negotiation Pilot Study Full Scale Treatment Designed Soil Remedy	North Coast RWQCB DTSC	Negotiated, designed, and implemented full-scale pilot study to treat hexavalent chromium-impacted groundwater via in-situ geochemical fixation. The in-situ chromium reduction remediation reduced estimated cost to closure by as much as 80 percent, expedited cleanup by more than 10 years, and eliminated pump-and-treat costs of \$250,000 per year using a series of gravel-filled trenches constructed around the existing plant foundations. The site is currently being monitored to verify the long-term effectiveness of the approach.
In-Situ Chromium Reduction	Marley Cooling Tower Stockton, CA	Regulatory Negotiation Phased Pilot Study	Central Valley ŘWQCB DTSC	Developed conceptual design and implemented first phase of a pilot test for <i>in-situ</i> chemical reduction of groundwater impacted by hexavalent chromium. Initial phase of pilot test reduced hexavalent chromium levels from 10 ⁺ ppm to non-detect in less than 100 days. Designed and initiated second phase of pilot study to remediate the upgradient portion of the hexavalent chromium plume, with monitoring on-going. <i>In-situ</i> treatment is estimated to reduce the time to closure by 25 years and the cost to closure by over \$20M.
In-Situ Geochemical Fixation of Hexavalent Chromium	Former Boeing C-1 Facility Long Beach, CA	 Pilot Study Regulatory Negotiation Remedial Design and Operation for Treatment of Soil and Groundwater 	Los Angeles RWQCB	Pilot tested geochemical fixation of hexavalent chromium-impacted groundwater using a variety of injection techniques, reducing concentrations from greater than 50 mg/L to non-detectable levels. Successfully secured regulatory approval and necessary permits for full-scale implementation. Designed and are currently operating remedial program. In less than 4 months we delivered approximately 1,000,000 gallons of reductant solution to the groundwater via direct-

Project	Project Location	Key Elements	Regulatory Oversight	Description
				push rods, eliminating the installation of additional wells and saving our client several hundred thousand dollars. Reductant solution was also infiltrated through a basin in a relatively small area to reduce hexavalent chromium concentrations in soil.
In-Situ Chromium Reduction	Carter Holt Harvey, Forwood Products, Mt Gambier, So Australia	 Conducted site assessment in cavernous limestone at active industrial plant System design utilized monitoring wells to form reactive barrier across plume. Reagent delivery involved injection wells, infiltration trenches and basin. First in-situ remediation in Australia, involved regulatory interaction 	South Australian Environmental Protection Agency	The site was over a cavernous limestone aquifer, used as the source of supply for a city of 25,000 people, and a major tourist attraction, "Blue Lake". Initial remediation involved pumping from within the plume under the active plant, treating with reductant and injecting around the plume margin. Later, the plant was decommissioned and an infiltration basin installed at the former plant site. Remediation was accomplished in approximately 2 years after basin construction. The total cost was approximately A\$2,000,000, in contrast to an estimate of A\$35,000,000 for a conventional approach. The site is now certified as remediated by the SA EPA.
In-Situ Chromium Remediation	Universal Forest Products Granger, IN	 Achieved regulatory closure using in-situ methods under a Voluntary Cleanup Program Reduced costs by 50% over continued Pumpand-Treat system Provided acceptable remediation solution to sensitized urban neighbors that use the aquifer for drinking water 	Indiana Voluntary Remediation Program	Designed and implemented an in-situ program to remediate four separate chromium plumes in a highly permeable sand aquifer. Two different reductants were used depending on plume conditions. One plume was cleaned to non-detect levels within 6 weeks of initiation of in-situ activities. All four plumes are covered by a Notice of Completion under the Indiana Voluntary Remediation Program.

MWH In-Situ Chromium Treatment Experience Summary May 2005

Project	Project Location	Key Elements	Regulatory Oversight	Description
In-Situ Chromium Reduction Pilot Test	Shieldalloy Metallurgical Corporation Newfield, NJ	Pilot Test Challenging geochemical conditions		A pilot study was conducted to evaluate the feasibility of using in-situ hexavalent chromium reduction to supplement an existing pump-and-treat system. Calcium polysulfide reductant solution was injected into an existing monitoring well. Even under challenging geochemical conditions – specifically, groundwater at a pH of 12 and total dissolved solids several times that of seawater – hexavalent chromium concentrations were reduced from 39 mg/L to below detection limits. The geochemical conditions at this site have resulted in the formation of a dense brine layer at the base of the aquifer, and investigations are ongoing to determine its extent and potential effects on full-scale insitu remediation efforts.
In-Situ Chromium Reduction Demonstration	Kaydon Ring and Seal Baltimore, MD	 Field-scale demonstration Treatment of unsaturated and saturated zones 		Chromium contamination exists in the unsaturated fill, and saturated soil and bedrock under this chromium plating plant as a result of leaks dating back to World War II. A field-scale demonstration was completed under one of the plating lines by breaking up the floor, installing an infiltration bed, and percolating reductant solution through the fill into the groundwater. The effectiveness of the approach was determined through the collection and analysis of samples from a series of piezometers in the saturated zone and from a series of vacuum lysimeters in the unsaturated zone. The results of these analyses proved the feasibility of this approach.
In-Situ Chromium Reduction Emergency Interim Control	Power Engineering Denver, CO	 Potential river impacts Saturated zone reactive barrier Unsaturated zone treatment Emergency interim control measure 		Chromium plating operations at this plant had resulted in a hexavalent chromium plume that extended from the facility to the South Platte River. As an interim emergency control measure, borehole placement of reductant solution was used to form a reactive barrier across the plume. In-situ reduction of hexavalent chromium in the vadose zone was also initiated by injecting reductant solution through a series of horizontal boreholes beneath the floor slab of the facility.
In-Situ Chromium Remediation	Foremost Environmental Solutions Glenwood Springs, CO	 Potential river impacts Regulatory negotiation Full-scale remediation design and implementation 	Colorado Health Department	This former plating facility is located on the shore of the Colorado River in an area of extensive recreational fishing and rafting. Foremost acquired the property with the understanding that they also acquired the liability of a plume of hexavalent chromium that was discharging into the river. An infiltration basin was constructed in which calcium polysulfide reductant and a carbon source (to aid in bacterial growth) were infiltrated, resulting in reduction of the

MWH In-Situ Chromium Treatment Experience Summary May 2005

Project	Project Location	Key Elements	Regulatory Oversight	Description
			·	chromium to the trivalent state and the precipitation of the chromium as a hydroxide. This site is considered remediated by the Colorado Health Department.
In-Situ Chromium Remediation	REMCO Industries Willits, CA	 Pilot test Full-scale remediation design and implementation Chromium reduction with reductive dechlorination of TCE Hydrofracture injection 	North Coast Regional Water Quality Control Board	This former chromium plating site is underlain by low-permeability silts and clays that have prevented remediation via conventional pump-and-treat methods. Pilot tests were performed to demonstrate that the direct-push hydrofracturing approach is appropriate at this site, and that the reductant solution used will not only reduce the hexavalent chromium to the trivalent form, but will also achieve reductive dechlorination of the TCE. Full-scale remediation design and implementation is ongoing.